00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "manipulation_msgs/GraspableObject.h"
00018 #include "manipulation_msgs/Grasp.h"
00019 #include "object_manipulation_msgs/GripperTranslation.h"
00020 #include "arm_navigation_msgs/Constraints.h"
00021 #include "arm_navigation_msgs/OrderedCollisionOperations.h"
00022 #include "arm_navigation_msgs/LinkPadding.h"
00023 #include "manipulation_msgs/GraspableObject.h"
00024
00025 namespace object_manipulation_msgs
00026 {
00027 template <class ContainerAllocator>
00028 struct PickupGoal_ {
00029 typedef PickupGoal_<ContainerAllocator> Type;
00030
00031 PickupGoal_()
00032 : arm_name()
00033 , target()
00034 , desired_grasps()
00035 , lift()
00036 , collision_object_name()
00037 , collision_support_surface_name()
00038 , allow_gripper_support_collision(false)
00039 , use_reactive_execution(false)
00040 , use_reactive_lift(false)
00041 , only_perform_feasibility_test(false)
00042 , ignore_collisions(false)
00043 , path_constraints()
00044 , additional_collision_operations()
00045 , additional_link_padding()
00046 , movable_obstacles()
00047 , max_contact_force(0.0)
00048 {
00049 }
00050
00051 PickupGoal_(const ContainerAllocator& _alloc)
00052 : arm_name(_alloc)
00053 , target(_alloc)
00054 , desired_grasps(_alloc)
00055 , lift(_alloc)
00056 , collision_object_name(_alloc)
00057 , collision_support_surface_name(_alloc)
00058 , allow_gripper_support_collision(false)
00059 , use_reactive_execution(false)
00060 , use_reactive_lift(false)
00061 , only_perform_feasibility_test(false)
00062 , ignore_collisions(false)
00063 , path_constraints(_alloc)
00064 , additional_collision_operations(_alloc)
00065 , additional_link_padding(_alloc)
00066 , movable_obstacles(_alloc)
00067 , max_contact_force(0.0)
00068 {
00069 }
00070
00071 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00072 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00073
00074 typedef ::manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00075 ::manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00076
00077 typedef std::vector< ::manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::manipulation_msgs::Grasp_<ContainerAllocator> >::other > _desired_grasps_type;
00078 std::vector< ::manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::manipulation_msgs::Grasp_<ContainerAllocator> >::other > desired_grasps;
00079
00080 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type;
00081 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift;
00082
00083 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00084 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00085
00086 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00087 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00088
00089 typedef uint8_t _allow_gripper_support_collision_type;
00090 uint8_t allow_gripper_support_collision;
00091
00092 typedef uint8_t _use_reactive_execution_type;
00093 uint8_t use_reactive_execution;
00094
00095 typedef uint8_t _use_reactive_lift_type;
00096 uint8_t use_reactive_lift;
00097
00098 typedef uint8_t _only_perform_feasibility_test_type;
00099 uint8_t only_perform_feasibility_test;
00100
00101 typedef uint8_t _ignore_collisions_type;
00102 uint8_t ignore_collisions;
00103
00104 typedef ::arm_navigation_msgs::Constraints_<ContainerAllocator> _path_constraints_type;
00105 ::arm_navigation_msgs::Constraints_<ContainerAllocator> path_constraints;
00106
00107 typedef ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type;
00108 ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations;
00109
00110 typedef std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type;
00111 std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding;
00112
00113 typedef std::vector< ::manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type;
00114 std::vector< ::manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles;
00115
00116 typedef float _max_contact_force_type;
00117 float max_contact_force;
00118
00119
00120 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > Ptr;
00121 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> ConstPtr;
00122 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00123 };
00124 typedef ::object_manipulation_msgs::PickupGoal_<std::allocator<void> > PickupGoal;
00125
00126 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal> PickupGoalPtr;
00127 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal const> PickupGoalConstPtr;
00128
00129
00130 template<typename ContainerAllocator>
00131 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v)
00132 {
00133 ros::message_operations::Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, "", v);
00134 return s;}
00135
00136 }
00137
00138 namespace ros
00139 {
00140 namespace message_traits
00141 {
00142 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > : public TrueType {};
00143 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> : public TrueType {};
00144 template<class ContainerAllocator>
00145 struct MD5Sum< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00146 static const char* value()
00147 {
00148 return "e313760a5c0d89b0b4920e814ef4f3a0";
00149 }
00150
00151 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00152 static const uint64_t static_value1 = 0xe313760a5c0d89b0ULL;
00153 static const uint64_t static_value2 = 0xb4920e814ef4f3a0ULL;
00154 };
00155
00156 template<class ContainerAllocator>
00157 struct DataType< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00158 static const char* value()
