00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/ReactiveGraspGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveGraspActionGoal_ {
00025 typedef ReactiveGraspActionGoal_<ContainerAllocator> Type;
00026
00027 ReactiveGraspActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 ReactiveGraspActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> goal;
00049
00050
00051 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > Ptr;
00052 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> const> ConstPtr;
00053 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 };
00055 typedef ::object_manipulation_msgs::ReactiveGraspActionGoal_<std::allocator<void> > ReactiveGraspActionGoal;
00056
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal> ReactiveGraspActionGoalPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal const> ReactiveGraspActionGoalConstPtr;
00059
00060
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> & v)
00063 {
00064 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065 return s;}
00066
00067 }
00068
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "16deae2f6caa1317a16ee632cacf5f2c";
00080 }
00081
00082 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00083 static const uint64_t static_value1 = 0x16deae2f6caa1317ULL;
00084 static const uint64_t static_value2 = 0xa16ee632cacf5f2cULL;
00085 };
00086
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "object_manipulation_msgs/ReactiveGraspActionGoal";
00092 }
00093
00094 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 ReactiveGraspGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 # an action for reactive grasping\n\
00142 # a reactive grasp starts from the current pose of the gripper and ends\n\
00143 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00144 \n\
00145 # the name of the arm being used\n\
00146 string arm_name\n\
00147 \n\
00148 # the object to be grasped\n\
00149 manipulation_msgs/GraspableObject target\n\
00150 \n\
00151 # the desired grasp pose for the hand\n\
00152 geometry_msgs/PoseStamped final_grasp_pose\n\
00153 \n\
00154 # the joint trajectory to use for the approach (if available)\n\
00155 # this trajectory is expected to start at the current pose of the gripper\n\
00156 # and end at the desired grasp pose\n\
00157 trajectory_msgs/JointTrajectory trajectory\n\
00158 \n\
00159 # the name of the support surface in the collision environment, if any\n\
00160 string collision_support_surface_name\n\
00161 \n\
00162 # The internal posture of the hand for the pre-grasp\n\
00163 # only positions are used\n\
00164 sensor_msgs/JointState pre_grasp_posture\n\
00165 \n\
00166 # The internal posture of the hand for the grasp\n\
00167 # positions and efforts are used\n\
00168 sensor_msgs/JointState grasp_posture\n\
00169 \n\
00170 # The max contact force to use while grasping (<=0 to disable)\n\
00171 float32 max_contact_force\n\
00172 \n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: manipulation_msgs/GraspableObject\n\
00176 # an object that the object_manipulator can work on\n\
00177 \n\
00178 # a graspable object can be represented in multiple ways. This message\n\
00179 # can contain all of them. Which one is actually used is up to the receiver\n\
00180 # of this message. When adding new representations, one must be careful that\n\
00181 # they have reasonable lightweight defaults indicating that that particular\n\
00182 # representation is not available.\n\
00183 \n\
00184 # the tf frame to be used as a reference frame when combining information from\n\
00185 # the different representations below\n\
00186 string reference_frame_id\n\
00187 \n\
00188 # potential recognition results from a database of models\n\
00189 # all poses are relative to the object reference pose\n\
00190 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00191 \n\
00192 # the point cloud itself\n\
00193 sensor_msgs/PointCloud cluster\n\
00194 \n\
00195 # a region of a PointCloud2 of interest\n\
00196 SceneRegion region\n\
00197 \n\
00198 # the name that this object has in the collision environment\n\
00199 string collision_name\n\
00200 ================================================================================\n\
00201 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00202 # Informs that a specific model from the Model Database has been \n\
00203 # identified at a certain location\n\
00204 \n\
00205 # the database id of the model\n\
00206 int32 model_id\n\
00207 \n\
00208 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00209 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00210 # leave this empty if providing an id in the model_id field\n\
00211 object_recognition_msgs/ObjectType type\n\
00212 \n\
00213 # the pose that it can be found in\n\
00214 geometry_msgs/PoseStamped pose\n\
00215 \n\
00216 # a measure of the confidence level in this detection result\n\
00217 float32 confidence\n\
00218 \n\
00219 # the name of the object detector that generated this detection result\n\
