PickupActionGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/PickupActionGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/PickupGoal.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupActionGoal_ {
00025   typedef PickupActionGoal_<ContainerAllocator> Type;
00026 
00027   PickupActionGoal_()
00028   : header()
00029   , goal_id()
00030   , goal()
00031   {
00032   }
00033 
00034   PickupActionGoal_(const ContainerAllocator& _alloc)
00035   : header(_alloc)
00036   , goal_id(_alloc)
00037   , goal(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00042    ::std_msgs::Header_<ContainerAllocator>  header;
00043 
00044   typedef  ::actionlib_msgs::GoalID_<ContainerAllocator>  _goal_id_type;
00045    ::actionlib_msgs::GoalID_<ContainerAllocator>  goal_id;
00046 
00047   typedef  ::object_manipulation_msgs::PickupGoal_<ContainerAllocator>  _goal_type;
00048    ::object_manipulation_msgs::PickupGoal_<ContainerAllocator>  goal;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct PickupActionGoal
00055 typedef  ::object_manipulation_msgs::PickupActionGoal_<std::allocator<void> > PickupActionGoal;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal> PickupActionGoalPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal const> PickupActionGoalConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "c80a8991b5d6a3dabaeb053a18309c62";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0xc80a8991b5d6a3daULL;
00084   static const uint64_t static_value2 = 0xbaeb053a18309c62ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/PickupActionGoal";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 PickupGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/PickupGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 # An action for picking up an object\n\
00142 \n\
00143 # which arm to be used for grasping\n\
00144 string arm_name\n\
00145 \n\
00146 # the object to be grasped\n\
00147 GraspableObject target\n\
00148 \n\
00149 # a list of grasps to be used\n\
00150 # if empty, the grasp executive will call one of its own planners\n\
00151 Grasp[] desired_grasps\n\
00152 \n\
00153 # how the object should be lifted after the grasp\n\
00154 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00155 # or the gripper_frame specified in your hand description file\n\
00156 GripperTranslation lift\n\
00157 \n\
00158 # the name that the target object has in the collision map\n\
00159 # can be left empty if no name is available\n\
00160 string collision_object_name\n\
00161 \n\
00162 # the name that the support surface (e.g. table) has in the collision map\n\
00163 # can be left empty if no name is available\n\
00164 string collision_support_surface_name\n\
00165 \n\
00166 # whether collisions between the gripper and the support surface should be acceptable\n\
00167 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00168 # pre-grasp location are still not allowed even if this is set to true.\n\
00169 bool allow_gripper_support_collision\n\
00170 \n\
00171 # whether reactive grasp execution using tactile sensors should be used\n\
00172 bool use_reactive_execution\n\
00173 \n\
00174 # whether reactive object lifting based on tactile sensors should be used\n\
00175 bool use_reactive_lift\n\
00176 \n\
00177 # set this to true if you only want to query the manipulation pipeline as to what \n\
00178 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00179 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00180 # movement will be attempted\n\
00181 bool only_perform_feasibility_test\n\
00182 \n\
00183 # set this to true if you want to ignore all collisions throughout the pickup \n\
00184 # and also move directly to the pre-grasp using Cartesian controllers\n\
00185 bool ignore_collisions\n\
00186 \n\
00187 # OPTIONAL (These will not have to be filled out most of the time)\n\
00188 # constraints to be imposed on every point in the motion of the arm\n\
00189 arm_navigation_msgs/Constraints path_constraints\n\
00190 \n\
00191 # OPTIONAL (These will not have to be filled out most of the time)\n\
00192 # additional collision operations to be used for every arm movement performed\n\
00193 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00194 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00195 # with care and only if special behaviors are desired\n\
00196 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00197 \n\
00198 # OPTIONAL (These will not have to be filled out most of the time)\n\
00199 # additional link paddings to be used for every arm movement performed\n\
00200 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00201 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00202 # with care and only if special behaviors are desired\n\
00203 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00204 \n\
00205 # an optional list of obstacles that we have semantic information about\n\
00206 # and that can be moved in the course of grasping\n\
00207 GraspableObject[] movable_obstacles\n\
00208 \n\
