GetGripperPoseActionGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-pr2_object_manipulation/doc_stacks/2014-10-06_11-30-38.833395/pr2_object_manipulation/manipulation/pr2_object_manipulation_msgs/msg/GetGripperPoseActionGoal.msg */
00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTIONGOAL_H
00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "pr2_object_manipulation_msgs/GetGripperPoseGoal.h"
00020 
00021 namespace pr2_object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GetGripperPoseActionGoal_ {
00025   typedef GetGripperPoseActionGoal_<ContainerAllocator> Type;
00026 
00027   GetGripperPoseActionGoal_()
00028   : header()
00029   , goal_id()
00030   , goal()
00031   {
00032   }
00033 
00034   GetGripperPoseActionGoal_(const ContainerAllocator& _alloc)
00035   : header(_alloc)
00036   , goal_id(_alloc)
00037   , goal(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00042    ::std_msgs::Header_<ContainerAllocator>  header;
00043 
00044   typedef  ::actionlib_msgs::GoalID_<ContainerAllocator>  _goal_id_type;
00045    ::actionlib_msgs::GoalID_<ContainerAllocator>  goal_id;
00046 
00047   typedef  ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator>  _goal_type;
00048    ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator>  goal;
00049 
00050 
00051   typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct GetGripperPoseActionGoal
00055 typedef  ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<std::allocator<void> > GetGripperPoseActionGoal;
00056 
00057 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal> GetGripperPoseActionGoalPtr;
00058 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal const> GetGripperPoseActionGoalConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace pr2_object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "436ecf3ba6f8ddf39b4c09ab1ed9111c";
00080   }
00081 
00082   static const char* value(const  ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0x436ecf3ba6f8ddf3ULL;
00084   static const uint64_t static_value2 = 0x9b4c09ab1ed9111cULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "pr2_object_manipulation_msgs/GetGripperPoseActionGoal";
00092   }
00093 
00094   static const char* value(const  ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 GetGripperPoseGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: pr2_object_manipulation_msgs/GetGripperPoseGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 \n\
00142 # for which arm are we requesting a pose\n\
00143 # useful for knowing which arm to initialize from when seed is empty\n\
00144 string arm_name\n\
00145 \n\
00146 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\
00147 # the ghosted gripper will be initialized at the current position of the gripper\n\
00148 geometry_msgs/PoseStamped gripper_pose\n\
00149 float32 gripper_opening\n\
00150 \n\
00151 # An object that the gripper is holding. May be empty.\n\
00152 manipulation_msgs/GraspableObject object\n\
00153 \n\
00154 # how we are holding the object, if any.\n\
00155 manipulation_msgs/Grasp grasp\n\
00156 \n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: geometry_msgs/PoseStamped\n\
00160 # A Pose with reference coordinate frame and timestamp\n\
00161 Header header\n\
00162 Pose pose\n\
00163 \n\
00164 ================================================================================\n\
00165 MSG: geometry_msgs/Pose\n\
00166 # A representation of pose in free space, composed of postion and orientation. \n\
00167 Point position\n\
00168 Quaternion orientation\n\
00169 \n\
00170 ================================================================================\n\
00171 MSG: geometry_msgs/Point\n\
00172 # This contains the position of a point in free space\n\
00173 float64 x\n\
00174 float64 y\n\
00175 float64 z\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: geometry_msgs/Quaternion\n\
00179 # This represents an orientation in free space in quaternion form.\n\
00180 \n\
00181 float64 x\n\
00182 float64 y\n\
00183 float64 z\n\
00184 float64 w\n\
00185 \n\
00186 ================================================================================\n\
00187 MSG: manipulation_msgs/GraspableObject\n\
00188 # an object that the object_manipulator can work on\n\
00189 \n\
00190 # a graspable object can be represented in multiple ways. This message\n\
00191 # can contain all of them. Which one is actually used is up to the receiver\n\
00192 # of this message. When adding new representations, one must be careful that\n\
00193 # they have reasonable lightweight defaults indicating that that particular\n\
00194 # representation is not available.\n\
00195 \n\
00196 # the tf frame to be used as a reference frame when combining information from\n\