00159 {
00160 return "object_manipulation_msgs/PickupGoal";
00161 }
00162
00163 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00164 };
00165
00166 template<class ContainerAllocator>
00167 struct Definition< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > {
00168 static const char* value()
00169 {
00170 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00171 # An action for picking up an object\n\
00172 \n\
00173 # which arm to be used for grasping\n\
00174 string arm_name\n\
00175 \n\
00176 # the object to be grasped\n\
00177 manipulation_msgs/GraspableObject target\n\
00178 \n\
00179 # a list of grasps to be used\n\
00180 # if empty, the grasp executive will call one of its own planners\n\
00181 manipulation_msgs/Grasp[] desired_grasps\n\
00182 \n\
00183 # how the object should be lifted after the grasp\n\
00184 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00185 # or the gripper_frame specified in your hand description file\n\
00186 GripperTranslation lift\n\
00187 \n\
00188 # the name that the target object has in the collision map\n\
00189 # can be left empty if no name is available\n\
00190 string collision_object_name\n\
00191 \n\
00192 # the name that the support surface (e.g. table) has in the collision map\n\
00193 # can be left empty if no name is available\n\
00194 string collision_support_surface_name\n\
00195 \n\
00196 # whether collisions between the gripper and the support surface should be acceptable\n\
00197 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00198 # pre-grasp location are still not allowed even if this is set to true.\n\
00199 bool allow_gripper_support_collision\n\
00200 \n\
00201 # whether reactive grasp execution using tactile sensors should be used\n\
00202 bool use_reactive_execution\n\
00203 \n\
00204 # whether reactive object lifting based on tactile sensors should be used\n\
00205 bool use_reactive_lift\n\
00206 \n\
00207 # set this to true if you only want to query the manipulation pipeline as to what \n\
00208 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00209 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00210 # movement will be attempted\n\
00211 bool only_perform_feasibility_test\n\
00212 \n\
00213 # set this to true if you want to ignore all collisions throughout the pickup \n\
00214 # and also move directly to the pre-grasp using Cartesian controllers\n\
00215 bool ignore_collisions\n\
00216 \n\
00217 # OPTIONAL (These will not have to be filled out most of the time)\n\
00218 # constraints to be imposed on every point in the motion of the arm\n\
00219 arm_navigation_msgs/Constraints path_constraints\n\
00220 \n\
00221 # OPTIONAL (These will not have to be filled out most of the time)\n\
00222 # additional collision operations to be used for every arm movement performed\n\
00223 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00224 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00225 # with care and only if special behaviors are desired\n\
00226 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00227 \n\
00228 # OPTIONAL (These will not have to be filled out most of the time)\n\
00229 # additional link paddings to be used for every arm movement performed\n\
00230 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00231 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00232 # with care and only if special behaviors are desired\n\
00233 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00234 \n\
00235 # an optional list of obstacles that we have semantic information about\n\
00236 # and that can be moved in the course of grasping\n\
00237 manipulation_msgs/GraspableObject[] movable_obstacles\n\
00238 \n\
00239 # the maximum contact force to use while grasping (<=0 to disable)\n\
00240 float32 max_contact_force\n\
00241 \n\
00242 \n\
00243 ================================================================================\n\
00244 MSG: manipulation_msgs/GraspableObject\n\
00245 # an object that the object_manipulator can work on\n\
00246 \n\
00247 # a graspable object can be represented in multiple ways. This message\n\
00248 # can contain all of them. Which one is actually used is up to the receiver\n\
00249 # of this message. When adding new representations, one must be careful that\n\
00250 # they have reasonable lightweight defaults indicating that that particular\n\
00251 # representation is not available.\n\
00252 \n\
00253 # the tf frame to be used as a reference frame when combining information from\n\
00254 # the different representations below\n\
00255 string reference_frame_id\n\
00256 \n\
00257 # potential recognition results from a database of models\n\
00258 # all poses are relative to the object reference pose\n\
00259 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00260 \n\
00261 # the point cloud itself\n\
00262 sensor_msgs/PointCloud cluster\n\
00263 \n\
00264 # a region of a PointCloud2 of interest\n\
00265 SceneRegion region\n\
00266 \n\
00267 # the name that this object has in the collision environment\n\
00268 string collision_name\n\
00269 ================================================================================\n\
00270 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00271 # Informs that a specific model from the Model Database has been \n\
00272 # identified at a certain location\n\
00273 \n\
00274 # the database id of the model\n\
00275 int32 model_id\n\
00276 \n\
00277 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00278 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00279 # leave this empty if providing an id in the model_id field\n\
