ReactiveGraspGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/ReactiveGraspGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "geometry_msgs/PoseStamped.h"
00019 #include "trajectory_msgs/JointTrajectory.h"
00020 #include "sensor_msgs/JointState.h"
00021 #include "sensor_msgs/JointState.h"
00022 
00023 namespace object_manipulation_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct ReactiveGraspGoal_ {
00027   typedef ReactiveGraspGoal_<ContainerAllocator> Type;
00028 
00029   ReactiveGraspGoal_()
00030   : arm_name()
00031   , target()
00032   , final_grasp_pose()
00033   , trajectory()
00034   , collision_support_surface_name()
00035   , pre_grasp_posture()
00036   , grasp_posture()
00037   , max_contact_force(0.0)
00038   {
00039   }
00040 
00041   ReactiveGraspGoal_(const ContainerAllocator& _alloc)
00042   : arm_name(_alloc)
00043   , target(_alloc)
00044   , final_grasp_pose(_alloc)
00045   , trajectory(_alloc)
00046   , collision_support_surface_name(_alloc)
00047   , pre_grasp_posture(_alloc)
00048   , grasp_posture(_alloc)
00049   , max_contact_force(0.0)
00050   {
00051   }
00052 
00053   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _arm_name_type;
00054   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  arm_name;
00055 
00056   typedef  ::object_manipulation_msgs::GraspableObject_<ContainerAllocator>  _target_type;
00057    ::object_manipulation_msgs::GraspableObject_<ContainerAllocator>  target;
00058 
00059   typedef  ::geometry_msgs::PoseStamped_<ContainerAllocator>  _final_grasp_pose_type;
00060    ::geometry_msgs::PoseStamped_<ContainerAllocator>  final_grasp_pose;
00061 
00062   typedef  ::trajectory_msgs::JointTrajectory_<ContainerAllocator>  _trajectory_type;
00063    ::trajectory_msgs::JointTrajectory_<ContainerAllocator>  trajectory;
00064 
00065   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_support_surface_name_type;
00066   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_support_surface_name;
00067 
00068   typedef  ::sensor_msgs::JointState_<ContainerAllocator>  _pre_grasp_posture_type;
00069    ::sensor_msgs::JointState_<ContainerAllocator>  pre_grasp_posture;
00070 
00071   typedef  ::sensor_msgs::JointState_<ContainerAllocator>  _grasp_posture_type;
00072    ::sensor_msgs::JointState_<ContainerAllocator>  grasp_posture;
00073 
00074   typedef float _max_contact_force_type;
00075   float max_contact_force;
00076 
00077 
00078   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > Ptr;
00079   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator>  const> ConstPtr;
00080   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00081 }; // struct ReactiveGraspGoal
00082 typedef  ::object_manipulation_msgs::ReactiveGraspGoal_<std::allocator<void> > ReactiveGraspGoal;
00083 
00084 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal> ReactiveGraspGoalPtr;
00085 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal const> ReactiveGraspGoalConstPtr;
00086 
00087 
00088 template<typename ContainerAllocator>
00089 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v)
00090 {
00091   ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, "", v);
00092   return s;}
00093 
00094 } // namespace object_manipulation_msgs
00095 
00096 namespace ros
00097 {
00098 namespace message_traits
00099 {
00100 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > : public TrueType {};
00101 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator>  const> : public TrueType {};
00102 template<class ContainerAllocator>
00103 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00104   static const char* value() 
00105   {
00106     return "f48f8da93655260d66ea21ae9aaef12f";
00107   }
00108 
00109   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); } 
00110   static const uint64_t static_value1 = 0xf48f8da93655260dULL;
00111   static const uint64_t static_value2 = 0x66ea21ae9aaef12fULL;
00112 };
00113 
00114 template<class ContainerAllocator>
00115 struct DataType< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00116   static const char* value() 
00117   {
00118     return "object_manipulation_msgs/ReactiveGraspGoal";
00119   }
00120 
00121   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); } 
00122 };
00123 
00124 template<class ContainerAllocator>
00125 struct Definition< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00126   static const char* value() 
00127   {
00128     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00129 # an action for reactive grasping\n\
00130 # a reactive grasp starts from the current pose of the gripper and ends\n\
00131 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00132 \n\
00133 # the name of the arm being used\n\
00134 string arm_name\n\
00135 \n\
00136 # the object to be grasped\n\
00137 GraspableObject target\n\
00138 \n\
00139 # the desired grasp pose for the hand\n\
