PickupActionGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-object_manipulation/doc_stacks/2014-10-06_02-51-20.607186/object_manipulation/object_manipulation_msgs/msg/PickupActionGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/PickupGoal.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupActionGoal_ {
00025   typedef PickupActionGoal_<ContainerAllocator> Type;
00026 
00027   PickupActionGoal_()
00028   : header()
00029   , goal_id()
00030   , goal()
00031   {
00032   }
00033 
00034   PickupActionGoal_(const ContainerAllocator& _alloc)
00035   : header(_alloc)
00036   , goal_id(_alloc)
00037   , goal(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00042    ::std_msgs::Header_<ContainerAllocator>  header;
00043 
00044   typedef  ::actionlib_msgs::GoalID_<ContainerAllocator>  _goal_id_type;
00045    ::actionlib_msgs::GoalID_<ContainerAllocator>  goal_id;
00046 
00047   typedef  ::object_manipulation_msgs::PickupGoal_<ContainerAllocator>  _goal_type;
00048    ::object_manipulation_msgs::PickupGoal_<ContainerAllocator>  goal;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct PickupActionGoal
00055 typedef  ::object_manipulation_msgs::PickupActionGoal_<std::allocator<void> > PickupActionGoal;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal> PickupActionGoalPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal const> PickupActionGoalConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "945cf8c2d47b89d787fe368728a2fc89";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0x945cf8c2d47b89d7ULL;
00084   static const uint64_t static_value2 = 0x87fe368728a2fc89ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/PickupActionGoal";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 PickupGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/PickupGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 # An action for picking up an object\n\
00142 \n\
00143 # which arm to be used for grasping\n\
00144 string arm_name\n\
00145 \n\
00146 # the object to be grasped\n\
00147 manipulation_msgs/GraspableObject target\n\
00148 \n\
00149 # a list of grasps to be used\n\
00150 # if empty, the grasp executive will call one of its own planners\n\
00151 manipulation_msgs/Grasp[] desired_grasps\n\
00152 \n\
00153 # how the object should be lifted after the grasp\n\
00154 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00155 # or the gripper_frame specified in your hand description file\n\
00156 GripperTranslation lift\n\
00157 \n\
00158 # the name that the target object has in the collision map\n\
00159 # can be left empty if no name is available\n\
00160 string collision_object_name\n\
00161 \n\
00162 # the name that the support surface (e.g. table) has in the collision map\n\
00163 # can be left empty if no name is available\n\
00164 string collision_support_surface_name\n\
00165 \n\
00166 # whether collisions between the gripper and the support surface should be acceptable\n\
00167 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00168 # pre-grasp location are still not allowed even if this is set to true.\n\
00169 bool allow_gripper_support_collision\n\
00170 \n\
00171 # whether reactive grasp execution using tactile sensors should be used\n\
00172 bool use_reactive_execution\n\
00173 \n\
00174 # whether reactive object lifting based on tactile sensors should be used\n\
00175 bool use_reactive_lift\n\
00176 \n\
00177 # set this to true if you only want to query the manipulation pipeline as to what \n\
00178 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00179 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00180 # movement will be attempted\n\
00181 bool only_perform_feasibility_test\n\
00182 \n\
00183 # set this to true if you want to ignore all collisions throughout the pickup \n\
00184 # and also move directly to the pre-grasp using Cartesian controllers\n\
00185 bool ignore_collisions\n\
00186 \n\
00187 # OPTIONAL (These will not have to be filled out most of the time)\n\
00188 # constraints to be imposed on every point in the motion of the arm\n\
00189 arm_navigation_msgs/Constraints path_constraints\n\
00190 \n\
00191 # OPTIONAL (These will not have to be filled out most of the time)\n\
00192 # additional collision operations to be used for every arm movement performed\n\
00193 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00194 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00195 # with care and only if special behaviors are desired\n\
00196 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00197 \n\
00198 # OPTIONAL (These will not have to be filled out most of the time)\n\
00199 # additional link paddings to be used for every arm movement performed\n\