00280 object_recognition_msgs/ObjectType type\n\
00281 \n\
00282 # the pose that it can be found in\n\
00283 geometry_msgs/PoseStamped pose\n\
00284 \n\
00285 # a measure of the confidence level in this detection result\n\
00286 float32 confidence\n\
00287 \n\
00288 # the name of the object detector that generated this detection result\n\
00289 string detector_name\n\
00290 \n\
00291 ================================================================================\n\
00292 MSG: object_recognition_msgs/ObjectType\n\
00293 ################################################## OBJECT ID #########################################################\n\
00294 \n\
00295 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00296 # object\n\
00297 \n\
00298 # The key of the found object: the unique identifier in the given db\n\
00299 string key\n\
00300 \n\
00301 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00302 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00303 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00304 # The object_recognition_core as a generic DB type that can read those fields\n\
00305 # Current examples:\n\
00306 # For CouchDB:\n\
00307 # type: 'CouchDB'\n\
00308 # root: 'http://localhost:5984'\n\
00309 # collection: 'object_recognition'\n\
00310 # For SQL household database:\n\
00311 # type: 'SqlHousehold'\n\
00312 # host: 'wgs36'\n\
00313 # port: 5432\n\
00314 # user: 'willow'\n\
00315 # password: 'willow'\n\
00316 # name: 'household_objects'\n\
00317 # module: 'tabletop'\n\
00318 string db\n\
00319 \n\
00320 ================================================================================\n\
00321 MSG: geometry_msgs/PoseStamped\n\
00322 # A Pose with reference coordinate frame and timestamp\n\
00323 Header header\n\
00324 Pose pose\n\
00325 \n\
00326 ================================================================================\n\
00327 MSG: std_msgs/Header\n\
00328 # Standard metadata for higher-level stamped data types.\n\
00329 # This is generally used to communicate timestamped data \n\
00330 # in a particular coordinate frame.\n\
00331 # \n\
00332 # sequence ID: consecutively increasing ID \n\
00333 uint32 seq\n\
00334 #Two-integer timestamp that is expressed as:\n\
00335 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00336 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00337 # time-handling sugar is provided by the client library\n\
00338 time stamp\n\
00339 #Frame this data is associated with\n\
00340 # 0: no frame\n\
00341 # 1: global frame\n\
00342 string frame_id\n\
00343 \n\
00344 ================================================================================\n\
00345 MSG: geometry_msgs/Pose\n\
00346 # A representation of pose in free space, composed of postion and orientation. \n\
00347 Point position\n\
00348 Quaternion orientation\n\
00349 \n\
00350 ================================================================================\n\
00351 MSG: geometry_msgs/Point\n\
00352 # This contains the position of a point in free space\n\
00353 float64 x\n\
00354 float64 y\n\
00355 float64 z\n\
00356 \n\
00357 ================================================================================\n\
00358 MSG: geometry_msgs/Quaternion\n\
00359 # This represents an orientation in free space in quaternion form.\n\
00360 \n\
00361 float64 x\n\
00362 float64 y\n\
00363 float64 z\n\
00364 float64 w\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: sensor_msgs/PointCloud\n\
00368 # This message holds a collection of 3d points, plus optional additional\n\
00369 # information about each point.\n\
00370 \n\
00371 # Time of sensor data acquisition, coordinate frame ID.\n\
00372 Header header\n\
00373 \n\
00374 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00375 # in the frame given in the header.\n\
00376 geometry_msgs/Point32[] points\n\
00377 \n\
00378 # Each channel should have the same number of elements as points array,\n\
00379 # and the data in each channel should correspond 1:1 with each point.\n\
00380 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00381 ChannelFloat32[] channels\n\
00382 \n\
00383 ================================================================================\n\
00384 MSG: geometry_msgs/Point32\n\
00385 # This contains the position of a point in free space(with 32 bits of precision).\n\
00386 # It is recommeded to use Point wherever possible instead of Point32. \n\
00387 # \n\
00388 # This recommendation is to promote interoperability. \n\
00389 #\n\
00390 # This message is designed to take up less space when sending\n\
00391 # lots of points at once, as in the case of a PointCloud. \n\
00392 \n\
00393 float32 x\n\
00394 float32 y\n\
00395 float32 z\n\
00396 ================================================================================\n\
00397 MSG: sensor_msgs/ChannelFloat32\n\
00398 # This message is used by the PointCloud message to hold optional data\n\
00399 # associated with each point in the cloud. The length of the values\n\
00400 # array should be the same as the length of the points array in the\n\
00401 # PointCloud, and each value should be associated with the corresponding\n\
00402 # point.\n\
00403 \n\
00404 # Channel names in existing practice include:\n\
00405 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00406 # This is opposite to usual conventions but remains for\n\
00407 # historical reasons. The newer PointCloud2 message has no\n\