00209 # the maximum contact force to use while grasping (<=0 to disable)\n\
00210 float32 max_contact_force\n\
00211 \n\
00212 \n\
00213 ================================================================================\n\
00214 MSG: object_manipulation_msgs/GraspableObject\n\
00215 # an object that the object_manipulator can work on\n\
00216 \n\
00217 # a graspable object can be represented in multiple ways. This message\n\
00218 # can contain all of them. Which one is actually used is up to the receiver\n\
00219 # of this message. When adding new representations, one must be careful that\n\
00220 # they have reasonable lightweight defaults indicating that that particular\n\
00221 # representation is not available.\n\
00222 \n\
00223 # the tf frame to be used as a reference frame when combining information from\n\
00224 # the different representations below\n\
00225 string reference_frame_id\n\
00226 \n\
00227 # potential recognition results from a database of models\n\
00228 # all poses are relative to the object reference pose\n\
00229 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00230 \n\
00231 # the point cloud itself\n\
00232 sensor_msgs/PointCloud cluster\n\
00233 \n\
00234 # a region of a PointCloud2 of interest\n\
00235 object_manipulation_msgs/SceneRegion region\n\
00236 \n\
00237 # the name that this object has in the collision environment\n\
00238 string collision_name\n\
00239 ================================================================================\n\
00240 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00241 # Informs that a specific model from the Model Database has been \n\
00242 # identified at a certain location\n\
00243 \n\
00244 # the database id of the model\n\
00245 int32 model_id\n\
00246 \n\
00247 # the pose that it can be found in\n\
00248 geometry_msgs/PoseStamped pose\n\
00249 \n\
00250 # a measure of the confidence level in this detection result\n\
00251 float32 confidence\n\
00252 \n\
00253 # the name of the object detector that generated this detection result\n\
00254 string detector_name\n\
00255 \n\
00256 ================================================================================\n\
00257 MSG: geometry_msgs/PoseStamped\n\
00258 # A Pose with reference coordinate frame and timestamp\n\
00259 Header header\n\
00260 Pose pose\n\
00261 \n\
00262 ================================================================================\n\
00263 MSG: geometry_msgs/Pose\n\
00264 # A representation of pose in free space, composed of postion and orientation. \n\
00265 Point position\n\
00266 Quaternion orientation\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: geometry_msgs/Point\n\
00270 # This contains the position of a point in free space\n\
00271 float64 x\n\
00272 float64 y\n\
00273 float64 z\n\
00274 \n\
00275 ================================================================================\n\
00276 MSG: geometry_msgs/Quaternion\n\
00277 # This represents an orientation in free space in quaternion form.\n\
00278 \n\
00279 float64 x\n\
00280 float64 y\n\
00281 float64 z\n\
00282 float64 w\n\
00283 \n\
00284 ================================================================================\n\
00285 MSG: sensor_msgs/PointCloud\n\
00286 # This message holds a collection of 3d points, plus optional additional\n\
00287 # information about each point.\n\
00288 \n\
00289 # Time of sensor data acquisition, coordinate frame ID.\n\
00290 Header header\n\
00291 \n\
00292 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00293 # in the frame given in the header.\n\
00294 geometry_msgs/Point32[] points\n\
00295 \n\
00296 # Each channel should have the same number of elements as points array,\n\
00297 # and the data in each channel should correspond 1:1 with each point.\n\
00298 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00299 ChannelFloat32[] channels\n\
00300 \n\
00301 ================================================================================\n\
00302 MSG: geometry_msgs/Point32\n\
00303 # This contains the position of a point in free space(with 32 bits of precision).\n\
00304 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00305 # \n\
00306 # This recommendation is to promote interoperability.  \n\
00307 #\n\
00308 # This message is designed to take up less space when sending\n\
00309 # lots of points at once, as in the case of a PointCloud.  \n\
00310 \n\
00311 float32 x\n\
00312 float32 y\n\
00313 float32 z\n\
00314 ================================================================================\n\
00315 MSG: sensor_msgs/ChannelFloat32\n\
00316 # This message is used by the PointCloud message to hold optional data\n\
00317 # associated with each point in the cloud. The length of the values\n\
00318 # array should be the same as the length of the points array in the\n\
00319 # PointCloud, and each value should be associated with the corresponding\n\
00320 # point.\n\
00321 \n\
00322 # Channel names in existing practice include:\n\
00323 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00324 #              This is opposite to usual conventions but remains for\n\