00220 string detector_name\n\
00221 \n\
00222 ================================================================================\n\
00223 MSG: object_recognition_msgs/ObjectType\n\
00224 ################################################## OBJECT ID #########################################################\n\
00225 \n\
00226 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00227 # object\n\
00228 \n\
00229 # The key of the found object: the unique identifier in the given db\n\
00230 string key\n\
00231 \n\
00232 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00233 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00234 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00235 # The object_recognition_core as a generic DB type that can read those fields\n\
00236 # Current examples:\n\
00237 # For CouchDB:\n\
00238 # type: 'CouchDB'\n\
00239 # root: 'http://localhost:5984'\n\
00240 # collection: 'object_recognition'\n\
00241 # For SQL household database:\n\
00242 # type: 'SqlHousehold'\n\
00243 # host: 'wgs36'\n\
00244 # port: 5432\n\
00245 # user: 'willow'\n\
00246 # password: 'willow'\n\
00247 # name: 'household_objects'\n\
00248 # module: 'tabletop'\n\
00249 string db\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/PoseStamped\n\
00253 # A Pose with reference coordinate frame and timestamp\n\
00254 Header header\n\
00255 Pose pose\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Pose\n\
00259 # A representation of pose in free space, composed of postion and orientation. \n\
00260 Point position\n\
00261 Quaternion orientation\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: geometry_msgs/Point\n\
00265 # This contains the position of a point in free space\n\
00266 float64 x\n\
00267 float64 y\n\
00268 float64 z\n\
00269 \n\
00270 ================================================================================\n\
00271 MSG: geometry_msgs/Quaternion\n\
00272 # This represents an orientation in free space in quaternion form.\n\
00273 \n\
00274 float64 x\n\
00275 float64 y\n\
00276 float64 z\n\
00277 float64 w\n\
00278 \n\
00279 ================================================================================\n\
00280 MSG: sensor_msgs/PointCloud\n\
00281 # This message holds a collection of 3d points, plus optional additional\n\
00282 # information about each point.\n\
00283 \n\
00284 # Time of sensor data acquisition, coordinate frame ID.\n\
00285 Header header\n\
00286 \n\
00287 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00288 # in the frame given in the header.\n\
00289 geometry_msgs/Point32[] points\n\
00290 \n\
00291 # Each channel should have the same number of elements as points array,\n\
00292 # and the data in each channel should correspond 1:1 with each point.\n\
00293 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00294 ChannelFloat32[] channels\n\
00295 \n\
00296 ================================================================================\n\
00297 MSG: geometry_msgs/Point32\n\
00298 # This contains the position of a point in free space(with 32 bits of precision).\n\
00299 # It is recommeded to use Point wherever possible instead of Point32. \n\
00300 # \n\
00301 # This recommendation is to promote interoperability. \n\
00302 #\n\
00303 # This message is designed to take up less space when sending\n\
00304 # lots of points at once, as in the case of a PointCloud. \n\
00305 \n\
00306 float32 x\n\
00307 float32 y\n\
00308 float32 z\n\
00309 ================================================================================\n\
00310 MSG: sensor_msgs/ChannelFloat32\n\
00311 # This message is used by the PointCloud message to hold optional data\n\
00312 # associated with each point in the cloud. The length of the values\n\
00313 # array should be the same as the length of the points array in the\n\
00314 # PointCloud, and each value should be associated with the corresponding\n\
00315 # point.\n\
00316 \n\
00317 # Channel names in existing practice include:\n\
00318 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00319 # This is opposite to usual conventions but remains for\n\
00320 # historical reasons. The newer PointCloud2 message has no\n\
00321 # such problem.\n\
00322 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00323 # (R,G,B) values packed into the least significant 24 bits,\n\
00324 # in order.\n\
00325 # \"intensity\" - laser or pixel intensity.\n\
00326 # \"distance\"\n\
00327 \n\
00328 # The channel name should give semantics of the channel (e.g.\n\
00329 # \"intensity\" instead of \"value\").\n\
00330 string name\n\
00331 \n\
00332 # The values array should be 1-1 with the elements of the associated\n\
00333 # PointCloud.\n\
00334 float32[] values\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: manipulation_msgs/SceneRegion\n\
00338 # Point cloud\n\
00339 sensor_msgs/PointCloud2 cloud\n\
00340 \n\
00341 # Indices for the region of interest\n\
00342 int32[] mask\n\
00343 \n\
00344 # One of the corresponding 2D images, if applicable\n\
