00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_UMFPACKSUPPORT_H
00026 #define EIGEN_UMFPACKSUPPORT_H
00027
00028
00029
00030
00031
00032 inline void umfpack_free_numeric(void **Numeric, double)
00033 { umfpack_di_free_numeric(Numeric); }
00034
00035 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
00036 { umfpack_zi_free_numeric(Numeric); }
00037
00038 inline void umfpack_free_symbolic(void **Symbolic, double)
00039 { umfpack_di_free_symbolic(Symbolic); }
00040
00041 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
00042 { umfpack_zi_free_symbolic(Symbolic); }
00043
00044 inline int umfpack_symbolic(int n_row,int n_col,
00045 const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
00046 const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
00047 {
00048 return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
00049 }
00050
00051 inline int umfpack_symbolic(int n_row,int n_col,
00052 const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
00053 const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
00054 {
00055 return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Control,Info);
00056 }
00057
00058 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
00059 void *Symbolic, void **Numeric,
00060 const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
00061 {
00062 return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
00063 }
00064
00065 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
00066 void *Symbolic, void **Numeric,
00067 const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
00068 {
00069 return umfpack_zi_numeric(Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
00070 }
00071
00072 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
00073 double X[], const double B[], void *Numeric,
00074 const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
00075 {
00076 return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
00077 }
00078
00079 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
00080 std::complex<double> X[], const std::complex<double> B[], void *Numeric,
00081 const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
00082 {
00083 return umfpack_zi_solve(sys,Ap,Ai,&internal::real_ref(Ax[0]),0,&internal::real_ref(X[0]),0,&internal::real_ref(B[0]),0,Numeric,Control,Info);
00084 }
00085
00086 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
00087 {
00088 return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
00089 }
00090
00091 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
00092 {
00093 return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
00094 }
00095
00096 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
00097 int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
00098 {
00099 return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
00100 }
00101
00102 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
00103 int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
00104 {
00105 double& lx0_real = internal::real_ref(Lx[0]);
00106 double& ux0_real = internal::real_ref(Ux[0]);
00107 double& dx0_real = internal::real_ref(Dx[0]);
00108 return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
00109 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
00110 }
00111
00112 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
00113 {
00114 return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
00115 }
00116
00117 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
00118 {
00119 double& mx_real = internal::real_ref(*Mx);
00120 return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
00121 }
00122
00123
00124 template<typename _MatrixType>
00125 class SparseLU<_MatrixType,UmfPack> : public SparseLU<_MatrixType>
00126 {
00127 protected:
00128 typedef SparseLU<_MatrixType> Base;
00129 typedef typename Base::Scalar Scalar;
00130 typedef typename Base::RealScalar RealScalar;
00131 typedef Matrix<Scalar,Dynamic,1> Vector;
00132 typedef Matrix<int, 1, _MatrixType::ColsAtCompileTime> IntRowVectorType;
00133 typedef Matrix<int, _MatrixType::RowsAtCompileTime, 1> IntColVectorType;
00134 typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType;
00135 typedef SparseMatrix<Scalar,Upper> UMatrixType;
00136 using Base::m_flags;
00137 using Base::m_status;
00138
00139 public:
00140 typedef _MatrixType MatrixType;
00141 typedef typename MatrixType::Index Index;
00142
00143 SparseLU(int flags = NaturalOrdering)
00144 : Base(flags), m_numeric(0)
00145 {
00146 }
00147
00148 SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
00149 : Base(flags), m_numeric(0)
00150 {
00151 compute(matrix);
00152 }
00153
00154 ~SparseLU()
00155 {
00156 if (m_numeric)
00157 umfpack_free_numeric(&m_numeric,Scalar());
00158 }
00159
00160 inline const LMatrixType& matrixL() const
00161 {
00162 if (m_extractedDataAreDirty) extractData();
00163 return m_l;
00164 }
00165
00166 inline const UMatrixType& matrixU() const
00167 {
00168 if (m_extractedDataAreDirty) extractData();
00169 return m_u;
00170 }
00171
00172 inline const IntColVectorType& permutationP() const
00173 {
00174 if (m_extractedDataAreDirty) extractData();
00175 return m_p;
