00001
00002 #ifndef INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H
00003 #define INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "interactive_perception_msgs/ObjectSegmentationGuiGoal.h"
00020
00021 namespace interactive_perception_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ObjectSegmentationGuiActionGoal_ {
00025 typedef ObjectSegmentationGuiActionGoal_<ContainerAllocator> Type;
00026
00027 ObjectSegmentationGuiActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 ObjectSegmentationGuiActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> _goal_type;
00048 ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> goal;
00049
00050
00051 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > Ptr;
00052 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> const> ConstPtr;
00053 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 };
00055 typedef ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<std::allocator<void> > ObjectSegmentationGuiActionGoal;
00056
00057 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal> ObjectSegmentationGuiActionGoalPtr;
00058 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal const> ObjectSegmentationGuiActionGoalConstPtr;
00059
00060
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> & v)
00063 {
00064 ros::message_operations::Printer< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065 return s;}
00066
00067 }
00068
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "c90d057a2cbad468bbf26bcf158e312e";
00080 }
00081
00082 static const char* value(const ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); }
00083 static const uint64_t static_value1 = 0xc90d057a2cbad468ULL;
00084 static const uint64_t static_value2 = 0xbbf26bcf158e312eULL;
00085 };
00086
00087 template<class ContainerAllocator>
00088 struct DataType< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "interactive_perception_msgs/ObjectSegmentationGuiActionGoal";
00092 }
00093
00094 static const char* value(const ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); }
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct Definition< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 ObjectSegmentationGuiGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: interactive_perception_msgs/ObjectSegmentationGuiGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 sensor_msgs/Image image\n\
00142 sensor_msgs/CameraInfo camera_info\n\
00143 sensor_msgs/Image wide_field\n\
00144 sensor_msgs/CameraInfo wide_camera_info\n\
00145 \n\
00146 sensor_msgs/PointCloud2 point_cloud\n\
00147 stereo_msgs/DisparityImage disparity_image\n\
00148 \n\
00149 \n\
00150 ================================================================================\n\
00151 MSG: sensor_msgs/Image\n\
00152 # This message contains an uncompressed image\n\
00153 # (0, 0) is at top-left corner of image\n\
00154 #\n\
00155 \n\
00156 Header header # Header timestamp should be acquisition time of image\n\
00157 # Header frame_id should be optical frame of camera\n\
00158 # origin of frame should be optical center of cameara\n\
00159 # +x should point to the right in the image\n\
00160 # +y should point down in the image\n\
00161 # +z should point into to plane of the image\n\
00162 # If the frame_id here and the frame_id of the CameraInfo\n\
00163 # message associated with the image conflict\n\
00164 # the behavior is undefined\n\
00165 \n\
00166 uint32 height # image height, that is, number of rows\n\
00167 uint32 width # image width, that is, number of columns\n\
00168 \n\
00169 # The legal values for encoding are in file src/image_encodings.cpp\n\
00170 # If you want to standardize a new string format, join\n\
00171 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00172 \n\
00173 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00174 # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00175 \n\
00176 uint8 is_bigendian # is this data bigendian?\n\
00177 uint32 step # Full row length in bytes\n\
00178 uint8[] data # actual matrix data, size is (step * rows)\n\
00179 \n\
00180 ================================================================================\n\
00181 MSG: sensor_msgs/CameraInfo\n\
00182 # This message defines meta information for a camera. It should be in a\n\
00183 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00184 # image topics named:\n\
00185 #\n\
00186 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00187 # image - monochrome, distorted\n\
00188 # image_color - color, distorted\n\
00189 # image_rect - monochrome, rectified\n\
00190 # image_rect_color - color, rectified\n\
00191 #\n\
00192 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00193 # for producing the four processed image topics from image_raw and\n\
00194 # camera_info. The meaning of the camera parameters are described in\n\
00195 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00196 #\n\
00197 # The image_geometry package provides a user-friendly interface to\n\
00198 # common operations using this meta information. If you want to, e.g.,\n\
00199 # project a 3d point into image coordinates, we strongly recommend\n\
00200 # using image_geometry.\n\
00201 #\n\
00202 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00203 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00204 # indicates an uncalibrated camera.\n\
00205 \n\
00206 #######################################################################\n\
00207 # Image acquisition info #\n\
00208 #######################################################################\n\
00209 \n\
00210 # Time of image acquisition, camera coordinate frame ID\n\
