00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_optimal_control.hpp> 00036 #include <acado_gnuplot.hpp> 00037 00038 using namespace std; 00039 00040 USING_NAMESPACE_ACADO 00041 00042 int main( ) 00043 { 00044 // Define a Right-Hand-Side: 00045 // ------------------------- 00046 DifferentialState phi; // the angle phi 00047 DifferentialState dphi; // the first derivative of phi w.r.t time 00048 Control F; // a force acting on the pendulum 00049 Parameter l; // the length of the pendulum 00050 00051 const double m = 1.0; // the mass of the pendulum 00052 const double g = 9.81; // the gravitational constant 00053 const double alpha = 2.0; // friction constant 00054 00055 IntermediateState z; 00056 DifferentialEquation f; 00057 00058 z = sin(phi); 00059 00060 f << dot(phi ) == dphi; 00061 f << dot(dphi) == -(m*g/l)*z - alpha*dphi + F/(m*l); 00062 00063 // DEFINE INITIAL VALUES: 00064 // ---------------------- 00065 00066 DVector xStart( 2 ); 00067 xStart(0) = 1.0; 00068 xStart(1) = 0.0; 00069 00070 DVector xa; 00071 00072 DVector u( 1 ); 00073 u(0) = 0.0; 00074 00075 DVector p( 1 ); 00076 p(0) = 1.0; 00077 00078 double tStart = 0.0; 00079 double tEnd = 2.0; 00080 00081 Grid timeHorizon( tStart,tEnd ); 00082 00083 // DEFINE AN INTEGRATOR: 00084 // --------------------- 00085 00086 IntegrationAlgorithm intAlg; 00087 00088 intAlg.addStage( f, timeHorizon, INT_RK45 ); 00089 00090 //intAlg.set( INTEGRATOR_TYPE, INT_RK45 ); 00091 intAlg.set( INTEGRATOR_PRINTLEVEL, HIGH ); 00092 intAlg.set( INTEGRATOR_TOLERANCE, 1.0e-6 ); 00093 00094 // START THE INTEGRATION: 00095 // ---------------------- 00096 00097 intAlg.integrate( timeHorizon, xStart,xa,p,u ); 00098 00099 // GET THE RESULTS 00100 // --------------- 00101 00102 VariablesGrid differentialStates; 00103 intAlg.getX( differentialStates ); 00104 00105 cout << "x = " << endl << differentialStates << endl; 00106 00107 return 0; 00108 } 00109 00110 00111