00197 # the different representations below\n\
00198 string reference_frame_id\n\
00199 \n\
00200 # potential recognition results from a database of models\n\
00201 # all poses are relative to the object reference pose\n\
00202 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00203 \n\
00204 # the point cloud itself\n\
00205 sensor_msgs/PointCloud cluster\n\
00206 \n\
00207 # a region of a PointCloud2 of interest\n\
00208 SceneRegion region\n\
00209 \n\
00210 # the name that this object has in the collision environment\n\
00211 string collision_name\n\
00212 ================================================================================\n\
00213 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00214 # Informs that a specific model from the Model Database has been \n\
00215 # identified at a certain location\n\
00216 \n\
00217 # the database id of the model\n\
00218 int32 model_id\n\
00219 \n\
00220 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00221 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00222 # leave this empty if providing an id in the model_id field\n\
00223 object_recognition_msgs/ObjectType type\n\
00224 \n\
00225 # the pose that it can be found in\n\
00226 geometry_msgs/PoseStamped pose\n\
00227 \n\
00228 # a measure of the confidence level in this detection result\n\
00229 float32 confidence\n\
00230 \n\
00231 # the name of the object detector that generated this detection result\n\
00232 string detector_name\n\
00233 \n\
00234 ================================================================================\n\
00235 MSG: object_recognition_msgs/ObjectType\n\
00236 ################################################## OBJECT ID #########################################################\n\
00237 \n\
00238 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00239 # object\n\
00240 \n\
00241 # The key of the found object: the unique identifier in the given db\n\
00242 string key\n\
00243 \n\
00244 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00245 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00246 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00247 # The object_recognition_core as a generic DB type that can read those fields\n\
00248 # Current examples:\n\
00249 # For CouchDB:\n\
00250 #   type: 'CouchDB'\n\
00251 #   root: 'http://localhost:5984'\n\
00252 #   collection: 'object_recognition'\n\
00253 # For SQL household database:\n\
00254 #   type: 'SqlHousehold'\n\
00255 #   host: 'wgs36'\n\
00256 #   port: 5432\n\
00257 #   user: 'willow'\n\
00258 #   password: 'willow'\n\
00259 #   name: 'household_objects'\n\
00260 #   module: 'tabletop'\n\
00261 string db\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: sensor_msgs/PointCloud\n\
00265 # This message holds a collection of 3d points, plus optional additional\n\
00266 # information about each point.\n\
00267 \n\
00268 # Time of sensor data acquisition, coordinate frame ID.\n\
00269 Header header\n\
00270 \n\
00271 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00272 # in the frame given in the header.\n\
00273 geometry_msgs/Point32[] points\n\
00274 \n\
00275 # Each channel should have the same number of elements as points array,\n\
00276 # and the data in each channel should correspond 1:1 with each point.\n\
00277 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00278 ChannelFloat32[] channels\n\
00279 \n\
00280 ================================================================================\n\
00281 MSG: geometry_msgs/Point32\n\
00282 # This contains the position of a point in free space(with 32 bits of precision).\n\
00283 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00284 # \n\
00285 # This recommendation is to promote interoperability.  \n\
00286 #\n\
00287 # This message is designed to take up less space when sending\n\
00288 # lots of points at once, as in the case of a PointCloud.  \n\
00289 \n\
00290 float32 x\n\
00291 float32 y\n\
00292 float32 z\n\
00293 ================================================================================\n\
00294 MSG: sensor_msgs/ChannelFloat32\n\
00295 # This message is used by the PointCloud message to hold optional data\n\
00296 # associated with each point in the cloud. The length of the values\n\
00297 # array should be the same as the length of the points array in the\n\
00298 # PointCloud, and each value should be associated with the corresponding\n\
00299 # point.\n\
00300 \n\
00301 # Channel names in existing practice include:\n\
00302 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00303 #              This is opposite to usual conventions but remains for\n\
00304 #              historical reasons. The newer PointCloud2 message has no\n\
00305 #              such problem.\n\