00408 # such problem.\n\
00409 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00410 # (R,G,B) values packed into the least significant 24 bits,\n\
00411 # in order.\n\
00412 # \"intensity\" - laser or pixel intensity.\n\
00413 # \"distance\"\n\
00414 \n\
00415 # The channel name should give semantics of the channel (e.g.\n\
00416 # \"intensity\" instead of \"value\").\n\
00417 string name\n\
00418 \n\
00419 # The values array should be 1-1 with the elements of the associated\n\
00420 # PointCloud.\n\
00421 float32[] values\n\
00422 \n\
00423 ================================================================================\n\
00424 MSG: manipulation_msgs/SceneRegion\n\
00425 # Point cloud\n\
00426 sensor_msgs/PointCloud2 cloud\n\
00427 \n\
00428 # Indices for the region of interest\n\
00429 int32[] mask\n\
00430 \n\
00431 # One of the corresponding 2D images, if applicable\n\
00432 sensor_msgs/Image image\n\
00433 \n\
00434 # The disparity image, if applicable\n\
00435 sensor_msgs/Image disparity_image\n\
00436 \n\
00437 # Camera info for the camera that took the image\n\
00438 sensor_msgs/CameraInfo cam_info\n\
00439 \n\
00440 # a 3D region of interest for grasp planning\n\
00441 geometry_msgs/PoseStamped roi_box_pose\n\
00442 geometry_msgs/Vector3 roi_box_dims\n\
00443 \n\
00444 ================================================================================\n\
00445 MSG: sensor_msgs/PointCloud2\n\
00446 # This message holds a collection of N-dimensional points, which may\n\
00447 # contain additional information such as normals, intensity, etc. The\n\
00448 # point data is stored as a binary blob, its layout described by the\n\
00449 # contents of the \"fields\" array.\n\
00450 \n\
00451 # The point cloud data may be organized 2d (image-like) or 1d\n\
00452 # (unordered). Point clouds organized as 2d images may be produced by\n\
00453 # camera depth sensors such as stereo or time-of-flight.\n\
00454 \n\
00455 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00456 # points).\n\
00457 Header header\n\
00458 \n\
00459 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00460 # 1 and width is the length of the point cloud.\n\
00461 uint32 height\n\
00462 uint32 width\n\
00463 \n\
00464 # Describes the channels and their layout in the binary data blob.\n\
00465 PointField[] fields\n\
00466 \n\
00467 bool is_bigendian # Is this data bigendian?\n\
00468 uint32 point_step # Length of a point in bytes\n\
00469 uint32 row_step # Length of a row in bytes\n\
00470 uint8[] data # Actual point data, size is (row_step*height)\n\
00471 \n\
00472 bool is_dense # True if there are no invalid points\n\
00473 \n\
00474 ================================================================================\n\
00475 MSG: sensor_msgs/PointField\n\
00476 # This message holds the description of one point entry in the\n\
00477 # PointCloud2 message format.\n\
00478 uint8 INT8 = 1\n\
00479 uint8 UINT8 = 2\n\
00480 uint8 INT16 = 3\n\
00481 uint8 UINT16 = 4\n\
00482 uint8 INT32 = 5\n\
00483 uint8 UINT32 = 6\n\
00484 uint8 FLOAT32 = 7\n\
00485 uint8 FLOAT64 = 8\n\
00486 \n\
00487 string name # Name of field\n\
00488 uint32 offset # Offset from start of point struct\n\
00489 uint8 datatype # Datatype enumeration, see above\n\
00490 uint32 count # How many elements in the field\n\
00491 \n\
00492 ================================================================================\n\
00493 MSG: sensor_msgs/Image\n\
00494 # This message contains an uncompressed image\n\
00495 # (0, 0) is at top-left corner of image\n\
00496 #\n\
00497 \n\
00498 Header header # Header timestamp should be acquisition time of image\n\
00499 # Header frame_id should be optical frame of camera\n\
00500 # origin of frame should be optical center of cameara\n\
00501 # +x should point to the right in the image\n\
00502 # +y should point down in the image\n\
00503 # +z should point into to plane of the image\n\
00504 # If the frame_id here and the frame_id of the CameraInfo\n\
00505 # message associated with the image conflict\n\
00506 # the behavior is undefined\n\
00507 \n\
00508 uint32 height # image height, that is, number of rows\n\
00509 uint32 width # image width, that is, number of columns\n\
00510 \n\
00511 # The legal values for encoding are in file src/image_encodings.cpp\n\
00512 # If you want to standardize a new string format, join\n\
00513 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00514 \n\
00515 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00516 # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00517 \n\
00518 uint8 is_bigendian # is this data bigendian?\n\
00519 uint32 step # Full row length in bytes\n\
00520 uint8[] data # actual matrix data, size is (step * rows)\n\
00521 \n\
00522 ================================================================================\n\
00523 MSG: sensor_msgs/CameraInfo\n\
00524 # This message defines meta information for a camera. It should be in a\n\
00525 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00526 # image topics named:\n\
00527 #\n\
00528 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00529 # image - monochrome, distorted\n\
00530 # image_color - color, distorted\n\
00531 # image_rect - monochrome, rectified\n\
00532 # image_rect_color - color, rectified\n\
00533 #\n\
00534 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00535 # for producing the four processed image topics from image_raw and\n\
00536 # camera_info. The meaning of the camera parameters are described in\n\