00345 sensor_msgs/Image image\n\
00346 \n\
00347 # The disparity image, if applicable\n\
00348 sensor_msgs/Image disparity_image\n\
00349 \n\
00350 # Camera info for the camera that took the image\n\
00351 sensor_msgs/CameraInfo cam_info\n\
00352 \n\
00353 # a 3D region of interest for grasp planning\n\
00354 geometry_msgs/PoseStamped roi_box_pose\n\
00355 geometry_msgs/Vector3 roi_box_dims\n\
00356 \n\
00357 ================================================================================\n\
00358 MSG: sensor_msgs/PointCloud2\n\
00359 # This message holds a collection of N-dimensional points, which may\n\
00360 # contain additional information such as normals, intensity, etc. The\n\
00361 # point data is stored as a binary blob, its layout described by the\n\
00362 # contents of the \"fields\" array.\n\
00363 \n\
00364 # The point cloud data may be organized 2d (image-like) or 1d\n\
00365 # (unordered). Point clouds organized as 2d images may be produced by\n\
00366 # camera depth sensors such as stereo or time-of-flight.\n\
00367 \n\
00368 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00369 # points).\n\
00370 Header header\n\
00371 \n\
00372 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00373 # 1 and width is the length of the point cloud.\n\
00374 uint32 height\n\
00375 uint32 width\n\
00376 \n\
00377 # Describes the channels and their layout in the binary data blob.\n\
00378 PointField[] fields\n\
00379 \n\
00380 bool is_bigendian # Is this data bigendian?\n\
00381 uint32 point_step # Length of a point in bytes\n\
00382 uint32 row_step # Length of a row in bytes\n\
00383 uint8[] data # Actual point data, size is (row_step*height)\n\
00384 \n\
00385 bool is_dense # True if there are no invalid points\n\
00386 \n\
00387 ================================================================================\n\
00388 MSG: sensor_msgs/PointField\n\
00389 # This message holds the description of one point entry in the\n\
00390 # PointCloud2 message format.\n\
00391 uint8 INT8 = 1\n\
00392 uint8 UINT8 = 2\n\
00393 uint8 INT16 = 3\n\
00394 uint8 UINT16 = 4\n\
00395 uint8 INT32 = 5\n\
00396 uint8 UINT32 = 6\n\
00397 uint8 FLOAT32 = 7\n\
00398 uint8 FLOAT64 = 8\n\
00399 \n\
00400 string name # Name of field\n\
00401 uint32 offset # Offset from start of point struct\n\
00402 uint8 datatype # Datatype enumeration, see above\n\
00403 uint32 count # How many elements in the field\n\
00404 \n\
00405 ================================================================================\n\
00406 MSG: sensor_msgs/Image\n\
00407 # This message contains an uncompressed image\n\
00408 # (0, 0) is at top-left corner of image\n\
00409 #\n\
00410 \n\
00411 Header header # Header timestamp should be acquisition time of image\n\
00412 # Header frame_id should be optical frame of camera\n\
00413 # origin of frame should be optical center of cameara\n\
00414 # +x should point to the right in the image\n\
00415 # +y should point down in the image\n\
00416 # +z should point into to plane of the image\n\
00417 # If the frame_id here and the frame_id of the CameraInfo\n\
00418 # message associated with the image conflict\n\
00419 # the behavior is undefined\n\
00420 \n\
00421 uint32 height # image height, that is, number of rows\n\
00422 uint32 width # image width, that is, number of columns\n\
00423 \n\
00424 # The legal values for encoding are in file src/image_encodings.cpp\n\
00425 # If you want to standardize a new string format, join\n\
00426 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00427 \n\
00428 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00429 # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00430 \n\
00431 uint8 is_bigendian # is this data bigendian?\n\
00432 uint32 step # Full row length in bytes\n\
00433 uint8[] data # actual matrix data, size is (step * rows)\n\
00434 \n\
00435 ================================================================================\n\
00436 MSG: sensor_msgs/CameraInfo\n\
00437 # This message defines meta information for a camera. It should be in a\n\
00438 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00439 # image topics named:\n\
00440 #\n\
00441 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00442 # image - monochrome, distorted\n\
00443 # image_color - color, distorted\n\
00444 # image_rect - monochrome, rectified\n\
00445 # image_rect_color - color, rectified\n\
00446 #\n\
00447 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00448 # for producing the four processed image topics from image_raw and\n\
00449 # camera_info. The meaning of the camera parameters are described in\n\
00450 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00451 #\n\
00452 # The image_geometry package provides a user-friendly interface to\n\
00453 # common operations using this meta information. If you want to, e.g.,\n\
00454 # project a 3d point into image coordinates, we strongly recommend\n\
00455 # using image_geometry.\n\