00200 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00201 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00202 # with care and only if special behaviors are desired\n\
00203 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00204 \n\
00205 # an optional list of obstacles that we have semantic information about\n\
00206 # and that can be moved in the course of grasping\n\
00207 manipulation_msgs/GraspableObject[] movable_obstacles\n\
00208 \n\
00209 # the maximum contact force to use while grasping (<=0 to disable)\n\
00210 float32 max_contact_force\n\
00211 \n\
00212 \n\
00213 ================================================================================\n\
00214 MSG: manipulation_msgs/GraspableObject\n\
00215 # an object that the object_manipulator can work on\n\
00216 \n\
00217 # a graspable object can be represented in multiple ways. This message\n\
00218 # can contain all of them. Which one is actually used is up to the receiver\n\
00219 # of this message. When adding new representations, one must be careful that\n\
00220 # they have reasonable lightweight defaults indicating that that particular\n\
00221 # representation is not available.\n\
00222 \n\
00223 # the tf frame to be used as a reference frame when combining information from\n\
00224 # the different representations below\n\
00225 string reference_frame_id\n\
00226 \n\
00227 # potential recognition results from a database of models\n\
00228 # all poses are relative to the object reference pose\n\
00229 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00230 \n\
00231 # the point cloud itself\n\
00232 sensor_msgs/PointCloud cluster\n\
00233 \n\
00234 # a region of a PointCloud2 of interest\n\
00235 SceneRegion region\n\
00236 \n\
00237 # the name that this object has in the collision environment\n\
00238 string collision_name\n\
00239 ================================================================================\n\
00240 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00241 # Informs that a specific model from the Model Database has been \n\
00242 # identified at a certain location\n\
00243 \n\
00244 # the database id of the model\n\
00245 int32 model_id\n\
00246 \n\
00247 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00248 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00249 # leave this empty if providing an id in the model_id field\n\
00250 object_recognition_msgs/ObjectType type\n\
00251 \n\
00252 # the pose that it can be found in\n\
00253 geometry_msgs/PoseStamped pose\n\
00254 \n\
00255 # a measure of the confidence level in this detection result\n\
00256 float32 confidence\n\
00257 \n\
00258 # the name of the object detector that generated this detection result\n\
00259 string detector_name\n\
00260 \n\
00261 ================================================================================\n\
00262 MSG: object_recognition_msgs/ObjectType\n\
00263 ################################################## OBJECT ID #########################################################\n\
00264 \n\
00265 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00266 # object\n\
00267 \n\
00268 # The key of the found object: the unique identifier in the given db\n\
00269 string key\n\
00270 \n\
00271 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00272 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00273 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00274 # The object_recognition_core as a generic DB type that can read those fields\n\
00275 # Current examples:\n\
00276 # For CouchDB:\n\
00277 #   type: 'CouchDB'\n\
00278 #   root: 'http://localhost:5984'\n\
00279 #   collection: 'object_recognition'\n\
00280 # For SQL household database:\n\
00281 #   type: 'SqlHousehold'\n\
00282 #   host: 'wgs36'\n\
00283 #   port: 5432\n\
00284 #   user: 'willow'\n\
00285 #   password: 'willow'\n\
00286 #   name: 'household_objects'\n\
00287 #   module: 'tabletop'\n\
00288 string db\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: geometry_msgs/PoseStamped\n\
00292 # A Pose with reference coordinate frame and timestamp\n\
00293 Header header\n\
00294 Pose pose\n\
00295 \n\
00296 ================================================================================\n\
00297 MSG: geometry_msgs/Pose\n\
00298 # A representation of pose in free space, composed of postion and orientation. \n\
00299 Point position\n\
00300 Quaternion orientation\n\
00301 \n\
00302 ================================================================================\n\
00303 MSG: geometry_msgs/Point\n\
00304 # This contains the position of a point in free space\n\
00305 float64 x\n\
00306 float64 y\n\
00307 float64 z\n\
00308 \n\
00309 ================================================================================\n\
