00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00039 #include <acado/utils/acado_utils.hpp> 00040 #include <acado/matrix_vector/matrix_vector.hpp> 00041 00042 using namespace std; 00043 using namespace Eigen; 00044 00045 USING_NAMESPACE_ACADO 00046 00047 /* >>> start tutorial code >>> */ 00048 int main( ){ 00049 00050 00051 00052 // DEFINE A MATRIX: 00053 // ---------------- 00054 DMatrix A(3,2); 00055 00056 A(0,0) = 1.0; A(0,1) = 0.0; 00057 A(1,0) = 0.0; A(1,1) = 3.0; 00058 A(2,0) = 0.0; A(2,1) = 2.0; 00059 00060 00061 // ---------------------------------------------- 00062 // Compute the singular value decomposition of A: 00063 // 00064 // A = U D V^T 00065 // 00066 // where U and V are orthogonal and D a diagonal 00067 // matrix. 00068 // ---------------------------------------------- 00069 00070 JacobiSVD< MatrixXd > svdA(A, ComputeThinU | ComputeThinV ); 00071 00072 DMatrix U = svdA.matrixU(); 00073 DMatrix V = svdA.matrixV(); 00074 DVector D = svdA.singularValues(); 00075 00076 cout << "U = " << endl << U << endl; 00077 cout << "D = " << endl << D << endl; 00078 cout << "V = " << endl << V << endl; 00079 00080 00081 // DEFINE ANOTHER MATRIX: 00082 // ---------------------- 00083 DMatrix B(2,3); 00084 00085 B(0,0) = 1.0; B(0,1) = 0.0; B(0,2) = 0.0; 00086 B(1,0) = 0.0; B(1,1) = 3.0; B(1,2) = 2.0; 00087 00088 00089 // ---------------------------------------------- 00090 // Compute the singular value decomposition of B: 00091 // 00092 // B = U D V^T 00093 // 00094 // where U and V are orthogonal and D a diagonal 00095 // matrix. 00096 // ---------------------------------------------- 00097 00098 JacobiSVD< MatrixXd > svdB(B, ComputeThinU | ComputeThinV); 00099 00100 U = svdB.matrixU(); 00101 V = svdB.matrixV(); 00102 D = svdB.singularValues(); 00103 00104 cout << "\n\nSVD of the matrix B: \n"; 00105 00106 cout << "U = " << endl << U << endl; 00107 cout << "D = " << endl << D << endl; 00108 cout << "V = " << endl << V << endl; 00109 00110 return 0; 00111 } 00112 /* <<< end tutorial code <<< */ 00113 00114