00456 #\n\
00457 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00458 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00459 # indicates an uncalibrated camera.\n\
00460 \n\
00461 #######################################################################\n\
00462 # Image acquisition info #\n\
00463 #######################################################################\n\
00464 \n\
00465 # Time of image acquisition, camera coordinate frame ID\n\
00466 Header header # Header timestamp should be acquisition time of image\n\
00467 # Header frame_id should be optical frame of camera\n\
00468 # origin of frame should be optical center of camera\n\
00469 # +x should point to the right in the image\n\
00470 # +y should point down in the image\n\
00471 # +z should point into the plane of the image\n\
00472 \n\
00473 \n\
00474 #######################################################################\n\
00475 # Calibration Parameters #\n\
00476 #######################################################################\n\
00477 # These are fixed during camera calibration. Their values will be the #\n\
00478 # same in all messages until the camera is recalibrated. Note that #\n\
00479 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00480 # #\n\
00481 # The internal parameters can be used to warp a raw (distorted) image #\n\
00482 # to: #\n\
00483 # 1. An undistorted image (requires D and K) #\n\
00484 # 2. A rectified image (requires D, K, R) #\n\
00485 # The projection matrix P projects 3D points into the rectified image.#\n\
00486 #######################################################################\n\
00487 \n\
00488 # The image dimensions with which the camera was calibrated. Normally\n\
00489 # this will be the full camera resolution in pixels.\n\
00490 uint32 height\n\
00491 uint32 width\n\
00492 \n\
00493 # The distortion model used. Supported models are listed in\n\
00494 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00495 # simple model of radial and tangential distortion - is sufficent.\n\
00496 string distortion_model\n\
00497 \n\
00498 # The distortion parameters, size depending on the distortion model.\n\
00499 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00500 float64[] D\n\
00501 \n\
00502 # Intrinsic camera matrix for the raw (distorted) images.\n\
00503 # [fx 0 cx]\n\
00504 # K = [ 0 fy cy]\n\
00505 # [ 0 0 1]\n\
00506 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00507 # coordinates using the focal lengths (fx, fy) and principal point\n\
00508 # (cx, cy).\n\
00509 float64[9] K # 3x3 row-major matrix\n\
00510 \n\
00511 # Rectification matrix (stereo cameras only)\n\
00512 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00513 # stereo image plane so that epipolar lines in both stereo images are\n\
00514 # parallel.\n\
00515 float64[9] R # 3x3 row-major matrix\n\
00516 \n\
00517 # Projection/camera matrix\n\
00518 # [fx' 0 cx' Tx]\n\
00519 # P = [ 0 fy' cy' Ty]\n\
00520 # [ 0 0 1 0]\n\
00521 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00522 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00523 # is the normal camera intrinsic matrix for the rectified image.\n\
00524 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00525 # coordinates using the focal lengths (fx', fy') and principal point\n\
00526 # (cx', cy') - these may differ from the values in K.\n\
00527 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00528 # also have R = the identity and P[1:3,1:3] = K.\n\
00529 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00530 # position of the optical center of the second camera in the first\n\
00531 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00532 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00533 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00534 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00535 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00536 # the rectified image is given by:\n\
00537 # [u v w]' = P * [X Y Z 1]'\n\
00538 # x = u / w\n\
00539 # y = v / w\n\
00540 # This holds for both images of a stereo pair.\n\
00541 float64[12] P # 3x4 row-major matrix\n\
00542 \n\
00543 \n\
00544 #######################################################################\n\
00545 # Operational Parameters #\n\
00546 #######################################################################\n\
00547 # These define the image region actually captured by the camera #\n\
00548 # driver. Although they affect the geometry of the output image, they #\n\
00549 # may be changed freely without recalibrating the camera. #\n\
00550 #######################################################################\n\
00551 \n\
00552 # Binning refers here to any camera setting which combines rectangular\n\
00553 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00554 # resolution of the output image to\n\
00555 # (width / binning_x) x (height / binning_y).\n\
00556 # The default values binning_x = binning_y = 0 is considered the same\n\
