00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_optimal_control.hpp> 00036 #include <acado_gnuplot.hpp> 00037 00038 00039 int main( ){ 00040 00041 USING_NAMESPACE_ACADO 00042 00043 00044 // INTRODUCE THE VARIABLES: 00045 // ------------------------- 00046 const int N = 2; 00047 00048 DifferentialState x, y("", N, 1); 00049 Control u; 00050 DifferentialEquation f; 00051 00052 const double t_start = 0.0; 00053 const double t_end = 10.0; 00054 00055 00056 // DEFINE A DIFFERENTIAL EQUATION: 00057 // ------------------------------- 00058 00059 f << dot(x) == -x + 0.9*x*x + u; 00060 00061 int i; 00062 for( i = 0; i < N; i++ ) 00063 f << dot( y(i) ) == -y(i) + 0.5*y(i)*y(i) + u; 00064 00065 00066 // DEFINE LEAST SQUARE FUNCTION: 00067 // ----------------------------- 00068 00069 Function h,m; 00070 00071 h << x; 00072 h << 2.0*u; 00073 00074 m << 10.0*x ; 00075 m << 0.1*x*x; 00076 00077 DMatrix S(2,2); 00078 DVector r(2); 00079 00080 S.setIdentity(); 00081 r.setAll( 0.1 ); 00082 00083 00084 // DEFINE AN OPTIMAL CONTROL PROBLEM: 00085 // ---------------------------------- 00086 OCP ocp( t_start, t_end, 5 ); 00087 00088 ocp.minimizeLSQ ( S, h, r ); 00089 ocp.minimizeLSQEndTerm( S, m, r ); 00090 00091 ocp.subjectTo( f ); 00092 ocp.subjectTo( AT_START, x == 1.0 ); 00093 00094 for( i = 0; i < N; i++ ) 00095 ocp.subjectTo( AT_START, y(i) == 1.0 ); 00096 00097 00098 // Additionally, flush a plotting object 00099 GnuplotWindow window; 00100 window.addSubplot( x,"DifferentialState x" ); 00101 window.addSubplot( u,"Control u" ); 00102 00103 00104 // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP: 00105 // --------------------------------------------------- 00106 OptimizationAlgorithm algorithm(ocp); 00107 algorithm << window; 00108 00109 // algorithm.set( PRINT_SCP_METHOD_PROFILE, YES ); 00110 // algorithm.set( DYNAMIC_SENSITIVITY, FORWARD_SENSITIVITY_LIFTED ); 00111 // algorithm.set( HESSIAN_APPROXIMATION, CONSTANT_HESSIAN ); 00112 // algorithm.set( HESSIAN_APPROXIMATION, FULL_BFGS_UPDATE ); 00113 // algorithm.set( HESSIAN_APPROXIMATION, BLOCK_BFGS_UPDATE ); 00114 algorithm.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON ); 00115 // algorithm.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON_WITH_BLOCK_BFGS ); 00116 // algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN ); 00117 00118 // Necessary to use with GN Hessian approximation. 00119 algorithm.set( LEVENBERG_MARQUARDT, 1e-10 ); 00120 00121 algorithm.solve(); 00122 00123 return 0; 00124 } 00125 00126 00127