00140 geometry_msgs/PoseStamped final_grasp_pose\n\
00141 \n\
00142 # the joint trajectory to use for the approach (if available)\n\
00143 # this trajectory is expected to start at the current pose of the gripper\n\
00144 # and end at the desired grasp pose\n\
00145 trajectory_msgs/JointTrajectory trajectory\n\
00146 \n\
00147 # the name of the support surface in the collision environment, if any\n\
00148 string collision_support_surface_name\n\
00149 \n\
00150 # The internal posture of the hand for the pre-grasp\n\
00151 # only positions are used\n\
00152 sensor_msgs/JointState pre_grasp_posture\n\
00153 \n\
00154 # The internal posture of the hand for the grasp\n\
00155 # positions and efforts are used\n\
00156 sensor_msgs/JointState grasp_posture\n\
00157 \n\
00158 # The max contact force to use while grasping (<=0 to disable)\n\
00159 float32 max_contact_force\n\
00160 \n\
00161 \n\
00162 ================================================================================\n\
00163 MSG: object_manipulation_msgs/GraspableObject\n\
00164 # an object that the object_manipulator can work on\n\
00165 \n\
00166 # a graspable object can be represented in multiple ways. This message\n\
00167 # can contain all of them. Which one is actually used is up to the receiver\n\
00168 # of this message. When adding new representations, one must be careful that\n\
00169 # they have reasonable lightweight defaults indicating that that particular\n\
00170 # representation is not available.\n\
00171 \n\
00172 # the tf frame to be used as a reference frame when combining information from\n\
00173 # the different representations below\n\
00174 string reference_frame_id\n\
00175 \n\
00176 # potential recognition results from a database of models\n\
00177 # all poses are relative to the object reference pose\n\
00178 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00179 \n\
00180 # the point cloud itself\n\
00181 sensor_msgs/PointCloud cluster\n\
00182 \n\
00183 # a region of a PointCloud2 of interest\n\
00184 object_manipulation_msgs/SceneRegion region\n\
00185 \n\
00186 # the name that this object has in the collision environment\n\
00187 string collision_name\n\
00188 ================================================================================\n\
00189 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00190 # Informs that a specific model from the Model Database has been \n\
00191 # identified at a certain location\n\
00192 \n\
00193 # the database id of the model\n\
00194 int32 model_id\n\
00195 \n\
00196 # the pose that it can be found in\n\
00197 geometry_msgs/PoseStamped pose\n\
00198 \n\
00199 # a measure of the confidence level in this detection result\n\
00200 float32 confidence\n\
00201 \n\
00202 # the name of the object detector that generated this detection result\n\
00203 string detector_name\n\
00204 \n\
00205 ================================================================================\n\
00206 MSG: geometry_msgs/PoseStamped\n\
00207 # A Pose with reference coordinate frame and timestamp\n\
00208 Header header\n\
00209 Pose pose\n\
00210 \n\
00211 ================================================================================\n\
00212 MSG: std_msgs/Header\n\
00213 # Standard metadata for higher-level stamped data types.\n\
00214 # This is generally used to communicate timestamped data \n\
00215 # in a particular coordinate frame.\n\
00216 # \n\
00217 # sequence ID: consecutively increasing ID \n\
00218 uint32 seq\n\
00219 #Two-integer timestamp that is expressed as:\n\
00220 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00221 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00222 # time-handling sugar is provided by the client library\n\
00223 time stamp\n\
00224 #Frame this data is associated with\n\
00225 # 0: no frame\n\
00226 # 1: global frame\n\
00227 string frame_id\n\
00228 \n\
00229 ================================================================================\n\
00230 MSG: geometry_msgs/Pose\n\
00231 # A representation of pose in free space, composed of postion and orientation. \n\
00232 Point position\n\
00233 Quaternion orientation\n\
00234 \n\
00235 ================================================================================\n\
00236 MSG: geometry_msgs/Point\n\
00237 # This contains the position of a point in free space\n\
00238 float64 x\n\
00239 float64 y\n\
00240 float64 z\n\
00241 \n\
00242 ================================================================================\n\
00243 MSG: geometry_msgs/Quaternion\n\
00244 # This represents an orientation in free space in quaternion form.\n\
00245 \n\
00246 float64 x\n\
00247 float64 y\n\
00248 float64 z\n\
00249 float64 w\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: sensor_msgs/PointCloud\n\
00253 # This message holds a collection of 3d points, plus optional additional\n\
00254 # information about each point.\n\
00255 \n\
