00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_MATRIX_POWER
00011 #define EIGEN_MATRIX_POWER
00012
00013 namespace Eigen {
00014
00015 template<typename MatrixType> class MatrixPower;
00016
00017 template<typename MatrixType>
00018 class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
00019 {
00020 public:
00021 typedef typename MatrixType::RealScalar RealScalar;
00022 typedef typename MatrixType::Index Index;
00023
00024 MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
00025 { }
00026
00027 template<typename ResultType>
00028 inline void evalTo(ResultType& res) const
00029 { m_pow.compute(res, m_p); }
00030
00031 Index rows() const { return m_pow.rows(); }
00032 Index cols() const { return m_pow.cols(); }
00033
00034 private:
00035 MatrixPower<MatrixType>& m_pow;
00036 const RealScalar m_p;
00037 MatrixPowerRetval& operator=(const MatrixPowerRetval&);
00038 };
00039
00040 template<typename MatrixType>
00041 class MatrixPowerAtomic
00042 {
00043 private:
00044 enum {
00045 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00046 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
00047 };
00048 typedef typename MatrixType::Scalar Scalar;
00049 typedef typename MatrixType::RealScalar RealScalar;
00050 typedef std::complex<RealScalar> ComplexScalar;
00051 typedef typename MatrixType::Index Index;
00052 typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
00053
00054 const MatrixType& m_A;
00055 RealScalar m_p;
00056
00057 void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
00058 void compute2x2(MatrixType& res, RealScalar p) const;
00059 void computeBig(MatrixType& res) const;
00060 static int getPadeDegree(float normIminusT);
00061 static int getPadeDegree(double normIminusT);
00062 static int getPadeDegree(long double normIminusT);
00063 static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
00064 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
00065
00066 public:
00067 MatrixPowerAtomic(const MatrixType& T, RealScalar p);
00068 void compute(MatrixType& res) const;
00069 };
00070
00071 template<typename MatrixType>
00072 MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
00073 m_A(T), m_p(p)
00074 { eigen_assert(T.rows() == T.cols()); }
00075
00076 template<typename MatrixType>
00077 void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
00078 {
00079 res.resizeLike(m_A);
00080 switch (m_A.rows()) {
00081 case 0:
00082 break;
00083 case 1:
00084 res(0,0) = std::pow(m_A(0,0), m_p);
00085 break;
00086 case 2:
00087 compute2x2(res, m_p);
00088 break;
00089 default:
00090 computeBig(res);
00091 }
00092 }
00093
00094 template<typename MatrixType>
00095 void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
00096 {
00097 int i = degree<<1;
00098 res = (m_p-degree) / ((i-1)<<1) * IminusT;
00099 for (--i; i; --i) {
00100 res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
00101 .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
00102 }
00103 res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
00104 }
00105
00106
00107 template<typename MatrixType>
00108 void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
00109 {
00110 using std::abs;
00111 using std::pow;
00112
00113 ArrayType logTdiag = m_A.diagonal().array().log();
00114 res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
00115
00116 for (Index i=1; i < m_A.cols(); ++i) {
00117 res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
00118 if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
00119 res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
00120 else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
00121 res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
00122 else
00123 res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
00124 res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
00125 }
00126 }
00127
00128 template<typename MatrixType>
00129 void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
00130 {
00131 const int digits = std::numeric_limits<RealScalar>::digits;
00132 const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f:
00133 digits <= 53? 2.789358995219730e-1:
00134 digits <= 64? 2.4471944416607995472e-1L:
00135 digits <= 106? 1.1016843812851143391275867258512e-1L:
00136 9.134603732914548552537150753385375e-2L;
00137 MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
00138 RealScalar normIminusT;
00139 int degree, degree2, numberOfSquareRoots = 0;
00140 bool hasExtraSquareRoot = false;
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155 for (Index i=0; i < m_A.cols(); ++i)
00156 eigen_assert(m_A(i,i) != RealScalar(0));
00157
00158 while (true) {
00159 IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
00160 normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
00161 if (normIminusT < maxNormForPade) {
