discrete_time_rocket.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036 
00037 
00038 /* >>> start tutorial code >>> */
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043     // INTRODUCE THE VARIABLES:
00044     // ------------------------------------
00045     DifferentialState                v,s,m;
00046     Control                          u    ;
00047 
00048     const double t_start =    0.0;
00049     const double t_end   =   10.0;
00050     const double h       =   0.01;
00051 
00052     DiscretizedDifferentialEquation  f(h) ;
00053 
00054 
00055     // DEFINE A DISCRETE-TIME SYTSEM:
00056     // -------------------------------
00057     f << next(s) == s + h*v;
00058     f << next(v) == v + h*(u-0.02*v*v)/m;
00059     f << next(m) == m - h*0.01*u*u;
00060 
00061         
00062         Function eta;
00063         eta << u;
00064 
00065     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00066     // ----------------------------------
00067     OCP ocp( t_start, t_end, 50 );
00068 
00069     //ocp.minimizeLagrangeTerm( u*u );
00070         ocp.minimizeLSQ( eta );
00071     ocp.subjectTo( f );
00072 
00073     ocp.subjectTo( AT_START, s ==  0.0 );
00074     ocp.subjectTo( AT_START, v ==  0.0 );
00075     ocp.subjectTo( AT_START, m ==  1.0 );
00076 
00077     ocp.subjectTo( AT_END  , s == 10.0 );
00078     ocp.subjectTo( AT_END  , v ==  0.0 );
00079 
00080     ocp.subjectTo( -0.01 <= v <= 1.3 );
00081 
00082 
00083     // DEFINE A PLOT WINDOW:
00084     // ---------------------
00085     GnuplotWindow window;
00086         window.addSubplot( s,"DifferentialState s" );
00087         window.addSubplot( v,"DifferentialState v" );
00088         window.addSubplot( m,"DifferentialState m" );
00089         window.addSubplot( u,"Control u" );
00090         window.addSubplot( PLOT_KKT_TOLERANCE,"KKT Tolerance" );
00091         window.addSubplot( 0.5 * m * v*v,"Kinetic Energy" );
00092 
00093 
00094     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
00095     // ---------------------------------------------------
00096     OptimizationAlgorithm algorithm(ocp);
00097         algorithm.set( INTEGRATOR_TYPE, INT_DISCRETE );
00098     algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN );
00099     algorithm.set( KKT_TOLERANCE, 1e-10 );
00100 
00101     algorithm << window;
00102     algorithm.solve();
00103 
00104     return 0;
00105 }
00106 /* <<< end tutorial code <<< */
00107 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:58:07