00256 # Time of sensor data acquisition, coordinate frame ID.\n\
00257 Header header\n\
00258 \n\
00259 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00260 # in the frame given in the header.\n\
00261 geometry_msgs/Point32[] points\n\
00262 \n\
00263 # Each channel should have the same number of elements as points array,\n\
00264 # and the data in each channel should correspond 1:1 with each point.\n\
00265 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00266 ChannelFloat32[] channels\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: geometry_msgs/Point32\n\
00270 # This contains the position of a point in free space(with 32 bits of precision).\n\
00271 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00272 # \n\
00273 # This recommendation is to promote interoperability.  \n\
00274 #\n\
00275 # This message is designed to take up less space when sending\n\
00276 # lots of points at once, as in the case of a PointCloud.  \n\
00277 \n\
00278 float32 x\n\
00279 float32 y\n\
00280 float32 z\n\
00281 ================================================================================\n\
00282 MSG: sensor_msgs/ChannelFloat32\n\
00283 # This message is used by the PointCloud message to hold optional data\n\
00284 # associated with each point in the cloud. The length of the values\n\
00285 # array should be the same as the length of the points array in the\n\
00286 # PointCloud, and each value should be associated with the corresponding\n\
00287 # point.\n\
00288 \n\
00289 # Channel names in existing practice include:\n\
00290 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00291 #              This is opposite to usual conventions but remains for\n\
00292 #              historical reasons. The newer PointCloud2 message has no\n\
00293 #              such problem.\n\
00294 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00295 #           (R,G,B) values packed into the least significant 24 bits,\n\
00296 #           in order.\n\
00297 #   \"intensity\" - laser or pixel intensity.\n\
00298 #   \"distance\"\n\
00299 \n\
00300 # The channel name should give semantics of the channel (e.g.\n\
00301 # \"intensity\" instead of \"value\").\n\
00302 string name\n\
00303 \n\
00304 # The values array should be 1-1 with the elements of the associated\n\
00305 # PointCloud.\n\
00306 float32[] values\n\
00307 \n\
00308 ================================================================================\n\
00309 MSG: object_manipulation_msgs/SceneRegion\n\
00310 # Point cloud\n\
00311 sensor_msgs/PointCloud2 cloud\n\
00312 \n\
00313 # Indices for the region of interest\n\
00314 int32[] mask\n\
00315 \n\
00316 # One of the corresponding 2D images, if applicable\n\
00317 sensor_msgs/Image image\n\
00318 \n\
00319 # The disparity image, if applicable\n\
00320 sensor_msgs/Image disparity_image\n\
00321 \n\
00322 # Camera info for the camera that took the image\n\
00323 sensor_msgs/CameraInfo cam_info\n\
00324 \n\
00325 # a 3D region of interest for grasp planning\n\
00326 geometry_msgs/PoseStamped  roi_box_pose\n\
00327 geometry_msgs/Vector3      roi_box_dims\n\
00328 \n\
00329 ================================================================================\n\
00330 MSG: sensor_msgs/PointCloud2\n\
00331 # This message holds a collection of N-dimensional points, which may\n\
00332 # contain additional information such as normals, intensity, etc. The\n\
00333 # point data is stored as a binary blob, its layout described by the\n\
00334 # contents of the \"fields\" array.\n\
00335 \n\
00336 # The point cloud data may be organized 2d (image-like) or 1d\n\
00337 # (unordered). Point clouds organized as 2d images may be produced by\n\
00338 # camera depth sensors such as stereo or time-of-flight.\n\
00339 \n\
00340 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00341 # points).\n\
00342 Header header\n\
00343 \n\
00344 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00345 # 1 and width is the length of the point cloud.\n\
00346 uint32 height\n\
00347 uint32 width\n\
00348 \n\
00349 # Describes the channels and their layout in the binary data blob.\n\
00350 PointField[] fields\n\
00351 \n\
00352 bool    is_bigendian # Is this data bigendian?\n\
00353 uint32  point_step   # Length of a point in bytes\n\
00354 uint32  row_step     # Length of a row in bytes\n\
00355 uint8[] data         # Actual point data, size is (row_step*height)\n\
00356 \n\
00357 bool is_dense        # True if there are no invalid points\n\
00358 \n\
00359 ================================================================================\n\
00360 MSG: sensor_msgs/PointField\n\
00361 # This message holds the description of one point entry in the\n\
00362 # PointCloud2 message format.\n\
00363 uint8 INT8    = 1\n\
00364 uint8 UINT8   = 2\n\
00365 uint8 INT16   = 3\n\
00366 uint8 UINT16  = 4\n\
00367 uint8 INT32   = 5\n\
00368 uint8 UINT32  = 6\n\