00176 }
00177
00178 inline const IntRowVectorType& permutationQ() const
00179 {
00180 if (m_extractedDataAreDirty) extractData();
00181 return m_q;
00182 }
00183
00184 Scalar determinant() const;
00185
00186 template<typename BDerived, typename XDerived>
00187 bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
00188
00189 template<typename Rhs>
00190 inline const internal::solve_retval<SparseLU<MatrixType, UmfPack>, Rhs>
00191 solve(const MatrixBase<Rhs>& b) const
00192 {
00193 eigen_assert(true && "SparseLU is not initialized.");
00194 return internal::solve_retval<SparseLU<MatrixType, UmfPack>, Rhs>(*this, b.derived());
00195 }
00196
00197 void compute(const MatrixType& matrix);
00198
00199 inline Index cols() const { return m_matrixRef->cols(); }
00200 inline Index rows() const { return m_matrixRef->rows(); }
00201
00202 inline const MatrixType& matrixLU() const
00203 {
00204
00205 return *m_matrixRef;
00206 }
00207
00208 const void* numeric() const
00209 {
00210 return m_numeric;
00211 }
00212
00213 protected:
00214
00215 void extractData() const;
00216
00217 protected:
00218
00219 void* m_numeric;
00220 const MatrixType* m_matrixRef;
00221 mutable LMatrixType m_l;
00222 mutable UMatrixType m_u;
00223 mutable IntColVectorType m_p;
00224 mutable IntRowVectorType m_q;
00225 mutable bool m_extractedDataAreDirty;
00226 };
00227
00228 namespace internal {
00229
00230 template<typename _MatrixType, typename Rhs>
00231 struct solve_retval<SparseLU<_MatrixType, UmfPack>, Rhs>
00232 : solve_retval_base<SparseLU<_MatrixType, UmfPack>, Rhs>
00233 {
00234 typedef SparseLU<_MatrixType, UmfPack> SpLUDecType;
00235 EIGEN_MAKE_SOLVE_HELPERS(SpLUDecType,Rhs)
00236
00237 template<typename Dest> void evalTo(Dest& dst) const
00238 {
00239 const int rhsCols = rhs().cols();
00240
00241 eigen_assert((Rhs::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
00242 eigen_assert((Dest::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
00243
00244 void* numeric = const_cast<void*>(dec().numeric());
00245
00246 EIGEN_UNUSED int errorCode = 0;
00247 for (int j=0; j<rhsCols; ++j)
00248 {
00249 errorCode = umfpack_solve(UMFPACK_A,
00250 dec().matrixLU()._outerIndexPtr(), dec().matrixLU()._innerIndexPtr(), dec().matrixLU()._valuePtr(),
00251 &dst.col(j).coeffRef(0), &rhs().const_cast_derived().col(j).coeffRef(0), numeric, 0, 0);
00252 eigen_assert(!errorCode && "UmfPack could not solve the system.");
00253 }
00254 }
00255
00256 };
00257
00258 }
00259
00260 template<typename MatrixType>
00261 void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
00262 {
00263 typedef typename MatrixType::Index Index;
00264 const Index rows = a.rows();
00265 const Index cols = a.cols();
00266 eigen_assert((MatrixType::Flags&RowMajorBit)==0 && "Row major matrices are not supported yet");
00267
00268 m_matrixRef = &a;
00269
00270 if (m_numeric)
00271 umfpack_free_numeric(&m_numeric,Scalar());
00272
00273 void* symbolic;
00274 int errorCode = 0;
00275 errorCode = umfpack_symbolic(rows, cols, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
00276 &symbolic, 0, 0);
00277 if (errorCode==0)
00278 errorCode = umfpack_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
00279 symbolic, &m_numeric, 0, 0);
00280
00281 umfpack_free_symbolic(&symbolic,Scalar());
00282
00283 m_extractedDataAreDirty = true;
00284
00285 Base::m_succeeded = (errorCode==0);
00286 }
00287
00288 template<typename MatrixType>
00289 void SparseLU<MatrixType,UmfPack>::extractData() const
00290 {
00291 if (m_extractedDataAreDirty)
00292 {
00293
00294 int lnz, unz, rows, cols, nz_udiag;
00295 umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
00296
00297
00298 m_l.resize(rows,std::min(rows,cols));
00299 m_l.resizeNonZeros(lnz);
00300
00301 m_u.resize(std::min(rows,cols),cols);
00302 m_u.resizeNonZeros(unz);
00303
00304 m_p.resize(rows);
00305 m_q.resize(cols);
00306
00307
00308 umfpack_get_numeric(m_l._outerIndexPtr(), m_l._innerIndexPtr(), m_l._valuePtr(),
00309 m_u._outerIndexPtr(), m_u._innerIndexPtr(), m_u._valuePtr(),
00310 m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
00311
00312 m_extractedDataAreDirty = false;
00313 }
00314 }
00315
00316 template<typename MatrixType>
00317 typename SparseLU<MatrixType,UmfPack>::Scalar SparseLU<MatrixType,UmfPack>::determinant() const
00318 {
00319 Scalar det;
00320 umfpack_get_determinant(&det, 0, m_numeric, 0);
00321 return det;
00322 }
00323
00324 template<typename MatrixType>
00325 template<typename BDerived,typename XDerived>
00326 bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
00327 {
00328
00329 const int rhsCols = b.cols();
00330
00331 eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
00332 eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
00333
00334 int errorCode;
00335 for (int j=0; j<rhsCols; ++j)
00336 {
00337 errorCode = umfpack_solve(UMFPACK_A,
00338 m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(),
00339 &x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
00340 if (errorCode!=0)
00341 return false;
00342 }
00343
00344
00345
00346
00347 return true;
00348 }
00349
00350 #endif // EIGEN_UMFPACKSUPPORT_H