00310 MSG: geometry_msgs/Quaternion\n\
00311 # This represents an orientation in free space in quaternion form.\n\
00312 \n\
00313 float64 x\n\
00314 float64 y\n\
00315 float64 z\n\
00316 float64 w\n\
00317 \n\
00318 ================================================================================\n\
00319 MSG: sensor_msgs/PointCloud\n\
00320 # This message holds a collection of 3d points, plus optional additional\n\
00321 # information about each point.\n\
00322 \n\
00323 # Time of sensor data acquisition, coordinate frame ID.\n\
00324 Header header\n\
00325 \n\
00326 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00327 # in the frame given in the header.\n\
00328 geometry_msgs/Point32[] points\n\
00329 \n\
00330 # Each channel should have the same number of elements as points array,\n\
00331 # and the data in each channel should correspond 1:1 with each point.\n\
00332 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00333 ChannelFloat32[] channels\n\
00334 \n\
00335 ================================================================================\n\
00336 MSG: geometry_msgs/Point32\n\
00337 # This contains the position of a point in free space(with 32 bits of precision).\n\
00338 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00339 # \n\
00340 # This recommendation is to promote interoperability.  \n\
00341 #\n\
00342 # This message is designed to take up less space when sending\n\
00343 # lots of points at once, as in the case of a PointCloud.  \n\
00344 \n\
00345 float32 x\n\
00346 float32 y\n\
00347 float32 z\n\
00348 ================================================================================\n\
00349 MSG: sensor_msgs/ChannelFloat32\n\
00350 # This message is used by the PointCloud message to hold optional data\n\
00351 # associated with each point in the cloud. The length of the values\n\
00352 # array should be the same as the length of the points array in the\n\
00353 # PointCloud, and each value should be associated with the corresponding\n\
00354 # point.\n\
00355 \n\
00356 # Channel names in existing practice include:\n\
00357 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00358 #              This is opposite to usual conventions but remains for\n\
00359 #              historical reasons. The newer PointCloud2 message has no\n\
00360 #              such problem.\n\
00361 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00362 #           (R,G,B) values packed into the least significant 24 bits,\n\
00363 #           in order.\n\
00364 #   \"intensity\" - laser or pixel intensity.\n\
00365 #   \"distance\"\n\
00366 \n\
00367 # The channel name should give semantics of the channel (e.g.\n\
00368 # \"intensity\" instead of \"value\").\n\
00369 string name\n\
00370 \n\
00371 # The values array should be 1-1 with the elements of the associated\n\
00372 # PointCloud.\n\
00373 float32[] values\n\
00374 \n\
00375 ================================================================================\n\
00376 MSG: manipulation_msgs/SceneRegion\n\
00377 # Point cloud\n\
00378 sensor_msgs/PointCloud2 cloud\n\
00379 \n\
00380 # Indices for the region of interest\n\
00381 int32[] mask\n\
00382 \n\
00383 # One of the corresponding 2D images, if applicable\n\
00384 sensor_msgs/Image image\n\
00385 \n\
00386 # The disparity image, if applicable\n\
00387 sensor_msgs/Image disparity_image\n\
00388 \n\
00389 # Camera info for the camera that took the image\n\
00390 sensor_msgs/CameraInfo cam_info\n\
00391 \n\
00392 # a 3D region of interest for grasp planning\n\
00393 geometry_msgs/PoseStamped  roi_box_pose\n\
00394 geometry_msgs/Vector3      roi_box_dims\n\
00395 \n\
00396 ================================================================================\n\
00397 MSG: sensor_msgs/PointCloud2\n\
00398 # This message holds a collection of N-dimensional points, which may\n\
00399 # contain additional information such as normals, intensity, etc. The\n\
00400 # point data is stored as a binary blob, its layout described by the\n\
00401 # contents of the \"fields\" array.\n\
00402 \n\
00403 # The point cloud data may be organized 2d (image-like) or 1d\n\
00404 # (unordered). Point clouds organized as 2d images may be produced by\n\
00405 # camera depth sensors such as stereo or time-of-flight.\n\
00406 \n\
00407 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00408 # points).\n\
00409 Header header\n\
00410 \n\
00411 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00412 # 1 and width is the length of the point cloud.\n\
00413 uint32 height\n\
00414 uint32 width\n\
00415 \n\
00416 # Describes the channels and their layout in the binary data blob.\n\
00417 PointField[] fields\n\
00418 \n\
00419 bool    is_bigendian # Is this data bigendian?\n\