00537 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00538 #\n\
00539 # The image_geometry package provides a user-friendly interface to\n\
00540 # common operations using this meta information. If you want to, e.g.,\n\
00541 # project a 3d point into image coordinates, we strongly recommend\n\
00542 # using image_geometry.\n\
00543 #\n\
00544 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00545 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00546 # indicates an uncalibrated camera.\n\
00547 \n\
00548 #######################################################################\n\
00549 # Image acquisition info #\n\
00550 #######################################################################\n\
00551 \n\
00552 # Time of image acquisition, camera coordinate frame ID\n\
00553 Header header # Header timestamp should be acquisition time of image\n\
00554 # Header frame_id should be optical frame of camera\n\
00555 # origin of frame should be optical center of camera\n\
00556 # +x should point to the right in the image\n\
00557 # +y should point down in the image\n\
00558 # +z should point into the plane of the image\n\
00559 \n\
00560 \n\
00561 #######################################################################\n\
00562 # Calibration Parameters #\n\
00563 #######################################################################\n\
00564 # These are fixed during camera calibration. Their values will be the #\n\
00565 # same in all messages until the camera is recalibrated. Note that #\n\
00566 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00567 # #\n\
00568 # The internal parameters can be used to warp a raw (distorted) image #\n\
00569 # to: #\n\
00570 # 1. An undistorted image (requires D and K) #\n\
00571 # 2. A rectified image (requires D, K, R) #\n\
00572 # The projection matrix P projects 3D points into the rectified image.#\n\
00573 #######################################################################\n\
00574 \n\
00575 # The image dimensions with which the camera was calibrated. Normally\n\
00576 # this will be the full camera resolution in pixels.\n\
00577 uint32 height\n\
00578 uint32 width\n\
00579 \n\
00580 # The distortion model used. Supported models are listed in\n\
00581 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00582 # simple model of radial and tangential distortion - is sufficent.\n\
00583 string distortion_model\n\
00584 \n\
00585 # The distortion parameters, size depending on the distortion model.\n\
00586 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00587 float64[] D\n\
00588 \n\
00589 # Intrinsic camera matrix for the raw (distorted) images.\n\
00590 # [fx 0 cx]\n\
00591 # K = [ 0 fy cy]\n\
00592 # [ 0 0 1]\n\
00593 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00594 # coordinates using the focal lengths (fx, fy) and principal point\n\
00595 # (cx, cy).\n\
00596 float64[9] K # 3x3 row-major matrix\n\
00597 \n\
00598 # Rectification matrix (stereo cameras only)\n\
00599 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00600 # stereo image plane so that epipolar lines in both stereo images are\n\
00601 # parallel.\n\
00602 float64[9] R # 3x3 row-major matrix\n\
00603 \n\
00604 # Projection/camera matrix\n\
00605 # [fx' 0 cx' Tx]\n\
00606 # P = [ 0 fy' cy' Ty]\n\
00607 # [ 0 0 1 0]\n\
00608 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00609 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00610 # is the normal camera intrinsic matrix for the rectified image.\n\
00611 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00612 # coordinates using the focal lengths (fx', fy') and principal point\n\
00613 # (cx', cy') - these may differ from the values in K.\n\
00614 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00615 # also have R = the identity and P[1:3,1:3] = K.\n\
00616 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00617 # position of the optical center of the second camera in the first\n\
00618 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00619 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00620 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00621 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00622 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00623 # the rectified image is given by:\n\
00624 # [u v w]' = P * [X Y Z 1]'\n\
00625 # x = u / w\n\
00626 # y = v / w\n\
00627 # This holds for both images of a stereo pair.\n\
00628 float64[12] P # 3x4 row-major matrix\n\
00629 \n\
00630 \n\
00631 #######################################################################\n\
00632 # Operational Parameters #\n\
00633 #######################################################################\n\
00634 # These define the image region actually captured by the camera #\n\
00635 # driver. Although they affect the geometry of the output image, they #\n\
00636 # may be changed freely without recalibrating the camera. #\n\
00637 #######################################################################\n\
00638 \n\
00639 # Binning refers here to any camera setting which combines rectangular\n\
00640 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00641 # resolution of the output image to\n\
00642 # (width / binning_x) x (height / binning_y).\n\
00643 # The default values binning_x = binning_y = 0 is considered the same\n\
00644 # as binning_x = binning_y = 1 (no subsampling).\n\
00645 uint32 binning_x\n\
00646 uint32 binning_y\n\
00647 \n\
00648 # Region of interest (subwindow of full camera resolution), given in\n\