00557 # as binning_x = binning_y = 1 (no subsampling).\n\
00558 uint32 binning_x\n\
00559 uint32 binning_y\n\
00560 \n\
00561 # Region of interest (subwindow of full camera resolution), given in\n\
00562 # full resolution (unbinned) image coordinates. A particular ROI\n\
00563 # always denotes the same window of pixels on the camera sensor,\n\
00564 # regardless of binning settings.\n\
00565 # The default setting of roi (all values 0) is considered the same as\n\
00566 # full resolution (roi.width = width, roi.height = height).\n\
00567 RegionOfInterest roi\n\
00568 \n\
00569 ================================================================================\n\
00570 MSG: sensor_msgs/RegionOfInterest\n\
00571 # This message is used to specify a region of interest within an image.\n\
00572 #\n\
00573 # When used to specify the ROI setting of the camera when the image was\n\
00574 # taken, the height and width fields should either match the height and\n\
00575 # width fields for the associated image; or height = width = 0\n\
00576 # indicates that the full resolution image was captured.\n\
00577 \n\
00578 uint32 x_offset # Leftmost pixel of the ROI\n\
00579 # (0 if the ROI includes the left edge of the image)\n\
00580 uint32 y_offset # Topmost pixel of the ROI\n\
00581 # (0 if the ROI includes the top edge of the image)\n\
00582 uint32 height # Height of ROI\n\
00583 uint32 width # Width of ROI\n\
00584 \n\
00585 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00586 # ROI in this message. Typically this should be False if the full image\n\
00587 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00588 # used).\n\
00589 bool do_rectify\n\
00590 \n\
00591 ================================================================================\n\
00592 MSG: geometry_msgs/Vector3\n\
00593 # This represents a vector in free space. \n\
00594 \n\
00595 float64 x\n\
00596 float64 y\n\
00597 float64 z\n\
00598 ================================================================================\n\
00599 MSG: trajectory_msgs/JointTrajectory\n\
00600 Header header\n\
00601 string[] joint_names\n\
00602 JointTrajectoryPoint[] points\n\
00603 ================================================================================\n\
00604 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00605 float64[] positions\n\
00606 float64[] velocities\n\
00607 float64[] accelerations\n\
00608 duration time_from_start\n\
00609 ================================================================================\n\
00610 MSG: sensor_msgs/JointState\n\
00611 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00612 #\n\
00613 # The state of each joint (revolute or prismatic) is defined by:\n\
00614 # * the position of the joint (rad or m),\n\
00615 # * the velocity of the joint (rad/s or m/s) and \n\
00616 # * the effort that is applied in the joint (Nm or N).\n\
00617 #\n\
00618 # Each joint is uniquely identified by its name\n\
00619 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00620 # in one message have to be recorded at the same time.\n\
00621 #\n\
00622 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00623 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00624 # effort associated with them, you can leave the effort array empty. \n\
00625 #\n\
00626 # All arrays in this message should have the same size, or be empty.\n\
00627 # This is the only way to uniquely associate the joint name with the correct\n\
00628 # states.\n\
00629 \n\
00630 \n\
00631 Header header\n\
00632 \n\
00633 string[] name\n\
00634 float64[] position\n\
00635 float64[] velocity\n\
00636 float64[] effort\n\
00637 \n\
00638 ";
00639 }
00640
00641 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00642 };
00643
00644 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
00645 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
00646 }
00647 }
00648
00649 namespace ros
00650 {
00651 namespace serialization
00652 {
00653
00654 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >
00655 {
00656 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00657 {
00658 stream.next(m.header);
00659 stream.next(m.goal_id);
00660 stream.next(m.goal);
00661 }
00662
00663 ROS_DECLARE_ALLINONE_SERIALIZER;
00664 };
00665 }
00666 }
00667
00668 namespace ros
00669 {
00670 namespace message_operations
00671 {
00672
00673 template<class ContainerAllocator>
00674 struct Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >
00675 {
00676 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> & v)
00677 {
00678 s << indent << "header: ";
00679 s << std::endl;
00680 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00681 s << indent << "goal_id: ";
00682 s << std::endl;
00683 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
00684 s << indent << "goal: ";
00685 s << std::endl;
00686 Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
00687 }
00688 };
00689
00690
00691 }
00692 }
00693
00694 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00695