00306 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00307 #           (R,G,B) values packed into the least significant 24 bits,\n\
00308 #           in order.\n\
00309 #   \"intensity\" - laser or pixel intensity.\n\
00310 #   \"distance\"\n\
00311 \n\
00312 # The channel name should give semantics of the channel (e.g.\n\
00313 # \"intensity\" instead of \"value\").\n\
00314 string name\n\
00315 \n\
00316 # The values array should be 1-1 with the elements of the associated\n\
00317 # PointCloud.\n\
00318 float32[] values\n\
00319 \n\
00320 ================================================================================\n\
00321 MSG: manipulation_msgs/SceneRegion\n\
00322 # Point cloud\n\
00323 sensor_msgs/PointCloud2 cloud\n\
00324 \n\
00325 # Indices for the region of interest\n\
00326 int32[] mask\n\
00327 \n\
00328 # One of the corresponding 2D images, if applicable\n\
00329 sensor_msgs/Image image\n\
00330 \n\
00331 # The disparity image, if applicable\n\
00332 sensor_msgs/Image disparity_image\n\
00333 \n\
00334 # Camera info for the camera that took the image\n\
00335 sensor_msgs/CameraInfo cam_info\n\
00336 \n\
00337 # a 3D region of interest for grasp planning\n\
00338 geometry_msgs/PoseStamped  roi_box_pose\n\
00339 geometry_msgs/Vector3      roi_box_dims\n\
00340 \n\
00341 ================================================================================\n\
00342 MSG: sensor_msgs/PointCloud2\n\
00343 # This message holds a collection of N-dimensional points, which may\n\
00344 # contain additional information such as normals, intensity, etc. The\n\
00345 # point data is stored as a binary blob, its layout described by the\n\
00346 # contents of the \"fields\" array.\n\
00347 \n\
00348 # The point cloud data may be organized 2d (image-like) or 1d\n\
00349 # (unordered). Point clouds organized as 2d images may be produced by\n\
00350 # camera depth sensors such as stereo or time-of-flight.\n\
00351 \n\
00352 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00353 # points).\n\
00354 Header header\n\
00355 \n\
00356 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00357 # 1 and width is the length of the point cloud.\n\
00358 uint32 height\n\
00359 uint32 width\n\
00360 \n\
00361 # Describes the channels and their layout in the binary data blob.\n\
00362 PointField[] fields\n\
00363 \n\
00364 bool    is_bigendian # Is this data bigendian?\n\
00365 uint32  point_step   # Length of a point in bytes\n\
00366 uint32  row_step     # Length of a row in bytes\n\
00367 uint8[] data         # Actual point data, size is (row_step*height)\n\
00368 \n\
00369 bool is_dense        # True if there are no invalid points\n\
00370 \n\
00371 ================================================================================\n\
00372 MSG: sensor_msgs/PointField\n\
00373 # This message holds the description of one point entry in the\n\
00374 # PointCloud2 message format.\n\
00375 uint8 INT8    = 1\n\
00376 uint8 UINT8   = 2\n\
00377 uint8 INT16   = 3\n\
00378 uint8 UINT16  = 4\n\
00379 uint8 INT32   = 5\n\
00380 uint8 UINT32  = 6\n\
00381 uint8 FLOAT32 = 7\n\
00382 uint8 FLOAT64 = 8\n\
00383 \n\
00384 string name      # Name of field\n\
00385 uint32 offset    # Offset from start of point struct\n\
00386 uint8  datatype  # Datatype enumeration, see above\n\
00387 uint32 count     # How many elements in the field\n\
00388 \n\
00389 ================================================================================\n\
00390 MSG: sensor_msgs/Image\n\
00391 # This message contains an uncompressed image\n\
00392 # (0, 0) is at top-left corner of image\n\
00393 #\n\
00394 \n\
00395 Header header        # Header timestamp should be acquisition time of image\n\
00396                      # Header frame_id should be optical frame of camera\n\
00397                      # origin of frame should be optical center of cameara\n\
00398                      # +x should point to the right in the image\n\
00399                      # +y should point down in the image\n\
00400                      # +z should point into to plane of the image\n\
00401                      # If the frame_id here and the frame_id of the CameraInfo\n\
00402                      # message associated with the image conflict\n\
00403                      # the behavior is undefined\n\
00404 \n\
00405 uint32 height         # image height, that is, number of rows\n\
00406 uint32 width          # image width, that is, number of columns\n\
00407 \n\
00408 # The legal values for encoding are in file src/image_encodings.cpp\n\
00409 # If you want to standardize a new string format, join\n\
00410 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00411 \n\