00325 #              historical reasons. The newer PointCloud2 message has no\n\
00326 #              such problem.\n\
00327 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00328 #           (R,G,B) values packed into the least significant 24 bits,\n\
00329 #           in order.\n\
00330 #   \"intensity\" - laser or pixel intensity.\n\
00331 #   \"distance\"\n\
00332 \n\
00333 # The channel name should give semantics of the channel (e.g.\n\
00334 # \"intensity\" instead of \"value\").\n\
00335 string name\n\
00336 \n\
00337 # The values array should be 1-1 with the elements of the associated\n\
00338 # PointCloud.\n\
00339 float32[] values\n\
00340 \n\
00341 ================================================================================\n\
00342 MSG: object_manipulation_msgs/SceneRegion\n\
00343 # Point cloud\n\
00344 sensor_msgs/PointCloud2 cloud\n\
00345 \n\
00346 # Indices for the region of interest\n\
00347 int32[] mask\n\
00348 \n\
00349 # One of the corresponding 2D images, if applicable\n\
00350 sensor_msgs/Image image\n\
00351 \n\
00352 # The disparity image, if applicable\n\
00353 sensor_msgs/Image disparity_image\n\
00354 \n\
00355 # Camera info for the camera that took the image\n\
00356 sensor_msgs/CameraInfo cam_info\n\
00357 \n\
00358 # a 3D region of interest for grasp planning\n\
00359 geometry_msgs/PoseStamped  roi_box_pose\n\
00360 geometry_msgs/Vector3      roi_box_dims\n\
00361 \n\
00362 ================================================================================\n\
00363 MSG: sensor_msgs/PointCloud2\n\
00364 # This message holds a collection of N-dimensional points, which may\n\
00365 # contain additional information such as normals, intensity, etc. The\n\
00366 # point data is stored as a binary blob, its layout described by the\n\
00367 # contents of the \"fields\" array.\n\
00368 \n\
00369 # The point cloud data may be organized 2d (image-like) or 1d\n\
00370 # (unordered). Point clouds organized as 2d images may be produced by\n\
00371 # camera depth sensors such as stereo or time-of-flight.\n\
00372 \n\
00373 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00374 # points).\n\
00375 Header header\n\
00376 \n\
00377 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00378 # 1 and width is the length of the point cloud.\n\
00379 uint32 height\n\
00380 uint32 width\n\
00381 \n\
00382 # Describes the channels and their layout in the binary data blob.\n\
00383 PointField[] fields\n\
00384 \n\
00385 bool    is_bigendian # Is this data bigendian?\n\
00386 uint32  point_step   # Length of a point in bytes\n\
00387 uint32  row_step     # Length of a row in bytes\n\
00388 uint8[] data         # Actual point data, size is (row_step*height)\n\
00389 \n\
00390 bool is_dense        # True if there are no invalid points\n\
00391 \n\
00392 ================================================================================\n\
00393 MSG: sensor_msgs/PointField\n\
00394 # This message holds the description of one point entry in the\n\
00395 # PointCloud2 message format.\n\
00396 uint8 INT8    = 1\n\
00397 uint8 UINT8   = 2\n\
00398 uint8 INT16   = 3\n\
00399 uint8 UINT16  = 4\n\
00400 uint8 INT32   = 5\n\
00401 uint8 UINT32  = 6\n\
00402 uint8 FLOAT32 = 7\n\
00403 uint8 FLOAT64 = 8\n\
00404 \n\
00405 string name      # Name of field\n\
00406 uint32 offset    # Offset from start of point struct\n\
00407 uint8  datatype  # Datatype enumeration, see above\n\
00408 uint32 count     # How many elements in the field\n\
00409 \n\
00410 ================================================================================\n\
00411 MSG: sensor_msgs/Image\n\
00412 # This message contains an uncompressed image\n\
00413 # (0, 0) is at top-left corner of image\n\
00414 #\n\
00415 \n\
00416 Header header        # Header timestamp should be acquisition time of image\n\
00417                      # Header frame_id should be optical frame of camera\n\
00418                      # origin of frame should be optical center of cameara\n\
00419                      # +x should point to the right in the image\n\
00420                      # +y should point down in the image\n\
00421                      # +z should point into to plane of the image\n\
00422                      # If the frame_id here and the frame_id of the CameraInfo\n\
00423                      # message associated with the image conflict\n\
00424                      # the behavior is undefined\n\
00425 \n\
00426 uint32 height         # image height, that is, number of rows\n\
00427 uint32 width          # image width, that is, number of columns\n\
00428 \n\
00429 # The legal values for encoding are in file src/image_encodings.cpp\n\
00430 # If you want to standardize a new string format, join\n\
00431 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00432 \n\
00433 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00434                       # taken from the list of strings in src/image_encodings.cpp\n\
00435 \n\