00420 uint32  point_step   # Length of a point in bytes\n\
00421 uint32  row_step     # Length of a row in bytes\n\
00422 uint8[] data         # Actual point data, size is (row_step*height)\n\
00423 \n\
00424 bool is_dense        # True if there are no invalid points\n\
00425 \n\
00426 ================================================================================\n\
00427 MSG: sensor_msgs/PointField\n\
00428 # This message holds the description of one point entry in the\n\
00429 # PointCloud2 message format.\n\
00430 uint8 INT8    = 1\n\
00431 uint8 UINT8   = 2\n\
00432 uint8 INT16   = 3\n\
00433 uint8 UINT16  = 4\n\
00434 uint8 INT32   = 5\n\
00435 uint8 UINT32  = 6\n\
00436 uint8 FLOAT32 = 7\n\
00437 uint8 FLOAT64 = 8\n\
00438 \n\
00439 string name      # Name of field\n\
00440 uint32 offset    # Offset from start of point struct\n\
00441 uint8  datatype  # Datatype enumeration, see above\n\
00442 uint32 count     # How many elements in the field\n\
00443 \n\
00444 ================================================================================\n\
00445 MSG: sensor_msgs/Image\n\
00446 # This message contains an uncompressed image\n\
00447 # (0, 0) is at top-left corner of image\n\
00448 #\n\
00449 \n\
00450 Header header        # Header timestamp should be acquisition time of image\n\
00451                      # Header frame_id should be optical frame of camera\n\
00452                      # origin of frame should be optical center of cameara\n\
00453                      # +x should point to the right in the image\n\
00454                      # +y should point down in the image\n\
00455                      # +z should point into to plane of the image\n\
00456                      # If the frame_id here and the frame_id of the CameraInfo\n\
00457                      # message associated with the image conflict\n\
00458                      # the behavior is undefined\n\
00459 \n\
00460 uint32 height         # image height, that is, number of rows\n\
00461 uint32 width          # image width, that is, number of columns\n\
00462 \n\
00463 # The legal values for encoding are in file src/image_encodings.cpp\n\
00464 # If you want to standardize a new string format, join\n\
00465 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00466 \n\
00467 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00468                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00469 \n\
00470 uint8 is_bigendian    # is this data bigendian?\n\
00471 uint32 step           # Full row length in bytes\n\
00472 uint8[] data          # actual matrix data, size is (step * rows)\n\
00473 \n\
00474 ================================================================================\n\
00475 MSG: sensor_msgs/CameraInfo\n\
00476 # This message defines meta information for a camera. It should be in a\n\
00477 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00478 # image topics named:\n\
00479 #\n\
00480 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00481 #   image            - monochrome, distorted\n\
00482 #   image_color      - color, distorted\n\
00483 #   image_rect       - monochrome, rectified\n\
00484 #   image_rect_color - color, rectified\n\
00485 #\n\
00486 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00487 # for producing the four processed image topics from image_raw and\n\
00488 # camera_info. The meaning of the camera parameters are described in\n\
00489 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00490 #\n\
00491 # The image_geometry package provides a user-friendly interface to\n\
00492 # common operations using this meta information. If you want to, e.g.,\n\
00493 # project a 3d point into image coordinates, we strongly recommend\n\
00494 # using image_geometry.\n\
00495 #\n\
00496 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00497 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00498 # indicates an uncalibrated camera.\n\
00499 \n\
00500 #######################################################################\n\
00501 #                     Image acquisition info                          #\n\
00502 #######################################################################\n\
00503 \n\
00504 # Time of image acquisition, camera coordinate frame ID\n\
00505 Header header    # Header timestamp should be acquisition time of image\n\
00506                  # Header frame_id should be optical frame of camera\n\
00507                  # origin of frame should be optical center of camera\n\
00508                  # +x should point to the right in the image\n\
00509                  # +y should point down in the image\n\
00510                  # +z should point into the plane of the image\n\
00511 \n\
00512 \n\
