00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00034 #include <acado_optimal_control.hpp> 00035 #include <acado_gnuplot.hpp> 00036 00037 00038 int main( ){ 00039 00040 USING_NAMESPACE_ACADO 00041 00042 00043 // INTRODUCE THE VARIABLES: 00044 // ------------------------- 00045 00046 DifferentialState x; 00047 Control u; 00048 Disturbance w; 00049 Parameter p,q; 00050 DifferentialEquation f; 00051 00052 const double t_start = 0.0; 00053 const double t_end = 1.0; 00054 00055 00056 // DEFINE A DIFFERENTIAL EQUATION: 00057 // ------------------------------- 00058 00059 f << -dot(x) -x*x + p + u*u + w; 00060 00061 00062 // DEFINE AN OPTIMAL CONTROL PROBLEM: 00063 // ---------------------------------- 00064 OCP ocp( t_start, t_end, 20 ); 00065 00066 ocp.minimizeMayerTerm( x + p*p + q*q ); 00067 ocp.subjectTo( f ); 00068 ocp.subjectTo( AT_START, x == 1.0 ); 00069 ocp.subjectTo( 0.1 <= u <= 2.0 ); 00070 ocp.subjectTo( -0.1 <= w <= 2.1 ); 00071 00072 00073 // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP: 00074 // --------------------------------------------------- 00075 OptimizationAlgorithm algorithm(ocp); 00076 00077 // algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN ); 00078 algorithm.solve(); 00079 00080 00081 return 0; 00082 } 00083 00084 00085