00412 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00413                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00414 \n\
00415 uint8 is_bigendian    # is this data bigendian?\n\
00416 uint32 step           # Full row length in bytes\n\
00417 uint8[] data          # actual matrix data, size is (step * rows)\n\
00418 \n\
00419 ================================================================================\n\
00420 MSG: sensor_msgs/CameraInfo\n\
00421 # This message defines meta information for a camera. It should be in a\n\
00422 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00423 # image topics named:\n\
00424 #\n\
00425 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00426 #   image            - monochrome, distorted\n\
00427 #   image_color      - color, distorted\n\
00428 #   image_rect       - monochrome, rectified\n\
00429 #   image_rect_color - color, rectified\n\
00430 #\n\
00431 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00432 # for producing the four processed image topics from image_raw and\n\
00433 # camera_info. The meaning of the camera parameters are described in\n\
00434 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00435 #\n\
00436 # The image_geometry package provides a user-friendly interface to\n\
00437 # common operations using this meta information. If you want to, e.g.,\n\
00438 # project a 3d point into image coordinates, we strongly recommend\n\
00439 # using image_geometry.\n\
00440 #\n\
00441 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00442 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00443 # indicates an uncalibrated camera.\n\
00444 \n\
00445 #######################################################################\n\
00446 #                     Image acquisition info                          #\n\
00447 #######################################################################\n\
00448 \n\
00449 # Time of image acquisition, camera coordinate frame ID\n\
00450 Header header    # Header timestamp should be acquisition time of image\n\
00451                  # Header frame_id should be optical frame of camera\n\
00452                  # origin of frame should be optical center of camera\n\
00453                  # +x should point to the right in the image\n\
00454                  # +y should point down in the image\n\
00455                  # +z should point into the plane of the image\n\
00456 \n\
00457 \n\
00458 #######################################################################\n\
00459 #                      Calibration Parameters                         #\n\
00460 #######################################################################\n\
00461 # These are fixed during camera calibration. Their values will be the #\n\
00462 # same in all messages until the camera is recalibrated. Note that    #\n\
00463 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00464 #                                                                     #\n\
00465 # The internal parameters can be used to warp a raw (distorted) image #\n\
00466 # to:                                                                 #\n\
00467 #   1. An undistorted image (requires D and K)                        #\n\
00468 #   2. A rectified image (requires D, K, R)                           #\n\
00469 # The projection matrix P projects 3D points into the rectified image.#\n\
00470 #######################################################################\n\
00471 \n\
00472 # The image dimensions with which the camera was calibrated. Normally\n\
00473 # this will be the full camera resolution in pixels.\n\
00474 uint32 height\n\
00475 uint32 width\n\
00476 \n\
00477 # The distortion model used. Supported models are listed in\n\
00478 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00479 # simple model of radial and tangential distortion - is sufficent.\n\
00480 string distortion_model\n\
00481 \n\
00482 # The distortion parameters, size depending on the distortion model.\n\
00483 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00484 float64[] D\n\
00485 \n\
00486 # Intrinsic camera matrix for the raw (distorted) images.\n\
00487 #     [fx  0 cx]\n\
00488 # K = [ 0 fy cy]\n\
00489 #     [ 0  0  1]\n\
00490 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00491 # coordinates using the focal lengths (fx, fy) and principal point\n\
00492 # (cx, cy).\n\
00493 float64[9]  K # 3x3 row-major matrix\n\
00494 \n\
00495 # Rectification matrix (stereo cameras only)\n\
00496 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00497 # stereo image plane so that epipolar lines in both stereo images are\n\
00498 # parallel.\n\
00499 float64[9]  R # 3x3 row-major matrix\n\
00500 \n\
00501 # Projection/camera matrix\n\
00502 #     [fx'  0  cx' Tx]\n\