00513 #######################################################################\n\
00514 #                      Calibration Parameters                         #\n\
00515 #######################################################################\n\
00516 # These are fixed during camera calibration. Their values will be the #\n\
00517 # same in all messages until the camera is recalibrated. Note that    #\n\
00518 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00519 #                                                                     #\n\
00520 # The internal parameters can be used to warp a raw (distorted) image #\n\
00521 # to:                                                                 #\n\
00522 #   1. An undistorted image (requires D and K)                        #\n\
00523 #   2. A rectified image (requires D, K, R)                           #\n\
00524 # The projection matrix P projects 3D points into the rectified image.#\n\
00525 #######################################################################\n\
00526 \n\
00527 # The image dimensions with which the camera was calibrated. Normally\n\
00528 # this will be the full camera resolution in pixels.\n\
00529 uint32 height\n\
00530 uint32 width\n\
00531 \n\
00532 # The distortion model used. Supported models are listed in\n\
00533 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00534 # simple model of radial and tangential distortion - is sufficent.\n\
00535 string distortion_model\n\
00536 \n\
00537 # The distortion parameters, size depending on the distortion model.\n\
00538 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00539 float64[] D\n\
00540 \n\
00541 # Intrinsic camera matrix for the raw (distorted) images.\n\
00542 #     [fx  0 cx]\n\
00543 # K = [ 0 fy cy]\n\
00544 #     [ 0  0  1]\n\
00545 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00546 # coordinates using the focal lengths (fx, fy) and principal point\n\
00547 # (cx, cy).\n\
00548 float64[9]  K # 3x3 row-major matrix\n\
00549 \n\
00550 # Rectification matrix (stereo cameras only)\n\
00551 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00552 # stereo image plane so that epipolar lines in both stereo images are\n\
00553 # parallel.\n\
00554 float64[9]  R # 3x3 row-major matrix\n\
00555 \n\
00556 # Projection/camera matrix\n\
00557 #     [fx'  0  cx' Tx]\n\
00558 # P = [ 0  fy' cy' Ty]\n\
00559 #     [ 0   0   1   0]\n\
00560 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00561 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00562 #  is the normal camera intrinsic matrix for the rectified image.\n\
00563 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00564 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00565 #  (cx', cy') - these may differ from the values in K.\n\
00566 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00567 #  also have R = the identity and P[1:3,1:3] = K.\n\
00568 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00569 #  position of the optical center of the second camera in the first\n\
00570 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00571 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00572 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00573 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00574 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00575 #  the rectified image is given by:\n\
00576 #  [u v w]' = P * [X Y Z 1]'\n\
00577 #         x = u / w\n\
00578 #         y = v / w\n\
00579 #  This holds for both images of a stereo pair.\n\
00580 float64[12] P # 3x4 row-major matrix\n\
00581 \n\
00582 \n\
00583 #######################################################################\n\
00584 #                      Operational Parameters                         #\n\
00585 #######################################################################\n\
00586 # These define the image region actually captured by the camera       #\n\
00587 # driver. Although they affect the geometry of the output image, they #\n\
00588 # may be changed freely without recalibrating the camera.             #\n\
00589 #######################################################################\n\
00590 \n\
00591 # Binning refers here to any camera setting which combines rectangular\n\
00592 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00593 #  resolution of the output image to\n\
00594 #  (width / binning_x) x (height / binning_y).\n\
00595 # The default values binning_x = binning_y = 0 is considered the same\n\
00596 #  as binning_x = binning_y = 1 (no subsampling).\n\
00597 uint32 binning_x\n\
00598 uint32 binning_y\n\
00599 \n\
00600 # Region of interest (subwindow of full camera resolution), given in\n\