00369 uint8 FLOAT32 = 7\n\
00370 uint8 FLOAT64 = 8\n\
00371 \n\
00372 string name      # Name of field\n\
00373 uint32 offset    # Offset from start of point struct\n\
00374 uint8  datatype  # Datatype enumeration, see above\n\
00375 uint32 count     # How many elements in the field\n\
00376 \n\
00377 ================================================================================\n\
00378 MSG: sensor_msgs/Image\n\
00379 # This message contains an uncompressed image\n\
00380 # (0, 0) is at top-left corner of image\n\
00381 #\n\
00382 \n\
00383 Header header        # Header timestamp should be acquisition time of image\n\
00384                      # Header frame_id should be optical frame of camera\n\
00385                      # origin of frame should be optical center of cameara\n\
00386                      # +x should point to the right in the image\n\
00387                      # +y should point down in the image\n\
00388                      # +z should point into to plane of the image\n\
00389                      # If the frame_id here and the frame_id of the CameraInfo\n\
00390                      # message associated with the image conflict\n\
00391                      # the behavior is undefined\n\
00392 \n\
00393 uint32 height         # image height, that is, number of rows\n\
00394 uint32 width          # image width, that is, number of columns\n\
00395 \n\
00396 # The legal values for encoding are in file src/image_encodings.cpp\n\
00397 # If you want to standardize a new string format, join\n\
00398 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00399 \n\
00400 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00401                       # taken from the list of strings in src/image_encodings.cpp\n\
00402 \n\
00403 uint8 is_bigendian    # is this data bigendian?\n\
00404 uint32 step           # Full row length in bytes\n\
00405 uint8[] data          # actual matrix data, size is (step * rows)\n\
00406 \n\
00407 ================================================================================\n\
00408 MSG: sensor_msgs/CameraInfo\n\
00409 # This message defines meta information for a camera. It should be in a\n\
00410 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00411 # image topics named:\n\
00412 #\n\
00413 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00414 #   image            - monochrome, distorted\n\
00415 #   image_color      - color, distorted\n\
00416 #   image_rect       - monochrome, rectified\n\
00417 #   image_rect_color - color, rectified\n\
00418 #\n\
00419 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00420 # for producing the four processed image topics from image_raw and\n\
00421 # camera_info. The meaning of the camera parameters are described in\n\
00422 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00423 #\n\
00424 # The image_geometry package provides a user-friendly interface to\n\
00425 # common operations using this meta information. If you want to, e.g.,\n\
00426 # project a 3d point into image coordinates, we strongly recommend\n\
00427 # using image_geometry.\n\
00428 #\n\
00429 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00430 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00431 # indicates an uncalibrated camera.\n\
00432 \n\
00433 #######################################################################\n\
00434 #                     Image acquisition info                          #\n\
00435 #######################################################################\n\
00436 \n\
00437 # Time of image acquisition, camera coordinate frame ID\n\
00438 Header header    # Header timestamp should be acquisition time of image\n\
00439                  # Header frame_id should be optical frame of camera\n\
00440                  # origin of frame should be optical center of camera\n\
00441                  # +x should point to the right in the image\n\
00442                  # +y should point down in the image\n\
00443                  # +z should point into the plane of the image\n\
00444 \n\
00445 \n\
00446 #######################################################################\n\
00447 #                      Calibration Parameters                         #\n\
00448 #######################################################################\n\
00449 # These are fixed during camera calibration. Their values will be the #\n\
00450 # same in all messages until the camera is recalibrated. Note that    #\n\
00451 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00452 #                                                                     #\n\
00453 # The internal parameters can be used to warp a raw (distorted) image #\n\
00454 # to:                                                                 #\n\
00455 #   1. An undistorted image (requires D and K)                        #\n\
00456 #   2. A rectified image (requires D, K, R)                           #\n\