00649 # full resolution (unbinned) image coordinates. A particular ROI\n\
00650 # always denotes the same window of pixels on the camera sensor,\n\
00651 # regardless of binning settings.\n\
00652 # The default setting of roi (all values 0) is considered the same as\n\
00653 # full resolution (roi.width = width, roi.height = height).\n\
00654 RegionOfInterest roi\n\
00655 \n\
00656 ================================================================================\n\
00657 MSG: sensor_msgs/RegionOfInterest\n\
00658 # This message is used to specify a region of interest within an image.\n\
00659 #\n\
00660 # When used to specify the ROI setting of the camera when the image was\n\
00661 # taken, the height and width fields should either match the height and\n\
00662 # width fields for the associated image; or height = width = 0\n\
00663 # indicates that the full resolution image was captured.\n\
00664 \n\
00665 uint32 x_offset # Leftmost pixel of the ROI\n\
00666 # (0 if the ROI includes the left edge of the image)\n\
00667 uint32 y_offset # Topmost pixel of the ROI\n\
00668 # (0 if the ROI includes the top edge of the image)\n\
00669 uint32 height # Height of ROI\n\
00670 uint32 width # Width of ROI\n\
00671 \n\
00672 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00673 # ROI in this message. Typically this should be False if the full image\n\
00674 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00675 # used).\n\
00676 bool do_rectify\n\
00677 \n\
00678 ================================================================================\n\
00679 MSG: geometry_msgs/Vector3\n\
00680 # This represents a vector in free space. \n\
00681 \n\
00682 float64 x\n\
00683 float64 y\n\
00684 float64 z\n\
00685 ================================================================================\n\
00686 MSG: manipulation_msgs/Grasp\n\
00687 # A name for this grasp\n\
00688 string id\n\
00689 \n\
00690 # The internal posture of the hand for the pre-grasp\n\
00691 # only positions are used\n\
00692 sensor_msgs/JointState pre_grasp_posture\n\
00693 \n\
00694 # The internal posture of the hand for the grasp\n\
00695 # positions and efforts are used\n\
00696 sensor_msgs/JointState grasp_posture\n\
00697 \n\
00698 # The position of the end-effector for the grasp relative to a reference frame \n\
00699 # (that is always specified elsewhere, not in this message)\n\
00700 geometry_msgs/PoseStamped grasp_pose\n\
00701 \n\
00702 # The estimated probability of success for this grasp, or some other\n\
00703 # measure of how \"good\" it is.\n\
00704 float64 grasp_quality\n\
00705 \n\
00706 # The approach motion\n\
00707 GripperTranslation approach\n\
00708 \n\
00709 # The retreat motion\n\
00710 GripperTranslation retreat\n\
00711 \n\
00712 # the maximum contact force to use while grasping (<=0 to disable)\n\
00713 float32 max_contact_force\n\
00714 \n\
00715 # an optional list of obstacles that we have semantic information about\n\
00716 # and that can be touched/pushed/moved in the course of grasping\n\
00717 string[] allowed_touch_objects\n\
00718 \n\
00719 ================================================================================\n\
00720 MSG: sensor_msgs/JointState\n\
00721 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00722 #\n\
00723 # The state of each joint (revolute or prismatic) is defined by:\n\
00724 # * the position of the joint (rad or m),\n\
00725 # * the velocity of the joint (rad/s or m/s) and \n\
00726 # * the effort that is applied in the joint (Nm or N).\n\
00727 #\n\
00728 # Each joint is uniquely identified by its name\n\
00729 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00730 # in one message have to be recorded at the same time.\n\
00731 #\n\
00732 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00733 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00734 # effort associated with them, you can leave the effort array empty. \n\
00735 #\n\
00736 # All arrays in this message should have the same size, or be empty.\n\
00737 # This is the only way to uniquely associate the joint name with the correct\n\
00738 # states.\n\
00739 \n\
00740 \n\
00741 Header header\n\
00742 \n\
00743 string[] name\n\
00744 float64[] position\n\
00745 float64[] velocity\n\
00746 float64[] effort\n\
00747 \n\
00748 ================================================================================\n\
00749 MSG: manipulation_msgs/GripperTranslation\n\
00750 # defines a translation for the gripper, used in pickup or place tasks\n\
00751 # for example for lifting an object off a table or approaching the table for placing\n\
00752 \n\
00753 # the direction of the translation\n\
00754 geometry_msgs/Vector3Stamped direction\n\
00755 \n\
00756 # the desired translation distance\n\
00757 float32 desired_distance\n\
00758 \n\
00759 # the min distance that must be considered feasible before the\n\
00760 # grasp is even attempted\n\
00761 float32 min_distance\n\
00762 \n\
00763 ================================================================================\n\
00764 MSG: geometry_msgs/Vector3Stamped\n\
00765 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00766 Header header\n\
00767 Vector3 vector\n\
00768 \n\
00769 ================================================================================\n\
00770 MSG: object_manipulation_msgs/GripperTranslation\n\
00771 # defines a translation for the gripper, used in pickup or place tasks\n\
00772 # for example for lifting an object off a table or approaching the table for placing\n\
00773 \n\