00601 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00602 #  always denotes the same window of pixels on the camera sensor,\n\
00603 #  regardless of binning settings.\n\
00604 # The default setting of roi (all values 0) is considered the same as\n\
00605 #  full resolution (roi.width = width, roi.height = height).\n\
00606 RegionOfInterest roi\n\
00607 \n\
00608 ================================================================================\n\
00609 MSG: sensor_msgs/RegionOfInterest\n\
00610 # This message is used to specify a region of interest within an image.\n\
00611 #\n\
00612 # When used to specify the ROI setting of the camera when the image was\n\
00613 # taken, the height and width fields should either match the height and\n\
00614 # width fields for the associated image; or height = width = 0\n\
00615 # indicates that the full resolution image was captured.\n\
00616 \n\
00617 uint32 x_offset  # Leftmost pixel of the ROI\n\
00618                  # (0 if the ROI includes the left edge of the image)\n\
00619 uint32 y_offset  # Topmost pixel of the ROI\n\
00620                  # (0 if the ROI includes the top edge of the image)\n\
00621 uint32 height    # Height of ROI\n\
00622 uint32 width     # Width of ROI\n\
00623 \n\
00624 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00625 # ROI in this message. Typically this should be False if the full image\n\
00626 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00627 # used).\n\
00628 bool do_rectify\n\
00629 \n\
00630 ================================================================================\n\
00631 MSG: geometry_msgs/Vector3\n\
00632 # This represents a vector in free space. \n\
00633 \n\
00634 float64 x\n\
00635 float64 y\n\
00636 float64 z\n\
00637 ================================================================================\n\
00638 MSG: manipulation_msgs/Grasp\n\
00639 # A name for this grasp\n\
00640 string id\n\
00641 \n\
00642 # The internal posture of the hand for the pre-grasp\n\
00643 # only positions are used\n\
00644 sensor_msgs/JointState pre_grasp_posture\n\
00645 \n\
00646 # The internal posture of the hand for the grasp\n\
00647 # positions and efforts are used\n\
00648 sensor_msgs/JointState grasp_posture\n\
00649 \n\
00650 # The position of the end-effector for the grasp relative to a reference frame \n\
00651 # (that is always specified elsewhere, not in this message)\n\
00652 geometry_msgs/PoseStamped grasp_pose\n\
00653 \n\
00654 # The estimated probability of success for this grasp, or some other\n\
00655 # measure of how \"good\" it is.\n\
00656 float64 grasp_quality\n\
00657 \n\
00658 # The approach motion\n\
00659 GripperTranslation approach\n\
00660 \n\
00661 # The retreat motion\n\
00662 GripperTranslation retreat\n\
00663 \n\
00664 # the maximum contact force to use while grasping (<=0 to disable)\n\
00665 float32 max_contact_force\n\
00666 \n\
00667 # an optional list of obstacles that we have semantic information about\n\
00668 # and that can be touched/pushed/moved in the course of grasping\n\
00669 string[] allowed_touch_objects\n\
00670 \n\
00671 ================================================================================\n\
00672 MSG: sensor_msgs/JointState\n\
00673 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00674 #\n\
00675 # The state of each joint (revolute or prismatic) is defined by:\n\
00676 #  * the position of the joint (rad or m),\n\
00677 #  * the velocity of the joint (rad/s or m/s) and \n\
00678 #  * the effort that is applied in the joint (Nm or N).\n\
00679 #\n\
00680 # Each joint is uniquely identified by its name\n\
00681 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00682 # in one message have to be recorded at the same time.\n\
00683 #\n\
00684 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00685 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00686 # effort associated with them, you can leave the effort array empty. \n\
00687 #\n\
00688 # All arrays in this message should have the same size, or be empty.\n\
00689 # This is the only way to uniquely associate the joint name with the correct\n\
00690 # states.\n\
00691 \n\
00692 \n\
00693 Header header\n\
00694 \n\
00695 string[] name\n\
00696 float64[] position\n\
00697 float64[] velocity\n\
00698 float64[] effort\n\
00699 \n\
00700 ================================================================================\n\
00701 MSG: manipulation_msgs/GripperTranslation\n\
00702 # defines a translation for the gripper, used in pickup or place tasks\n\
00703 # for example for lifting an object off a table or approaching the table for placing\n\
00704 \n\
00705 # the direction of the translation\n\
00706 geometry_msgs/Vector3Stamped direction\n\
00707 \n\
00708 # the desired translation distance\n\