00162 degree = getPadeDegree(normIminusT);
00163 degree2 = getPadeDegree(normIminusT/2);
00164 if (degree - degree2 <= 1 || hasExtraSquareRoot)
00165 break;
00166 hasExtraSquareRoot = true;
00167 }
00168 MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
00169 T = sqrtT.template triangularView<Upper>();
00170 ++numberOfSquareRoots;
00171 }
00172 computePade(degree, IminusT, res);
00173
00174 for (; numberOfSquareRoots; --numberOfSquareRoots) {
00175 compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
00176 res = res.template triangularView<Upper>() * res;
00177 }
00178 compute2x2(res, m_p);
00179 }
00180
00181 template<typename MatrixType>
00182 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
00183 {
00184 const float maxNormForPade[] = { 2.8064004e-1f , 4.3386528e-1f };
00185 int degree = 3;
00186 for (; degree <= 4; ++degree)
00187 if (normIminusT <= maxNormForPade[degree - 3])
00188 break;
00189 return degree;
00190 }
00191
00192 template<typename MatrixType>
00193 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
00194 {
00195 const double maxNormForPade[] = { 1.884160592658218e-2 , 6.038881904059573e-2, 1.239917516308172e-1,
00196 1.999045567181744e-1, 2.789358995219730e-1 };
00197 int degree = 3;
00198 for (; degree <= 7; ++degree)
00199 if (normIminusT <= maxNormForPade[degree - 3])
00200 break;
00201 return degree;
00202 }
00203
00204 template<typename MatrixType>
00205 inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
00206 {
00207 #if LDBL_MANT_DIG == 53
00208 const int maxPadeDegree = 7;
00209 const double maxNormForPade[] = { 1.884160592658218e-2L , 6.038881904059573e-2L, 1.239917516308172e-1L,
00210 1.999045567181744e-1L, 2.789358995219730e-1L };
00211 #elif LDBL_MANT_DIG <= 64
00212 const int maxPadeDegree = 8;
00213 const double maxNormForPade[] = { 6.3854693117491799460e-3L , 2.6394893435456973676e-2L,
00214 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
00215 #elif LDBL_MANT_DIG <= 106
00216 const int maxPadeDegree = 10;
00217 const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L ,
00218 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
00219 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
00220 1.1016843812851143391275867258512e-1L };
00221 #else
00222 const int maxPadeDegree = 10;
00223 const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L ,
00224 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
00225 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
00226 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
00227 9.134603732914548552537150753385375e-2L };
00228 #endif
00229 int degree = 3;
00230 for (; degree <= maxPadeDegree; ++degree)
00231 if (normIminusT <= maxNormForPade[degree - 3])
00232 break;
00233 return degree;
00234 }
00235
00236 template<typename MatrixType>
00237 inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
00238 MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
00239 {
00240 ComplexScalar logCurr = std::log(curr);
00241 ComplexScalar logPrev = std::log(prev);
00242 int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
00243 ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
00244 return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
00245 }
00246
00247 template<typename MatrixType>
00248 inline typename MatrixPowerAtomic<MatrixType>::RealScalar
00249 MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
00250 {
00251 RealScalar w = numext::atanh2(curr - prev, curr + prev);
00252 return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
00253 }
00254
00274 template<typename MatrixType>
00275 class MatrixPower
00276 {
00277 private:
00278 enum {
00279 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00280 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00281 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00282 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00283 };
00284 typedef typename MatrixType::Scalar Scalar;
00285 typedef typename MatrixType::RealScalar RealScalar;
00286 typedef typename MatrixType::Index Index;
00287
00288 public:
00297 explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
00298 { eigen_assert(A.rows() == A.cols()); }
00299
00307 const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
00308 { return MatrixPowerRetval<MatrixType>(*this, p); }
00309
00317 template<typename ResultType>
00318 void compute(ResultType& res, RealScalar p);
00319
00320 Index rows() const { return m_A.rows(); }
00321 Index cols() const { return m_A.cols(); }
00322
00323 private:
00324 typedef std::complex<RealScalar> ComplexScalar;
00325 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
00326 MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
00327
00328 typename MatrixType::Nested m_A;
00329 MatrixType m_tmp;
