shot_lrf_omp.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2012, Willow Garage, Inc.
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of Willow Garage, Inc. nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *
00034  * $Id$
00035  */
00036 
00037 #ifndef PCL_FEATURES_IMPL_SHOT_LRF_OMP_H_
00038 #define PCL_FEATURES_IMPL_SHOT_LRF_OMP_H_
00039 
00040 #include <utility>
00041 #include <pcl/features/shot_lrf_omp.h>
00042 #include <pcl/features/shot_lrf.h>
00043 
00044 template<typename PointInT, typename PointOutT>
00045 void
00046 pcl::SHOTLocalReferenceFrameEstimationOMP<PointInT, PointOutT>::computeFeature (PointCloudOut &output)
00047 {
00048   if (threads_ < 0)
00049     threads_ = 1;
00050 
00051   //check whether used with search radius or search k-neighbors
00052   if (this->getKSearch () != 0)
00053   {
00054     PCL_ERROR(
00055         "[pcl::%s::computeFeature] Error! Search method set to k-neighborhood. Call setKSearch(0) and setRadiusSearch( radius ) to use this class.\n",
00056         getClassName().c_str ());
00057     return;
00058   }
00059   tree_->setSortedResults (true);
00060 
00061   int data_size = static_cast<int> (indices_->size ());
00062 #pragma omp parallel for num_threads(threads_)
00063   for (int i = 0; i < data_size; ++i)
00064   {
00065     // point result
00066     Eigen::Matrix3f rf;
00067     PointOutT& output_rf = output[i];
00068 
00069     //output_rf.confidence = getLocalRF ((*indices_)[i], rf);
00070     //if (output_rf.confidence == std::numeric_limits<float>::max ())
00071 
00072     std::vector<int> n_indices;
00073     std::vector<float> n_sqr_distances;
00074     this->searchForNeighbors ((*indices_)[i], search_parameter_, n_indices, n_sqr_distances);
00075     if (getLocalRF ((*indices_)[i], rf) == std::numeric_limits<float>::max ())
00076     {
00077       output.is_dense = false;
00078     }
00079 
00080     output_rf.x_axis.getNormalVector3fMap () = rf.row (0);
00081     output_rf.y_axis.getNormalVector3fMap () = rf.row (1);
00082     output_rf.z_axis.getNormalVector3fMap () = rf.row (2);
00083   }
00084 
00085 }
00086 
00087 template<typename PointInT, typename PointOutT>
00088 void
00089 pcl::SHOTLocalReferenceFrameEstimationOMP<PointInT, PointOutT>::computeFeatureEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
00090 {
00091   if (threads_ < 0)
00092      threads_ = 1;
00093 
00094   //check whether used with search radius or search k-neighbors
00095   if (this->getKSearch () != 0)
00096   {
00097     PCL_ERROR(
00098         "[pcl::%s::computeFeatureEigen] Error! Search method set to k-neighborhood. Call setKSearch(0) and setRadiusSearch( radius ) to use this class.\n",
00099         getClassName().c_str ());
00100     return;
00101   }
00102   tree_->setSortedResults (true);
00103 
00104   int data_size = static_cast<int> (indices_->size ());
00105 
00106   // Set up the output channels
00107   output.channels["shot_lrf"].name = "shot_lrf";
00108   output.channels["shot_lrf"].offset = 0;
00109   output.channels["shot_lrf"].size = 4;
00110   output.channels["shot_lrf"].count = 9;
00111   output.channels["shot_lrf"].datatype = sensor_msgs::PointField::FLOAT32;
00112 
00113   //output.points.resize (indices_->size (), 10);
00114   output.points.resize (data_size, 9);
00115 
00116 #pragma omp parallel for num_threads(threads_)
00117   for (int i = 0; i < data_size; ++i)
00118   {
00119     // point result
00120     Eigen::Matrix3f rf;
00121 
00122     //output.points (i, 9) = getLocalRF ((*indices_)[i], rf);
00123     //if (output.points (i, 9) == std::numeric_limits<float>::max ())
00124     if (getLocalRF ((*indices_)[i], rf) == std::numeric_limits<float>::max ())
00125     {
00126       output.is_dense = false;
00127     }
00128 
00129     output.points.block<1, 3> (i, 0) = rf.row (0);
00130     output.points.block<1, 3> (i, 3) = rf.row (1);
00131     output.points.block<1, 3> (i, 6) = rf.row (2);
00132   }
00133 
00134 }
00135 
00136 #define PCL_INSTANTIATE_SHOTLocalReferenceFrameEstimationOMP(T,OutT) template class PCL_EXPORTS pcl::SHOTLocalReferenceFrameEstimationOMP<T,OutT>;
00137 
00138 #endif    // PCL_FEATURES_IMPL_SHOT_LRF_H_


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:17:58