00709 float32 desired_distance\n\
00710 \n\
00711 # the min distance that must be considered feasible before the\n\
00712 # grasp is even attempted\n\
00713 float32 min_distance\n\
00714 \n\
00715 ================================================================================\n\
00716 MSG: geometry_msgs/Vector3Stamped\n\
00717 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00718 Header header\n\
00719 Vector3 vector\n\
00720 \n\
00721 ================================================================================\n\
00722 MSG: object_manipulation_msgs/GripperTranslation\n\
00723 # defines a translation for the gripper, used in pickup or place tasks\n\
00724 # for example for lifting an object off a table or approaching the table for placing\n\
00725 \n\
00726 # the direction of the translation\n\
00727 geometry_msgs/Vector3Stamped direction\n\
00728 \n\
00729 # the desired translation distance\n\
00730 float32 desired_distance\n\
00731 \n\
00732 # the min distance that must be considered feasible before the\n\
00733 # grasp is even attempted\n\
00734 float32 min_distance\n\
00735 ================================================================================\n\
00736 MSG: arm_navigation_msgs/Constraints\n\
00737 # This message contains a list of motion planning constraints.\n\
00738 \n\
00739 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00740 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00741 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00742 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00743 \n\
00744 ================================================================================\n\
00745 MSG: arm_navigation_msgs/JointConstraint\n\
00746 # Constrain the position of a joint to be within a certain bound\n\
00747 string joint_name\n\
00748 \n\
00749 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00750 float64 position\n\
00751 float64 tolerance_above\n\
00752 float64 tolerance_below\n\
00753 \n\
00754 # A weighting factor for this constraint\n\
00755 float64 weight\n\
00756 ================================================================================\n\
00757 MSG: arm_navigation_msgs/PositionConstraint\n\
00758 # This message contains the definition of a position constraint.\n\
00759 Header header\n\
00760 \n\
00761 # The robot link this constraint refers to\n\
00762 string link_name\n\
00763 \n\
00764 # The offset (in the link frame) for the target point on the link we are planning for\n\
00765 geometry_msgs/Point target_point_offset\n\
00766 \n\
00767 # The nominal/target position for the point we are planning for\n\
00768 geometry_msgs/Point position\n\
00769 \n\
00770 # The shape of the bounded region that constrains the position of the end-effector\n\
00771 # This region is always centered at the position defined above\n\
00772 arm_navigation_msgs/Shape constraint_region_shape\n\
00773 \n\
00774 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00775 # This allows the specification of non-axis aligned constraints\n\
00776 geometry_msgs/Quaternion constraint_region_orientation\n\
00777 \n\
00778 # Constraint weighting factor - a weight for this constraint\n\
00779 float64 weight\n\
00780 \n\
00781 ================================================================================\n\
00782 MSG: arm_navigation_msgs/Shape\n\
00783 byte SPHERE=0\n\
00784 byte BOX=1\n\
00785 byte CYLINDER=2\n\
00786 byte MESH=3\n\
00787 \n\
00788 byte type\n\
00789 \n\
00790 \n\
00791 #### define sphere, box, cylinder ####\n\
00792 # the origin of each shape is considered at the shape's center\n\
00793 \n\
00794 # for sphere\n\
00795 # radius := dimensions[0]\n\
00796 \n\
00797 # for cylinder\n\
00798 # radius := dimensions[0]\n\
00799 # length := dimensions[1]\n\
00800 # the length is along the Z axis\n\
00801 \n\
00802 # for box\n\
00803 # size_x := dimensions[0]\n\
00804 # size_y := dimensions[1]\n\
00805 # size_z := dimensions[2]\n\
00806 float64[] dimensions\n\
00807 \n\
00808 \n\
00809 #### define mesh ####\n\
00810 \n\
00811 # list of triangles; triangle k is defined by tre vertices located\n\
00812 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00813 int32[] triangles\n\
00814 geometry_msgs/Point[] vertices\n\
00815 \n\
00816 ================================================================================\n\
00817 MSG: arm_navigation_msgs/OrientationConstraint\n\
00818 # This message contains the definition of an orientation constraint.\n\
00819 Header header\n\
00820 \n\
00821 # The robot link this constraint refers to\n\
00822 string link_name\n\
00823 \n\
00824 # The type of the constraint\n\
00825 int32 type\n\
00826 int32 LINK_FRAME=0\n\
00827 int32 HEADER_FRAME=1\n\
00828 \n\