00774 # the direction of the translation\n\
00775 geometry_msgs/Vector3Stamped direction\n\
00776 \n\
00777 # the desired translation distance\n\
00778 float32 desired_distance\n\
00779 \n\
00780 # the min distance that must be considered feasible before the\n\
00781 # grasp is even attempted\n\
00782 float32 min_distance\n\
00783 ================================================================================\n\
00784 MSG: arm_navigation_msgs/Constraints\n\
00785 # This message contains a list of motion planning constraints.\n\
00786 \n\
00787 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00788 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00789 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00790 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00791 \n\
00792 ================================================================================\n\
00793 MSG: arm_navigation_msgs/JointConstraint\n\
00794 # Constrain the position of a joint to be within a certain bound\n\
00795 string joint_name\n\
00796 \n\
00797 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00798 float64 position\n\
00799 float64 tolerance_above\n\
00800 float64 tolerance_below\n\
00801 \n\
00802 # A weighting factor for this constraint\n\
00803 float64 weight\n\
00804 ================================================================================\n\
00805 MSG: arm_navigation_msgs/PositionConstraint\n\
00806 # This message contains the definition of a position constraint.\n\
00807 Header header\n\
00808 \n\
00809 # The robot link this constraint refers to\n\
00810 string link_name\n\
00811 \n\
00812 # The offset (in the link frame) for the target point on the link we are planning for\n\
00813 geometry_msgs/Point target_point_offset\n\
00814 \n\
00815 # The nominal/target position for the point we are planning for\n\
00816 geometry_msgs/Point position\n\
00817 \n\
00818 # The shape of the bounded region that constrains the position of the end-effector\n\
00819 # This region is always centered at the position defined above\n\
00820 arm_navigation_msgs/Shape constraint_region_shape\n\
00821 \n\
00822 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00823 # This allows the specification of non-axis aligned constraints\n\
00824 geometry_msgs/Quaternion constraint_region_orientation\n\
00825 \n\
00826 # Constraint weighting factor - a weight for this constraint\n\
00827 float64 weight\n\
00828 \n\
00829 ================================================================================\n\
00830 MSG: arm_navigation_msgs/Shape\n\
00831 byte SPHERE=0\n\
00832 byte BOX=1\n\
00833 byte CYLINDER=2\n\
00834 byte MESH=3\n\
00835 \n\
00836 byte type\n\
00837 \n\
00838 \n\
00839 #### define sphere, box, cylinder ####\n\
00840 # the origin of each shape is considered at the shape's center\n\
00841 \n\
00842 # for sphere\n\
00843 # radius := dimensions[0]\n\
00844 \n\
00845 # for cylinder\n\
00846 # radius := dimensions[0]\n\
00847 # length := dimensions[1]\n\
00848 # the length is along the Z axis\n\
00849 \n\
00850 # for box\n\
00851 # size_x := dimensions[0]\n\
00852 # size_y := dimensions[1]\n\
00853 # size_z := dimensions[2]\n\
00854 float64[] dimensions\n\
00855 \n\
00856 \n\
00857 #### define mesh ####\n\
00858 \n\
00859 # list of triangles; triangle k is defined by tre vertices located\n\
00860 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00861 int32[] triangles\n\
00862 geometry_msgs/Point[] vertices\n\
00863 \n\
00864 ================================================================================\n\
00865 MSG: arm_navigation_msgs/OrientationConstraint\n\
00866 # This message contains the definition of an orientation constraint.\n\
00867 Header header\n\
00868 \n\
00869 # The robot link this constraint refers to\n\
00870 string link_name\n\
00871 \n\
00872 # The type of the constraint\n\
00873 int32 type\n\
00874 int32 LINK_FRAME=0\n\
00875 int32 HEADER_FRAME=1\n\
00876 \n\
00877 # The desired orientation of the robot link specified as a quaternion\n\
00878 geometry_msgs/Quaternion orientation\n\
00879 \n\
00880 # optional RPY error tolerances specified if \n\
00881 float64 absolute_roll_tolerance\n\
00882 float64 absolute_pitch_tolerance\n\
00883 float64 absolute_yaw_tolerance\n\
00884 \n\
00885 # Constraint weighting factor - a weight for this constraint\n\
00886 float64 weight\n\
00887 \n\
00888 ================================================================================\n\
00889 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00890 # This message contains the definition of a visibility constraint.\n\
00891 Header header\n\
00892 \n\
00893 # The point stamped target that needs to be kept within view of the sensor\n\
00894 geometry_msgs/PointStamped target\n\
00895 \n\
00896 # The local pose of the frame in which visibility is to be maintained\n\
00897 # The frame id should represent the robot link to which the sensor is attached\n\
00898 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00899 geometry_msgs/PoseStamped sensor_pose\n\
00900 \n\
00901 # The deviation (in radians) that will be tolerated\n\
00902 # Constraint error will be measured as the solid angle between the \n\
00903 # X axis of the frame defined above and the vector between the origin \n\
00904 # of the frame defined above and the target location\n\
00905 float64 absolute_tolerance\n\
00906 \n\
00907 \n\
00908 ================================================================================\n\
00909 MSG: geometry_msgs/PointStamped\n\