00211 Header header # Header timestamp should be acquisition time of image\n\
00212 # Header frame_id should be optical frame of camera\n\
00213 # origin of frame should be optical center of camera\n\
00214 # +x should point to the right in the image\n\
00215 # +y should point down in the image\n\
00216 # +z should point into the plane of the image\n\
00217 \n\
00218 \n\
00219 #######################################################################\n\
00220 # Calibration Parameters #\n\
00221 #######################################################################\n\
00222 # These are fixed during camera calibration. Their values will be the #\n\
00223 # same in all messages until the camera is recalibrated. Note that #\n\
00224 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00225 # #\n\
00226 # The internal parameters can be used to warp a raw (distorted) image #\n\
00227 # to: #\n\
00228 # 1. An undistorted image (requires D and K) #\n\
00229 # 2. A rectified image (requires D, K, R) #\n\
00230 # The projection matrix P projects 3D points into the rectified image.#\n\
00231 #######################################################################\n\
00232 \n\
00233 # The image dimensions with which the camera was calibrated. Normally\n\
00234 # this will be the full camera resolution in pixels.\n\
00235 uint32 height\n\
00236 uint32 width\n\
00237 \n\
00238 # The distortion model used. Supported models are listed in\n\
00239 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00240 # simple model of radial and tangential distortion - is sufficent.\n\
00241 string distortion_model\n\
00242 \n\
00243 # The distortion parameters, size depending on the distortion model.\n\
00244 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00245 float64[] D\n\
00246 \n\
00247 # Intrinsic camera matrix for the raw (distorted) images.\n\
00248 # [fx 0 cx]\n\
00249 # K = [ 0 fy cy]\n\
00250 # [ 0 0 1]\n\
00251 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00252 # coordinates using the focal lengths (fx, fy) and principal point\n\
00253 # (cx, cy).\n\
00254 float64[9] K # 3x3 row-major matrix\n\
00255 \n\
00256 # Rectification matrix (stereo cameras only)\n\
00257 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00258 # stereo image plane so that epipolar lines in both stereo images are\n\
00259 # parallel.\n\
00260 float64[9] R # 3x3 row-major matrix\n\
00261 \n\
00262 # Projection/camera matrix\n\
00263 # [fx' 0 cx' Tx]\n\
00264 # P = [ 0 fy' cy' Ty]\n\
00265 # [ 0 0 1 0]\n\
00266 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00267 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00268 # is the normal camera intrinsic matrix for the rectified image.\n\
00269 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00270 # coordinates using the focal lengths (fx', fy') and principal point\n\
00271 # (cx', cy') - these may differ from the values in K.\n\
00272 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00273 # also have R = the identity and P[1:3,1:3] = K.\n\
00274 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00275 # position of the optical center of the second camera in the first\n\
00276 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00277 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00278 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00279 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00280 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00281 # the rectified image is given by:\n\
00282 # [u v w]' = P * [X Y Z 1]'\n\
00283 # x = u / w\n\
00284 # y = v / w\n\
00285 # This holds for both images of a stereo pair.\n\
00286 float64[12] P # 3x4 row-major matrix\n\
00287 \n\
00288 \n\
00289 #######################################################################\n\
00290 # Operational Parameters #\n\
00291 #######################################################################\n\
00292 # These define the image region actually captured by the camera #\n\
00293 # driver. Although they affect the geometry of the output image, they #\n\
00294 # may be changed freely without recalibrating the camera. #\n\
00295 #######################################################################\n\
00296 \n\
00297 # Binning refers here to any camera setting which combines rectangular\n\
00298 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00299 # resolution of the output image to\n\
00300 # (width / binning_x) x (height / binning_y).\n\
00301 # The default values binning_x = binning_y = 0 is considered the same\n\
00302 # as binning_x = binning_y = 1 (no subsampling).\n\
00303 uint32 binning_x\n\
00304 uint32 binning_y\n\
00305 \n\
00306 # Region of interest (subwindow of full camera resolution), given in\n\
00307 # full resolution (unbinned) image coordinates. A particular ROI\n\
00308 # always denotes the same window of pixels on the camera sensor,\n\
00309 # regardless of binning settings.\n\
00310 # The default setting of roi (all values 0) is considered the same as\n\
00311 # full resolution (roi.width = width, roi.height = height).\n\
00312 RegionOfInterest roi\n\
00313 \n\
00314 ================================================================================\n\
00315 MSG: sensor_msgs/RegionOfInterest\n\
00316 # This message is used to specify a region of interest within an image.\n\
00317 #\n\
00318 # When used to specify the ROI setting of the camera when the image was\n\
00319 # taken, the height and width fields should either match the height and\n\
00320 # width fields for the associated image; or height = width = 0\n\