00457 # The projection matrix P projects 3D points into the rectified image.#\n\
00458 #######################################################################\n\
00459 \n\
00460 # The image dimensions with which the camera was calibrated. Normally\n\
00461 # this will be the full camera resolution in pixels.\n\
00462 uint32 height\n\
00463 uint32 width\n\
00464 \n\
00465 # The distortion model used. Supported models are listed in\n\
00466 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00467 # simple model of radial and tangential distortion - is sufficent.\n\
00468 string distortion_model\n\
00469 \n\
00470 # The distortion parameters, size depending on the distortion model.\n\
00471 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00472 float64[] D\n\
00473 \n\
00474 # Intrinsic camera matrix for the raw (distorted) images.\n\
00475 #     [fx  0 cx]\n\
00476 # K = [ 0 fy cy]\n\
00477 #     [ 0  0  1]\n\
00478 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00479 # coordinates using the focal lengths (fx, fy) and principal point\n\
00480 # (cx, cy).\n\
00481 float64[9]  K # 3x3 row-major matrix\n\
00482 \n\
00483 # Rectification matrix (stereo cameras only)\n\
00484 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00485 # stereo image plane so that epipolar lines in both stereo images are\n\
00486 # parallel.\n\
00487 float64[9]  R # 3x3 row-major matrix\n\
00488 \n\
00489 # Projection/camera matrix\n\
00490 #     [fx'  0  cx' Tx]\n\
00491 # P = [ 0  fy' cy' Ty]\n\
00492 #     [ 0   0   1   0]\n\
00493 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00494 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00495 #  is the normal camera intrinsic matrix for the rectified image.\n\
00496 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00497 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00498 #  (cx', cy') - these may differ from the values in K.\n\
00499 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00500 #  also have R = the identity and P[1:3,1:3] = K.\n\
00501 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00502 #  position of the optical center of the second camera in the first\n\
00503 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00504 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00505 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00506 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00507 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00508 #  the rectified image is given by:\n\
00509 #  [u v w]' = P * [X Y Z 1]'\n\
00510 #         x = u / w\n\
00511 #         y = v / w\n\
00512 #  This holds for both images of a stereo pair.\n\
00513 float64[12] P # 3x4 row-major matrix\n\
00514 \n\
00515 \n\
00516 #######################################################################\n\
00517 #                      Operational Parameters                         #\n\
00518 #######################################################################\n\
00519 # These define the image region actually captured by the camera       #\n\
00520 # driver. Although they affect the geometry of the output image, they #\n\
00521 # may be changed freely without recalibrating the camera.             #\n\
00522 #######################################################################\n\
00523 \n\
00524 # Binning refers here to any camera setting which combines rectangular\n\
00525 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00526 #  resolution of the output image to\n\
00527 #  (width / binning_x) x (height / binning_y).\n\
00528 # The default values binning_x = binning_y = 0 is considered the same\n\
00529 #  as binning_x = binning_y = 1 (no subsampling).\n\
00530 uint32 binning_x\n\
00531 uint32 binning_y\n\
00532 \n\
00533 # Region of interest (subwindow of full camera resolution), given in\n\
00534 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00535 #  always denotes the same window of pixels on the camera sensor,\n\
00536 #  regardless of binning settings.\n\
00537 # The default setting of roi (all values 0) is considered the same as\n\
00538 #  full resolution (roi.width = width, roi.height = height).\n\
00539 RegionOfInterest roi\n\
00540 \n\
00541 ================================================================================\n\
00542 MSG: sensor_msgs/RegionOfInterest\n\
00543 # This message is used to specify a region of interest within an image.\n\
00544 #\n\
00545 # When used to specify the ROI setting of the camera when the image was\n\
00546 # taken, the height and width fields should either match the height and\n\
00547 # width fields for the associated image; or height = width = 0\n\
00548 # indicates that the full resolution image was captured.\n\
00549 \n\
00550 uint32 x_offset  # Leftmost pixel of the ROI\n\
00551                  # (0 if the ROI includes the left edge of the image)\n\