00436 uint8 is_bigendian    # is this data bigendian?\n\
00437 uint32 step           # Full row length in bytes\n\
00438 uint8[] data          # actual matrix data, size is (step * rows)\n\
00439 \n\
00440 ================================================================================\n\
00441 MSG: sensor_msgs/CameraInfo\n\
00442 # This message defines meta information for a camera. It should be in a\n\
00443 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00444 # image topics named:\n\
00445 #\n\
00446 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00447 #   image            - monochrome, distorted\n\
00448 #   image_color      - color, distorted\n\
00449 #   image_rect       - monochrome, rectified\n\
00450 #   image_rect_color - color, rectified\n\
00451 #\n\
00452 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00453 # for producing the four processed image topics from image_raw and\n\
00454 # camera_info. The meaning of the camera parameters are described in\n\
00455 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00456 #\n\
00457 # The image_geometry package provides a user-friendly interface to\n\
00458 # common operations using this meta information. If you want to, e.g.,\n\
00459 # project a 3d point into image coordinates, we strongly recommend\n\
00460 # using image_geometry.\n\
00461 #\n\
00462 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00463 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00464 # indicates an uncalibrated camera.\n\
00465 \n\
00466 #######################################################################\n\
00467 #                     Image acquisition info                          #\n\
00468 #######################################################################\n\
00469 \n\
00470 # Time of image acquisition, camera coordinate frame ID\n\
00471 Header header    # Header timestamp should be acquisition time of image\n\
00472                  # Header frame_id should be optical frame of camera\n\
00473                  # origin of frame should be optical center of camera\n\
00474                  # +x should point to the right in the image\n\
00475                  # +y should point down in the image\n\
00476                  # +z should point into the plane of the image\n\
00477 \n\
00478 \n\
00479 #######################################################################\n\
00480 #                      Calibration Parameters                         #\n\
00481 #######################################################################\n\
00482 # These are fixed during camera calibration. Their values will be the #\n\
00483 # same in all messages until the camera is recalibrated. Note that    #\n\
00484 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00485 #                                                                     #\n\
00486 # The internal parameters can be used to warp a raw (distorted) image #\n\
00487 # to:                                                                 #\n\
00488 #   1. An undistorted image (requires D and K)                        #\n\
00489 #   2. A rectified image (requires D, K, R)                           #\n\
00490 # The projection matrix P projects 3D points into the rectified image.#\n\
00491 #######################################################################\n\
00492 \n\
00493 # The image dimensions with which the camera was calibrated. Normally\n\
00494 # this will be the full camera resolution in pixels.\n\
00495 uint32 height\n\
00496 uint32 width\n\
00497 \n\
00498 # The distortion model used. Supported models are listed in\n\
00499 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00500 # simple model of radial and tangential distortion - is sufficent.\n\
00501 string distortion_model\n\
00502 \n\
00503 # The distortion parameters, size depending on the distortion model.\n\
00504 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00505 float64[] D\n\
00506 \n\
00507 # Intrinsic camera matrix for the raw (distorted) images.\n\
00508 #     [fx  0 cx]\n\
00509 # K = [ 0 fy cy]\n\
00510 #     [ 0  0  1]\n\
00511 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00512 # coordinates using the focal lengths (fx, fy) and principal point\n\
00513 # (cx, cy).\n\
00514 float64[9]  K # 3x3 row-major matrix\n\
00515 \n\
00516 # Rectification matrix (stereo cameras only)\n\
00517 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00518 # stereo image plane so that epipolar lines in both stereo images are\n\
00519 # parallel.\n\
00520 float64[9]  R # 3x3 row-major matrix\n\
00521 \n\
00522 # Projection/camera matrix\n\
00523 #     [fx'  0  cx' Tx]\n\
00524 # P = [ 0  fy' cy' Ty]\n\
00525 #     [ 0   0   1   0]\n\
00526 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00527 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00528 #  is the normal camera intrinsic matrix for the rectified image.\n\
00529 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00530 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00531 #  (cx', cy') - these may differ from the values in K.\n\