00321 # indicates that the full resolution image was captured.\n\
00322 \n\
00323 uint32 x_offset # Leftmost pixel of the ROI\n\
00324 # (0 if the ROI includes the left edge of the image)\n\
00325 uint32 y_offset # Topmost pixel of the ROI\n\
00326 # (0 if the ROI includes the top edge of the image)\n\
00327 uint32 height # Height of ROI\n\
00328 uint32 width # Width of ROI\n\
00329 \n\
00330 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00331 # ROI in this message. Typically this should be False if the full image\n\
00332 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00333 # used).\n\
00334 bool do_rectify\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/PointCloud2\n\
00338 # This message holds a collection of N-dimensional points, which may\n\
00339 # contain additional information such as normals, intensity, etc. The\n\
00340 # point data is stored as a binary blob, its layout described by the\n\
00341 # contents of the \"fields\" array.\n\
00342 \n\
00343 # The point cloud data may be organized 2d (image-like) or 1d\n\
00344 # (unordered). Point clouds organized as 2d images may be produced by\n\
00345 # camera depth sensors such as stereo or time-of-flight.\n\
00346 \n\
00347 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00348 # points).\n\
00349 Header header\n\
00350 \n\
00351 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00352 # 1 and width is the length of the point cloud.\n\
00353 uint32 height\n\
00354 uint32 width\n\
00355 \n\
00356 # Describes the channels and their layout in the binary data blob.\n\
00357 PointField[] fields\n\
00358 \n\
00359 bool is_bigendian # Is this data bigendian?\n\
00360 uint32 point_step # Length of a point in bytes\n\
00361 uint32 row_step # Length of a row in bytes\n\
00362 uint8[] data # Actual point data, size is (row_step*height)\n\
00363 \n\
00364 bool is_dense # True if there are no invalid points\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: sensor_msgs/PointField\n\
00368 # This message holds the description of one point entry in the\n\
00369 # PointCloud2 message format.\n\
00370 uint8 INT8 = 1\n\
00371 uint8 UINT8 = 2\n\
00372 uint8 INT16 = 3\n\
00373 uint8 UINT16 = 4\n\
00374 uint8 INT32 = 5\n\
00375 uint8 UINT32 = 6\n\
00376 uint8 FLOAT32 = 7\n\
00377 uint8 FLOAT64 = 8\n\
00378 \n\
00379 string name # Name of field\n\
00380 uint32 offset # Offset from start of point struct\n\
00381 uint8 datatype # Datatype enumeration, see above\n\
00382 uint32 count # How many elements in the field\n\
00383 \n\
00384 ================================================================================\n\
00385 MSG: stereo_msgs/DisparityImage\n\
00386 # Separate header for compatibility with current TimeSynchronizer.\n\
00387 # Likely to be removed in a later release, use image.header instead.\n\
00388 Header header\n\
00389 \n\
00390 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00391 # x-offset between the principal points of the two cameras (in the case\n\
00392 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00393 sensor_msgs/Image image\n\
00394 \n\
00395 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00396 float32 f # Focal length, pixels\n\
00397 float32 T # Baseline, world units\n\
00398 \n\
00399 # Subwindow of (potentially) valid disparity values.\n\
00400 sensor_msgs/RegionOfInterest valid_window\n\
00401 \n\
00402 # The range of disparities searched.\n\
00403 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00404 # The disparity search range defines the horopter, or 3D volume that the\n\
00405 # stereo algorithm can \"see\". Points with Z outside of:\n\
00406 # Z_min = fT / max_disparity\n\
00407 # Z_max = fT / min_disparity\n\
00408 # could not be found.\n\
00409 float32 min_disparity\n\
00410 float32 max_disparity\n\
00411 \n\
00412 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00413 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00414 float32 delta_d\n\
00415 \n\
00416 ";
00417 }
00418
00419 static const char* value(const ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); }
00420 };
00421
00422 template<class ContainerAllocator> struct HasHeader< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00423 template<class ContainerAllocator> struct HasHeader< const ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00424 }
00425 }
00426
00427 namespace ros
00428 {
00429 namespace serialization
00430 {
00431
00432 template<class ContainerAllocator> struct Serializer< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >
00433 {
00434 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00435 {
00436 stream.next(m.header);
00437 stream.next(m.goal_id);
00438 stream.next(m.goal);
00439 }
00440
00441 ROS_DECLARE_ALLINONE_SERIALIZER;
00442 };
00443 }
00444 }
00445
00446 namespace ros
00447 {
00448 namespace message_operations
00449 {
00450
00451 template<class ContainerAllocator>
00452 struct Printer< ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >
00453 {
00454 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::interactive_perception_msgs::ObjectSegmentationGuiActionGoal_<ContainerAllocator> & v)
00455 {
00456 s << indent << "header: ";
00457 s << std::endl;
00458 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00459 s << indent << "goal_id: ";
00460 s << std::endl;
00461 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
00462 s << indent << "goal: ";
00463 s << std::endl;
00464 Printer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
00465 }
00466 };
00467
00468
00469 }
00470 }
00471
00472 #endif // INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H
00473