00503 # P = [ 0  fy' cy' Ty]\n\
00504 #     [ 0   0   1   0]\n\
00505 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00506 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00507 #  is the normal camera intrinsic matrix for the rectified image.\n\
00508 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00509 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00510 #  (cx', cy') - these may differ from the values in K.\n\
00511 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00512 #  also have R = the identity and P[1:3,1:3] = K.\n\
00513 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00514 #  position of the optical center of the second camera in the first\n\
00515 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00516 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00517 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00518 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00519 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00520 #  the rectified image is given by:\n\
00521 #  [u v w]' = P * [X Y Z 1]'\n\
00522 #         x = u / w\n\
00523 #         y = v / w\n\
00524 #  This holds for both images of a stereo pair.\n\
00525 float64[12] P # 3x4 row-major matrix\n\
00526 \n\
00527 \n\
00528 #######################################################################\n\
00529 #                      Operational Parameters                         #\n\
00530 #######################################################################\n\
00531 # These define the image region actually captured by the camera       #\n\
00532 # driver. Although they affect the geometry of the output image, they #\n\
00533 # may be changed freely without recalibrating the camera.             #\n\
00534 #######################################################################\n\
00535 \n\
00536 # Binning refers here to any camera setting which combines rectangular\n\
00537 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00538 #  resolution of the output image to\n\
00539 #  (width / binning_x) x (height / binning_y).\n\
00540 # The default values binning_x = binning_y = 0 is considered the same\n\
00541 #  as binning_x = binning_y = 1 (no subsampling).\n\
00542 uint32 binning_x\n\
00543 uint32 binning_y\n\
00544 \n\
00545 # Region of interest (subwindow of full camera resolution), given in\n\
00546 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00547 #  always denotes the same window of pixels on the camera sensor,\n\
00548 #  regardless of binning settings.\n\
00549 # The default setting of roi (all values 0) is considered the same as\n\
00550 #  full resolution (roi.width = width, roi.height = height).\n\
00551 RegionOfInterest roi\n\
00552 \n\
00553 ================================================================================\n\
00554 MSG: sensor_msgs/RegionOfInterest\n\
00555 # This message is used to specify a region of interest within an image.\n\
00556 #\n\
00557 # When used to specify the ROI setting of the camera when the image was\n\
00558 # taken, the height and width fields should either match the height and\n\
00559 # width fields for the associated image; or height = width = 0\n\
00560 # indicates that the full resolution image was captured.\n\
00561 \n\
00562 uint32 x_offset  # Leftmost pixel of the ROI\n\
00563                  # (0 if the ROI includes the left edge of the image)\n\
00564 uint32 y_offset  # Topmost pixel of the ROI\n\
00565                  # (0 if the ROI includes the top edge of the image)\n\
00566 uint32 height    # Height of ROI\n\
00567 uint32 width     # Width of ROI\n\
00568 \n\
00569 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00570 # ROI in this message. Typically this should be False if the full image\n\
00571 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00572 # used).\n\
00573 bool do_rectify\n\
00574 \n\
00575 ================================================================================\n\
00576 MSG: geometry_msgs/Vector3\n\
00577 # This represents a vector in free space. \n\
00578 \n\
00579 float64 x\n\
00580 float64 y\n\
00581 float64 z\n\
00582 ================================================================================\n\
00583 MSG: manipulation_msgs/Grasp\n\
00584 # A name for this grasp\n\
00585 string id\n\
00586 \n\
00587 # The internal posture of the hand for the pre-grasp\n\
00588 # only positions are used\n\
00589 sensor_msgs/JointState pre_grasp_posture\n\
00590 \n\
00591 # The internal posture of the hand for the grasp\n\
00592 # positions and efforts are used\n\
00593 sensor_msgs/JointState grasp_posture\n\
00594 \n\
00595 # The position of the end-effector for the grasp relative to a reference frame \n\
00596 # (that is always specified elsewhere, not in this message)\n\
