00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_integrators.hpp> 00036 00037 00038 00039 int main( ){ 00040 00041 USING_NAMESPACE_ACADO 00042 00043 00044 // Define a Right-Hand-Side: 00045 // ------------------------- 00046 DifferentialState phi; // the angle phi 00047 DifferentialState dphi; // the first derivative of phi w.r.t time 00048 Control F; // a force acting on the pendulum 00049 Parameter l; // the length of the pendulum 00050 00051 const double m = 1.0 ; // the mass of the pendulum 00052 const double g = 9.81 ; // the gravitational constant 00053 const double alpha = 2.0 ; // frictional constant 00054 00055 IntermediateState z; 00056 DifferentialEquation f; 00057 00058 z = sin(phi); 00059 00060 f << dot(phi ) == dphi; 00061 f << dot(dphi) == -(m*g/l)*z - alpha*dphi + F/(m*l); 00062 00063 00064 // DEFINE AN INTEGRATOR: 00065 // --------------------- 00066 00067 IntegratorRK45 integrator( f ); 00068 00069 integrator.set( INTEGRATOR_PRINTLEVEL, HIGH ); 00070 integrator.set( INTEGRATOR_TOLERANCE, 1.0e-6 ); 00071 00072 // DEFINE INITIAL VALUES: 00073 // ---------------------- 00074 00075 double x_start[2] = { 1.0, 0.0 }; 00076 double u [1] = { 0.0 }; 00077 double p [1] = { 1.0 }; 00078 00079 double t_start = 0.0 ; 00080 double t_end = 2.0 ; 00081 00082 00083 // START THE INTEGRATION: 00084 // ---------------------- 00085 00086 //integrator.freezeAll(); 00087 integrator.integrate( t_start, t_end, x_start, 0, p, u ); 00088 00089 00090 // GET THE RESULTS 00091 // --------------- 00092 00093 VariablesGrid differentialStates; 00094 integrator.getX( differentialStates ); 00095 00096 differentialStates.print( "x" ); 00097 00098 00099 return 0; 00100 } 00101 00102 00103