00829 # The desired orientation of the robot link specified as a quaternion\n\
00830 geometry_msgs/Quaternion orientation\n\
00831 \n\
00832 # optional RPY error tolerances specified if \n\
00833 float64 absolute_roll_tolerance\n\
00834 float64 absolute_pitch_tolerance\n\
00835 float64 absolute_yaw_tolerance\n\
00836 \n\
00837 # Constraint weighting factor - a weight for this constraint\n\
00838 float64 weight\n\
00839 \n\
00840 ================================================================================\n\
00841 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00842 # This message contains the definition of a visibility constraint.\n\
00843 Header header\n\
00844 \n\
00845 # The point stamped target that needs to be kept within view of the sensor\n\
00846 geometry_msgs/PointStamped target\n\
00847 \n\
00848 # The local pose of the frame in which visibility is to be maintained\n\
00849 # The frame id should represent the robot link to which the sensor is attached\n\
00850 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00851 geometry_msgs/PoseStamped sensor_pose\n\
00852 \n\
00853 # The deviation (in radians) that will be tolerated\n\
00854 # Constraint error will be measured as the solid angle between the \n\
00855 # X axis of the frame defined above and the vector between the origin \n\
00856 # of the frame defined above and the target location\n\
00857 float64 absolute_tolerance\n\
00858 \n\
00859 \n\
00860 ================================================================================\n\
00861 MSG: geometry_msgs/PointStamped\n\
00862 # This represents a Point with reference coordinate frame and timestamp\n\
00863 Header header\n\
00864 Point point\n\
00865 \n\
00866 ================================================================================\n\
00867 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00868 # A set of collision operations that will be performed in the order they are specified\n\
00869 CollisionOperation[] collision_operations\n\
00870 ================================================================================\n\
00871 MSG: arm_navigation_msgs/CollisionOperation\n\
00872 # A definition of a collision operation\n\
00873 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00874 # between the gripper and all objects in the collision space\n\
00875 \n\
00876 string object1\n\
00877 string object2\n\
00878 string COLLISION_SET_ALL=\"all\"\n\
00879 string COLLISION_SET_OBJECTS=\"objects\"\n\
00880 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00881 \n\
00882 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00883 float64 penetration_distance\n\
00884 \n\
00885 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00886 int32 operation\n\
00887 int32 DISABLE=0\n\
00888 int32 ENABLE=1\n\
00889 \n\
00890 ================================================================================\n\
00891 MSG: arm_navigation_msgs/LinkPadding\n\
00892 #name for the link\n\
00893 string link_name\n\
00894 \n\
00895 # padding to apply to the link\n\
00896 float64 padding\n\
00897 \n\
00898 ";
00899   }
00900 
00901   static const char* value(const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); } 
00902 };
00903 
00904 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00905 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00906 } // namespace message_traits
00907 } // namespace ros
00908 
00909 namespace ros
00910 {
00911 namespace serialization
00912 {
00913 
00914 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
00915 {
00916   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00917   {
00918     stream.next(m.header);
00919     stream.next(m.goal_id);
00920     stream.next(m.goal);
00921   }
00922 
00923   ROS_DECLARE_ALLINONE_SERIALIZER;
00924 }; // struct PickupActionGoal_
00925 } // namespace serialization
00926 } // namespace ros
00927 
00928 namespace ros
00929 {
00930 namespace message_operations
00931 {
00932 
00933 template<class ContainerAllocator>
00934 struct Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
00935 {
00936   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v) 
00937   {
00938     s << indent << "header: ";
00939 s << std::endl;
00940     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00941     s << indent << "goal_id: ";
00942 s << std::endl;
00943     Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + "  ", v.goal_id);
00944     s << indent << "goal: ";
00945 s << std::endl;
00946     Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.goal);
00947   }
00948 };
00949 
00950 
00951 } // namespace message_operations
00952 } // namespace ros
00953 
00954 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00955 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 02:58:11