Public Member Functions | Protected Member Functions | Protected Attributes
BFL::HistogramFilter< MeasVar > Class Template Reference

Class representing the histogram filter. More...

#include <histogramfilter.h>

Inheritance diagram for BFL::HistogramFilter< MeasVar >:
Inheritance graph
[legend]

List of all members.

Public Member Functions

 HistogramFilter (DiscretePdf *prior)
 Constructor.
virtual DiscretePdfPostGet ()
 Get Posterior density.
virtual ~HistogramFilter ()
 Destructor.

Protected Member Functions

void MeasUpdate (MeasurementModel< MeasVar, int > *const measmodel, const MeasVar &z, const int &s)
 Measurement Update.
void SysUpdate (SystemModel< int > *const sysmodel, const int &u)
bool UpdateInternal (SystemModel< int > *const sysmodel, const int &u, MeasurementModel< MeasVar, int > *const measmodel, const MeasVar &z, const int &s)
 Actual implementation of Update, varies along filters.

Protected Attributes

vector< Probability_new_prob
 While updating store list of new probabilities.
vector< Probability_old_prob
 While updating store list of old probabilities.

Detailed Description

template<typename MeasVar>
class BFL::HistogramFilter< MeasVar >

Class representing the histogram filter.

This is a class representing the histogram filter. A histogram filter is the basic discrete state filter for histogram representations of the state. The implementation is based upon Probabilistic Robotics book of Thrun, Burgard, Fox

{ ThrunBurgardFox2005, author = {Thrun, S. and Burgard, W. and Fox, D.}, title = {Probabilistic Robotics}, publisher = {MIT Press}, year = {2005}, issn_isbn = {0-262-20162-3}, annote = {{http://www.probabilistic-robotics.org}}, keywords = {Bayes theory, estimation} } The system of updating the Posterior density is implemented in this class.

Definition at line 49 of file histogramfilter.h.


Constructor & Destructor Documentation

template<typename MeasVar >
BFL::HistogramFilter< MeasVar >::HistogramFilter ( DiscretePdf prior)

Constructor.

Precondition:
you created the prior
Parameters:
priorpointer to the Discrete Pdf prior density

Definition at line 24 of file histogramfilter.cpp.

template<typename MeasVar >
BFL::HistogramFilter< MeasVar >::~HistogramFilter ( ) [virtual]

Destructor.

Definition at line 35 of file histogramfilter.cpp.


Member Function Documentation

template<typename MeasVar >
void BFL::HistogramFilter< MeasVar >::MeasUpdate ( MeasurementModel< MeasVar, int > *const  measmodel,
const MeasVar z,
const int &  s 
) [protected]

Measurement Update.

Update the filter's Posterior density using the sensor measurements, an input and the measurement model.

Parameters:
measmodelpointer to the measurement model the filter should use
zsensor measurement
sinput to the system (must be of the same type as u for now, since this was not yet implemented in ConditionalPdf

Definition at line 72 of file histogramfilter.cpp.

template<typename MeasVar >
DiscretePdf * BFL::HistogramFilter< MeasVar >::PostGet ( ) [virtual]

Get Posterior density.

Get the current Posterior density

Returns:
a pointer to the current posterior

Reimplemented from BFL::Filter< int, MeasVar >.

Definition at line 99 of file histogramfilter.cpp.

template<typename MeasVar >
void BFL::HistogramFilter< MeasVar >::SysUpdate ( SystemModel< int > *const  sysmodel,
const int &  u 
) [protected]

Calculate Discrete filter System Update

Parameters:
sysmodelpointer to the system model the filter should use
uinput to the system

Definition at line 42 of file histogramfilter.cpp.

template<typename MeasVar >
bool BFL::HistogramFilter< MeasVar >::UpdateInternal ( SystemModel< int > *const  sysmodel,
const int &  u,
MeasurementModel< MeasVar, int > *const  measmodel,
const MeasVar z,
const int &  s 
) [protected, virtual]

Actual implementation of Update, varies along filters.

Parameters:
sysmodelpointer to the used system model
uinput param for proposal density
measmodelpointer to the used measurementmodel
zmeasurement param for proposal density
ssensor param for proposal density

Implements BFL::Filter< int, MeasVar >.

Definition at line 87 of file histogramfilter.cpp.


Member Data Documentation

template<typename MeasVar>
vector<Probability > BFL::HistogramFilter< MeasVar >::_new_prob [protected]

While updating store list of new probabilities.

Definition at line 68 of file histogramfilter.h.

template<typename MeasVar>
vector<Probability > BFL::HistogramFilter< MeasVar >::_old_prob [protected]

While updating store list of old probabilities.

Definition at line 66 of file histogramfilter.h.


The documentation for this class was generated from the following files:


bfl
Author(s): Klaas Gadeyne, Wim Meeussen, Tinne Delaet and many others. See web page for a full contributor list. ROS package maintained by Wim Meeussen.
autogenerated on Sun Oct 5 2014 22:29:53