pendulum.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_optimal_control.hpp>
00036 #include <acado_gnuplot.hpp>
00037 
00038 using namespace std;
00039 
00040 USING_NAMESPACE_ACADO
00041 
00042 int main( )
00043 {
00044         // Define a Right-Hand-Side:
00045         // -------------------------
00046         DifferentialState       phi; // the angle phi
00047         DifferentialState dphi; // the first derivative of phi w.r.t time
00048         Control F; // a force acting on the pendulum
00049         Parameter l; // the length of the pendulum
00050 
00051         const double m = 1.0; // the mass of the pendulum
00052         const double g = 9.81; // the gravitational constant
00053         const double alpha = 2.0; // friction constant
00054 
00055         IntermediateState z;
00056         DifferentialEquation f;
00057 
00058         z = sin(phi);
00059 
00060         f << dot(phi ) == dphi;
00061         f << dot(dphi) == -(m*g/l)*z - alpha*dphi + F/(m*l);
00062 
00063         // DEFINE INITIAL VALUES:
00064         // ----------------------
00065 
00066         DVector xStart( 2 );
00067         xStart(0) = 1.0;
00068         xStart(1) = 0.0;
00069 
00070         DVector xa;
00071 
00072         DVector u( 1 );
00073         u(0) = 0.0;
00074 
00075         DVector p( 1 );
00076         p(0) = 1.0;
00077 
00078         double tStart = 0.0;
00079         double tEnd = 2.0;
00080 
00081         Grid timeHorizon( tStart,tEnd );
00082 
00083         // DEFINE AN INTEGRATOR:
00084         // ---------------------
00085 
00086         IntegrationAlgorithm intAlg;
00087 
00088         intAlg.addStage( f, timeHorizon, INT_RK45 );
00089 
00090         //intAlg.set( INTEGRATOR_TYPE, INT_RK45 );
00091         intAlg.set( INTEGRATOR_PRINTLEVEL, HIGH );
00092         intAlg.set( INTEGRATOR_TOLERANCE, 1.0e-6 );
00093 
00094         // START THE INTEGRATION:
00095         // ----------------------
00096 
00097         intAlg.integrate( timeHorizon, xStart,xa,p,u );
00098 
00099         // GET THE RESULTS
00100         // ---------------
00101 
00102         VariablesGrid differentialStates;
00103         intAlg.getX( differentialStates );
00104 
00105         cout << "x = " << endl << differentialStates << endl;
00106 
00107         return 0;
00108 }
00109 
00110 
00111 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:59:46