00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00026 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
00027
00028 namespace internal {
00029
00030
00031
00032
00033
00034
00035 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs>
00036 static EIGEN_DONT_INLINE void product_selfadjoint_vector(
00037 Index size,
00038 const Scalar* lhs, Index lhsStride,
00039 const Scalar* _rhs, Index rhsIncr,
00040 Scalar* res,
00041 Scalar alpha)
00042 {
00043 typedef typename packet_traits<Scalar>::type Packet;
00044 typedef typename NumTraits<Scalar>::Real RealScalar;
00045 const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
00046
00047 enum {
00048 IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
00049 IsLower = UpLo == Lower ? 1 : 0,
00050 FirstTriangular = IsRowMajor == IsLower
00051 };
00052
00053 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0;
00054 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
00055 conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
00056
00057 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0;
00058 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
00059
00060 Scalar cjAlpha = ConjugateRhs ? conj(alpha) : alpha;
00061
00062
00063
00064
00065 ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);
00066 if (rhsIncr!=1)
00067 {
00068 const Scalar* it = _rhs;
00069 for (Index i=0; i<size; ++i, it+=rhsIncr)
00070 rhs[i] = *it;
00071 }
00072
00073 Index bound = std::max(Index(0),size-8) & 0xfffffffe;
00074 if (FirstTriangular)
00075 bound = size - bound;
00076
00077 for (Index j=FirstTriangular ? bound : 0;
00078 j<(FirstTriangular ? size : bound);j+=2)
00079 {
00080 register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00081 register const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
00082
00083 Scalar t0 = cjAlpha * rhs[j];
00084 Packet ptmp0 = pset1<Packet>(t0);
00085 Scalar t1 = cjAlpha * rhs[j+1];
00086 Packet ptmp1 = pset1<Packet>(t1);
00087
00088 Scalar t2 = 0;
00089 Packet ptmp2 = pset1<Packet>(t2);
00090 Scalar t3 = 0;
00091 Packet ptmp3 = pset1<Packet>(t3);
00092
00093 size_t starti = FirstTriangular ? 0 : j+2;
00094 size_t endi = FirstTriangular ? j : size;
00095 size_t alignedStart = (starti) + first_aligned(&res[starti], endi-starti);
00096 size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
00097
00098
00099 res[j] += cjd.pmul(internal::real(A0[j]), t0);
00100 res[j+1] += cjd.pmul(internal::real(A1[j+1]), t1);
00101 if(FirstTriangular)
00102 {
00103 res[j] += cj0.pmul(A1[j], t1);
00104 t3 += cj1.pmul(A1[j], rhs[j]);
00105 }
00106 else
00107 {
00108 res[j+1] += cj0.pmul(A0[j+1],t0);
00109 t2 += cj1.pmul(A0[j+1], rhs[j+1]);
00110 }
00111
00112 for (size_t i=starti; i<alignedStart; ++i)
00113 {
00114 res[i] += t0 * A0[i] + t1 * A1[i];
00115 t2 += conj(A0[i]) * rhs[i];
00116 t3 += conj(A1[i]) * rhs[i];
00117 }
00118
00119
00120 const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
00121 const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
00122 const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
00123 Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
00124 for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
00125 {
00126 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
00127 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
00128 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
00129 Packet Xi = pload <Packet>(resIt);
00130
00131 Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
00132 ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
00133 ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
00134 pstore(resIt,Xi); resIt += PacketSize;
00135 }
00136 for (size_t i=alignedEnd; i<endi; i++)
00137 {
00138 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
00139 t2 += cj1.pmul(A0[i], rhs[i]);
00140 t3 += cj1.pmul(A1[i], rhs[i]);
00141 }
00142
00143 res[j] += alpha * (t2 + predux(ptmp2));
00144 res[j+1] += alpha * (t3 + predux(ptmp3));
00145 }
00146 for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
00147 {
00148 register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
00149
00150 Scalar t1 = cjAlpha * rhs[j];
00151 Scalar t2 = 0;
00152
00153 res[j] += cjd.pmul(internal::real(A0[j]), t1);
00154 for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
00155 {
00156 res[i] += cj0.pmul(A0[i], t1);
00157 t2 += cj1.pmul(A0[i], rhs[i]);
00158 }
00159 res[j] += alpha * t2;
00160 }
00161 }
00162
00163 }
00164
00165
00166
00167
00168
00169 namespace internal {
00170 template<typename Lhs, int LhsMode, typename Rhs>
00171 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
00172 : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
00173 {};
00174 }
00175
00176 template<typename Lhs, int LhsMode, typename Rhs>
00177 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
00178 : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
00179 {
00180 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00181
00182 enum {
00183 LhsUpLo = LhsMode&(Upper|Lower)
00184 };
00185
00186 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00187
00188 template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
00189 {
00190 typedef typename Dest::Scalar ResScalar;
00191 typedef typename Base::RhsScalar RhsScalar;
00192 typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
00193
00194 eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
00195
00196 const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
00197 const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
00198
00199 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00200 * RhsBlasTraits::extractScalarFactor(m_rhs);
00201
00202 enum {
00203 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
00204 UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
00205 };
00206
00207 internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
00208 internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
00209
00210 ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
00211 EvalToDest ? dest.data() : static_dest.data());
00212
00213 ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
00214 UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
00215
00216 if(!EvalToDest)
00217 {
00218 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00219 int size = dest.size();
00220 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00221 #endif
00222 MappedDest(actualDestPtr, dest.size()) = dest;
00223 }
00224
00225 if(!UseRhs)
00226 {
00227 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00228 int size = rhs.size();
00229 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
00230 #endif
00231 Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
00232 }
00233
00234
00235 internal::product_selfadjoint_vector<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>
00236 (
00237 lhs.rows(),
00238 &lhs.coeffRef(0,0), lhs.outerStride(),
00239 actualRhsPtr, 1,
00240 actualDestPtr,
00241 actualAlpha
00242 );
00243
00244 if(!EvalToDest)
00245 dest = MappedDest(actualDestPtr, dest.size());
00246 }
00247 };
00248
00249 namespace internal {
00250 template<typename Lhs, typename Rhs, int RhsMode>
00251 struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
00252 : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
00253 {};
00254 }
00255
00256 template<typename Lhs, typename Rhs, int RhsMode>
00257 struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
00258 : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
00259 {
00260 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
00261
00262 enum {
00263 RhsUpLo = RhsMode&(Upper|Lower)
00264 };
00265
00266 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
00267
00268 template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
00269 {
00270
00271 Transpose<Dest> destT(dest);
00272 SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
00273 Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
00274 }
00275 };
00276
00277
00278 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H