00552 uint32 y_offset  # Topmost pixel of the ROI\n\
00553                  # (0 if the ROI includes the top edge of the image)\n\
00554 uint32 height    # Height of ROI\n\
00555 uint32 width     # Width of ROI\n\
00556 \n\
00557 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00558 # ROI in this message. Typically this should be False if the full image\n\
00559 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00560 # used).\n\
00561 bool do_rectify\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: geometry_msgs/Vector3\n\
00565 # This represents a vector in free space. \n\
00566 \n\
00567 float64 x\n\
00568 float64 y\n\
00569 float64 z\n\
00570 ================================================================================\n\
00571 MSG: trajectory_msgs/JointTrajectory\n\
00572 Header header\n\
00573 string[] joint_names\n\
00574 JointTrajectoryPoint[] points\n\
00575 ================================================================================\n\
00576 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00577 float64[] positions\n\
00578 float64[] velocities\n\
00579 float64[] accelerations\n\
00580 duration time_from_start\n\
00581 ================================================================================\n\
00582 MSG: sensor_msgs/JointState\n\
00583 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00584 #\n\
00585 # The state of each joint (revolute or prismatic) is defined by:\n\
00586 #  * the position of the joint (rad or m),\n\
00587 #  * the velocity of the joint (rad/s or m/s) and \n\
00588 #  * the effort that is applied in the joint (Nm or N).\n\
00589 #\n\
00590 # Each joint is uniquely identified by its name\n\
00591 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00592 # in one message have to be recorded at the same time.\n\
00593 #\n\
00594 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00595 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00596 # effort associated with them, you can leave the effort array empty. \n\
00597 #\n\
00598 # All arrays in this message should have the same size, or be empty.\n\
00599 # This is the only way to uniquely associate the joint name with the correct\n\
00600 # states.\n\
00601 \n\
00602 \n\
00603 Header header\n\
00604 \n\
00605 string[] name\n\
00606 float64[] position\n\
00607 float64[] velocity\n\
00608 float64[] effort\n\
00609 \n\
00610 ";
00611   }
00612 
00613   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); } 
00614 };
00615 
00616 } // namespace message_traits
00617 } // namespace ros
00618 
00619 namespace ros
00620 {
00621 namespace serialization
00622 {
00623 
00624 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
00625 {
00626   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00627   {
00628     stream.next(m.arm_name);
00629     stream.next(m.target);
00630     stream.next(m.final_grasp_pose);
00631     stream.next(m.trajectory);
00632     stream.next(m.collision_support_surface_name);
00633     stream.next(m.pre_grasp_posture);
00634     stream.next(m.grasp_posture);
00635     stream.next(m.max_contact_force);
00636   }
00637 
00638   ROS_DECLARE_ALLINONE_SERIALIZER;
00639 }; // struct ReactiveGraspGoal_
00640 } // namespace serialization
00641 } // namespace ros
00642 
00643 namespace ros
00644 {
00645 namespace message_operations
00646 {
00647 
00648 template<class ContainerAllocator>
00649 struct Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
00650 {
00651   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v) 
00652   {
00653     s << indent << "arm_name: ";
00654     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.arm_name);
00655     s << indent << "target: ";
00656 s << std::endl;
00657     Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + "  ", v.target);
00658     s << indent << "final_grasp_pose: ";
00659 s << std::endl;
00660     Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + "  ", v.final_grasp_pose);
00661     s << indent << "trajectory: ";
00662 s << std::endl;
00663     Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + "  ", v.trajectory);
00664     s << indent << "collision_support_surface_name: ";
00665     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.collision_support_surface_name);
00666     s << indent << "pre_grasp_posture: ";
00667 s << std::endl;
00668     Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + "  ", v.pre_grasp_posture);
00669     s << indent << "grasp_posture: ";
00670 s << std::endl;
00671     Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + "  ", v.grasp_posture);
00672     s << indent << "max_contact_force: ";
00673     Printer<float>::stream(s, indent + "  ", v.max_contact_force);
00674   }
00675 };
00676 
00677 
00678 } // namespace message_operations
00679 } // namespace ros
00680 
00681 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00682 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12