Go to the source code of this file.
Namespaces | |
| namespace | Eigen |
iterative scaling algorithm to equilibrate rows and column norms in matrices | |
| namespace | Eigen::internal |
Defines | |
| #define | EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME, FUNCTOR) |
| #define | EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME, FUNCTOR) |
Functions | |
| template<typename Derived > | |
| const Eigen::CwiseUnaryOp < Eigen::internal::scalar_inverse_mult_op < typename Derived::Scalar > , const Derived > | Eigen::operator/ (const typename Derived::Scalar &s, const Eigen::ArrayBase< Derived > &a) |
| Component-wise division of a scalar by array elements. | |
| template<typename Derived > | |
| const Eigen::CwiseUnaryOp < Eigen::internal::scalar_pow_op < typename Derived::Scalar > , const Derived > | Eigen::pow (const Eigen::ArrayBase< Derived > &x, const typename Derived::Scalar &exponent) |
| template<typename Derived > | |
| const Eigen::CwiseBinaryOp < Eigen::internal::scalar_binary_pow_op < typename Derived::Scalar, typename Derived::Scalar > , const Derived, const Derived > | Eigen::pow (const Eigen::ArrayBase< Derived > &x, const Eigen::ArrayBase< Derived > &exponents) |
| #define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY | ( | NAME, | |
| FUNCTOR | |||
| ) |
\
template<typename Derived> \
struct NAME##_retval<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
}; \
template<typename Derived> \
struct NAME##_impl<ArrayBase<Derived> > \
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return x.derived(); \
} \
};
Definition at line 21 of file GlobalFunctions.h.
| #define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY | ( | NAME, | |
| FUNCTOR | |||
| ) |
template<typename Derived> \ inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \ NAME(const Eigen::ArrayBase<Derived>& x) { \ return x.derived(); \ }
Definition at line 14 of file GlobalFunctions.h.