00597 geometry_msgs/PoseStamped grasp_pose\n\
00598 \n\
00599 # The estimated probability of success for this grasp, or some other\n\
00600 # measure of how \"good\" it is.\n\
00601 float64 grasp_quality\n\
00602 \n\
00603 # The approach motion\n\
00604 GripperTranslation approach\n\
00605 \n\
00606 # The retreat motion\n\
00607 GripperTranslation retreat\n\
00608 \n\
00609 # the maximum contact force to use while grasping (<=0 to disable)\n\
00610 float32 max_contact_force\n\
00611 \n\
00612 # an optional list of obstacles that we have semantic information about\n\
00613 # and that can be touched/pushed/moved in the course of grasping\n\
00614 string[] allowed_touch_objects\n\
00615 \n\
00616 ================================================================================\n\
00617 MSG: sensor_msgs/JointState\n\
00618 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00619 #\n\
00620 # The state of each joint (revolute or prismatic) is defined by:\n\
00621 #  * the position of the joint (rad or m),\n\
00622 #  * the velocity of the joint (rad/s or m/s) and \n\
00623 #  * the effort that is applied in the joint (Nm or N).\n\
00624 #\n\
00625 # Each joint is uniquely identified by its name\n\
00626 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00627 # in one message have to be recorded at the same time.\n\
00628 #\n\
00629 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00630 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00631 # effort associated with them, you can leave the effort array empty. \n\
00632 #\n\
00633 # All arrays in this message should have the same size, or be empty.\n\
00634 # This is the only way to uniquely associate the joint name with the correct\n\
00635 # states.\n\
00636 \n\
00637 \n\
00638 Header header\n\
00639 \n\
00640 string[] name\n\
00641 float64[] position\n\
00642 float64[] velocity\n\
00643 float64[] effort\n\
00644 \n\
00645 ================================================================================\n\
00646 MSG: manipulation_msgs/GripperTranslation\n\
00647 # defines a translation for the gripper, used in pickup or place tasks\n\
00648 # for example for lifting an object off a table or approaching the table for placing\n\
00649 \n\
00650 # the direction of the translation\n\
00651 geometry_msgs/Vector3Stamped direction\n\
00652 \n\
00653 # the desired translation distance\n\
00654 float32 desired_distance\n\
00655 \n\
00656 # the min distance that must be considered feasible before the\n\
00657 # grasp is even attempted\n\
00658 float32 min_distance\n\
00659 \n\
00660 ================================================================================\n\
00661 MSG: geometry_msgs/Vector3Stamped\n\
00662 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00663 Header header\n\
00664 Vector3 vector\n\
00665 \n\
00666 ";
00667   }
00668 
00669   static const char* value(const  ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> &) { return value(); } 
00670 };
00671 
00672 template<class ContainerAllocator> struct HasHeader< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > : public TrueType {};
00673 template<class ContainerAllocator> struct HasHeader< const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > : public TrueType {};
00674 } // namespace message_traits
00675 } // namespace ros
00676 
00677 namespace ros
00678 {
00679 namespace serialization
00680 {
00681 
00682 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> >
00683 {
00684   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00685   {
00686     stream.next(m.header);
00687     stream.next(m.goal_id);
00688     stream.next(m.goal);
00689   }
00690 
00691   ROS_DECLARE_ALLINONE_SERIALIZER;
00692 }; // struct GetGripperPoseActionGoal_
00693 } // namespace serialization
00694 } // namespace ros
00695 
00696 namespace ros
00697 {
00698 namespace message_operations
00699 {
00700 
00701 template<class ContainerAllocator>
00702 struct Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> >
00703 {
00704   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> & v) 
00705   {
00706     s << indent << "header: ";
00707 s << std::endl;
00708     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00709     s << indent << "goal_id: ";
00710 s << std::endl;
00711     Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + "  ", v.goal_id);
00712     s << indent << "goal: ";
00713 s << std::endl;
00714     Printer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.goal);
00715   }
00716 };
00717 
00718 
00719 } // namespace message_operations
00720 } // namespace ros
00721 
00722 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTIONGOAL_H
00723 


pr2_object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 11:55:21