00910 # This represents a Point with reference coordinate frame and timestamp\n\
00911 Header header\n\
00912 Point point\n\
00913 \n\
00914 ================================================================================\n\
00915 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00916 # A set of collision operations that will be performed in the order they are specified\n\
00917 CollisionOperation[] collision_operations\n\
00918 ================================================================================\n\
00919 MSG: arm_navigation_msgs/CollisionOperation\n\
00920 # A definition of a collision operation\n\
00921 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00922 # between the gripper and all objects in the collision space\n\
00923 \n\
00924 string object1\n\
00925 string object2\n\
00926 string COLLISION_SET_ALL=\"all\"\n\
00927 string COLLISION_SET_OBJECTS=\"objects\"\n\
00928 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00929 \n\
00930 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00931 float64 penetration_distance\n\
00932 \n\
00933 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00934 int32 operation\n\
00935 int32 DISABLE=0\n\
00936 int32 ENABLE=1\n\
00937 \n\
00938 ================================================================================\n\
00939 MSG: arm_navigation_msgs/LinkPadding\n\
00940 #name for the link\n\
00941 string link_name\n\
00942 \n\
00943 # padding to apply to the link\n\
00944 float64 padding\n\
00945 \n\
00946 ";
00947 }
00948
00949 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); }
00950 };
00951
00952 }
00953 }
00954
00955 namespace ros
00956 {
00957 namespace serialization
00958 {
00959
00960 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >
00961 {
00962 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00963 {
00964 stream.next(m.arm_name);
00965 stream.next(m.target);
00966 stream.next(m.desired_grasps);
00967 stream.next(m.lift);
00968 stream.next(m.collision_object_name);
00969 stream.next(m.collision_support_surface_name);
00970 stream.next(m.allow_gripper_support_collision);
00971 stream.next(m.use_reactive_execution);
00972 stream.next(m.use_reactive_lift);
00973 stream.next(m.only_perform_feasibility_test);
00974 stream.next(m.ignore_collisions);
00975 stream.next(m.path_constraints);
00976 stream.next(m.additional_collision_operations);
00977 stream.next(m.additional_link_padding);
00978 stream.next(m.movable_obstacles);
00979 stream.next(m.max_contact_force);
00980 }
00981
00982 ROS_DECLARE_ALLINONE_SERIALIZER;
00983 };
00984 }
00985 }
00986
00987 namespace ros
00988 {
00989 namespace message_operations
00990 {
00991
00992 template<class ContainerAllocator>
00993 struct Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >
00994 {
00995 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v)
00996 {
00997 s << indent << "arm_name: ";
00998 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
00999 s << indent << "target: ";
01000 s << std::endl;
01001 Printer< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
01002 s << indent << "desired_grasps[]" << std::endl;
01003 for (size_t i = 0; i < v.desired_grasps.size(); ++i)
01004 {
01005 s << indent << " desired_grasps[" << i << "]: ";
01006 s << std::endl;
01007 s << indent;
01008 Printer< ::manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.desired_grasps[i]);
01009 }
01010 s << indent << "lift: ";
01011 s << std::endl;
01012 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift);
01013 s << indent << "collision_object_name: ";
01014 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name);
01015 s << indent << "collision_support_surface_name: ";
01016 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01017 s << indent << "allow_gripper_support_collision: ";
01018 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision);
01019 s << indent << "use_reactive_execution: ";
01020 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_execution);
01021 s << indent << "use_reactive_lift: ";
01022 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_lift);
01023 s << indent << "only_perform_feasibility_test: ";
01024 Printer<uint8_t>::stream(s, indent + " ", v.only_perform_feasibility_test);
01025 s << indent << "ignore_collisions: ";
01026 Printer<uint8_t>::stream(s, indent + " ", v.ignore_collisions);
01027 s << indent << "path_constraints: ";
01028 s << std::endl;
01029 Printer< ::arm_navigation_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints);
01030 s << indent << "additional_collision_operations: ";
01031 s << std::endl;
01032 Printer< ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations);
01033 s << indent << "additional_link_padding[]" << std::endl;
01034 for (size_t i = 0; i < v.additional_link_padding.size(); ++i)
01035 {
01036 s << indent << " additional_link_padding[" << i << "]: ";
01037 s << std::endl;
01038 s << indent;
01039 Printer< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]);
01040 }
01041 s << indent << "movable_obstacles[]" << std::endl;
01042 for (size_t i = 0; i < v.movable_obstacles.size(); ++i)
01043 {
01044 s << indent << " movable_obstacles[" << i << "]: ";
01045 s << std::endl;
01046 s << indent;
01047 Printer< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.movable_obstacles[i]);
01048 }
01049 s << indent << "max_contact_force: ";
01050 Printer<float>::stream(s, indent + " ", v.max_contact_force);
01051 }
01052 };
01053
01054
01055 }
01056 }
01057
01058 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H
01059