00330 ComplexMatrix m_T, m_U, m_fT;
00331 RealScalar m_conditionNumber;
00332
00333 RealScalar modfAndInit(RealScalar, RealScalar*);
00334
00335 template<typename ResultType>
00336 void computeIntPower(ResultType&, RealScalar);
00337
00338 template<typename ResultType>
00339 void computeFracPower(ResultType&, RealScalar);
00340
00341 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00342 static void revertSchur(
00343 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00344 const ComplexMatrix& T,
00345 const ComplexMatrix& U);
00346
00347 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00348 static void revertSchur(
00349 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00350 const ComplexMatrix& T,
00351 const ComplexMatrix& U);
00352 };
00353
00354 template<typename MatrixType>
00355 template<typename ResultType>
00356 void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
00357 {
00358 switch (cols()) {
00359 case 0:
00360 break;
00361 case 1:
00362 res(0,0) = std::pow(m_A.coeff(0,0), p);
00363 break;
00364 default:
00365 RealScalar intpart, x = modfAndInit(p, &intpart);
00366 computeIntPower(res, intpart);
00367 computeFracPower(res, x);
00368 }
00369 }
00370
00371 template<typename MatrixType>
00372 typename MatrixPower<MatrixType>::RealScalar
00373 MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
00374 {
00375 typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
00376
00377 *intpart = std::floor(x);
00378 RealScalar res = x - *intpart;
00379
00380 if (!m_conditionNumber && res) {
00381 const ComplexSchur<MatrixType> schurOfA(m_A);
00382 m_T = schurOfA.matrixT();
00383 m_U = schurOfA.matrixU();
00384
00385 const RealArray absTdiag = m_T.diagonal().array().abs();
00386 m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
00387 }
00388
00389 if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
00390 --res;
00391 ++*intpart;
00392 }
00393 return res;
00394 }
00395
00396 template<typename MatrixType>
00397 template<typename ResultType>
00398 void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
00399 {
00400 RealScalar pp = std::abs(p);
00401
00402 if (p<0) m_tmp = m_A.inverse();
00403 else m_tmp = m_A;
00404
00405 res = MatrixType::Identity(rows(), cols());
00406 while (pp >= 1) {
00407 if (std::fmod(pp, 2) >= 1)
00408 res = m_tmp * res;
00409 m_tmp *= m_tmp;
00410 pp /= 2;
00411 }
00412 }
00413
00414 template<typename MatrixType>
00415 template<typename ResultType>
00416 void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
00417 {
00418 if (p) {
00419 eigen_assert(m_conditionNumber);
00420 MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
00421 revertSchur(m_tmp, m_fT, m_U);
00422 res = m_tmp * res;
00423 }
00424 }
00425
00426 template<typename MatrixType>
00427 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00428 inline void MatrixPower<MatrixType>::revertSchur(
00429 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00430 const ComplexMatrix& T,
00431 const ComplexMatrix& U)
00432 { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
00433
00434 template<typename MatrixType>
00435 template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
00436 inline void MatrixPower<MatrixType>::revertSchur(
00437 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
00438 const ComplexMatrix& T,
00439 const ComplexMatrix& U)
00440 { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
00441
00455 template<typename Derived>
00456 class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
00457 {
00458 public:
00459 typedef typename Derived::PlainObject PlainObject;
00460 typedef typename Derived::RealScalar RealScalar;
00461 typedef typename Derived::Index Index;
00462
00469 MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
00470 { }
00471
00478 template<typename ResultType>
00479 inline void evalTo(ResultType& res) const
00480 { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
00481
00482 Index rows() const { return m_A.rows(); }
00483 Index cols() const { return m_A.cols(); }
00484
00485 private:
00486 const Derived& m_A;
00487 const RealScalar m_p;
00488 MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
00489 };
00490
00491 namespace internal {
00492
00493 template<typename MatrixPowerType>
00494 struct traits< MatrixPowerRetval<MatrixPowerType> >
00495 { typedef typename MatrixPowerType::PlainObject ReturnType; };
00496
00497 template<typename Derived>
00498 struct traits< MatrixPowerReturnValue<Derived> >
00499 { typedef typename Derived::PlainObject ReturnType; };
00500
00501 }
00502
00503 template<typename Derived>
00504 const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
00505 { return MatrixPowerReturnValue<Derived>(derived(), p); }
00506
00507 }
00508
00509 #endif // EIGEN_MATRIX_POWER