00532 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00533 #  also have R = the identity and P[1:3,1:3] = K.\n\
00534 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00535 #  position of the optical center of the second camera in the first\n\
00536 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00537 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00538 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00539 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00540 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00541 #  the rectified image is given by:\n\
00542 #  [u v w]' = P * [X Y Z 1]'\n\
00543 #         x = u / w\n\
00544 #         y = v / w\n\
00545 #  This holds for both images of a stereo pair.\n\
00546 float64[12] P # 3x4 row-major matrix\n\
00547 \n\
00548 \n\
00549 #######################################################################\n\
00550 #                      Operational Parameters                         #\n\
00551 #######################################################################\n\
00552 # These define the image region actually captured by the camera       #\n\
00553 # driver. Although they affect the geometry of the output image, they #\n\
00554 # may be changed freely without recalibrating the camera.             #\n\
00555 #######################################################################\n\
00556 \n\
00557 # Binning refers here to any camera setting which combines rectangular\n\
00558 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00559 #  resolution of the output image to\n\
00560 #  (width / binning_x) x (height / binning_y).\n\
00561 # The default values binning_x = binning_y = 0 is considered the same\n\
00562 #  as binning_x = binning_y = 1 (no subsampling).\n\
00563 uint32 binning_x\n\
00564 uint32 binning_y\n\
00565 \n\
00566 # Region of interest (subwindow of full camera resolution), given in\n\
00567 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00568 #  always denotes the same window of pixels on the camera sensor,\n\
00569 #  regardless of binning settings.\n\
00570 # The default setting of roi (all values 0) is considered the same as\n\
00571 #  full resolution (roi.width = width, roi.height = height).\n\
00572 RegionOfInterest roi\n\
00573 \n\
00574 ================================================================================\n\
00575 MSG: sensor_msgs/RegionOfInterest\n\
00576 # This message is used to specify a region of interest within an image.\n\
00577 #\n\
00578 # When used to specify the ROI setting of the camera when the image was\n\
00579 # taken, the height and width fields should either match the height and\n\
00580 # width fields for the associated image; or height = width = 0\n\
00581 # indicates that the full resolution image was captured.\n\
00582 \n\
00583 uint32 x_offset  # Leftmost pixel of the ROI\n\
00584                  # (0 if the ROI includes the left edge of the image)\n\
00585 uint32 y_offset  # Topmost pixel of the ROI\n\
00586                  # (0 if the ROI includes the top edge of the image)\n\
00587 uint32 height    # Height of ROI\n\
00588 uint32 width     # Width of ROI\n\
00589 \n\
00590 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00591 # ROI in this message. Typically this should be False if the full image\n\
00592 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00593 # used).\n\
00594 bool do_rectify\n\
00595 \n\
00596 ================================================================================\n\
00597 MSG: geometry_msgs/Vector3\n\
00598 # This represents a vector in free space. \n\
00599 \n\
00600 float64 x\n\
00601 float64 y\n\
00602 float64 z\n\
00603 ================================================================================\n\
00604 MSG: object_manipulation_msgs/Grasp\n\
00605 \n\
00606 # The internal posture of the hand for the pre-grasp\n\
00607 # only positions are used\n\
00608 sensor_msgs/JointState pre_grasp_posture\n\
00609 \n\
00610 # The internal posture of the hand for the grasp\n\
00611 # positions and efforts are used\n\
00612 sensor_msgs/JointState grasp_posture\n\
00613 \n\
00614 # The position of the end-effector for the grasp relative to a reference frame \n\
00615 # (that is always specified elsewhere, not in this message)\n\
00616 geometry_msgs/Pose grasp_pose\n\
00617 \n\
00618 # The estimated probability of success for this grasp\n\
00619 float64 success_probability\n\
00620 \n\
00621 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00622 bool cluster_rep\n\
00623 \n\
00624 # how far the pre-grasp should ideally be away from the grasp\n\
00625 float32 desired_approach_distance\n\
00626 \n\
00627 # how much distance between pre-grasp and grasp must actually be feasible \n\
00628 # for the grasp not to be rejected\n\
00629 float32 min_approach_distance\n\
00630 \n\
00631 # an optional list of obstacles that we have semantic information about\n\
00632 # and that we expect might move in the course of executing this grasp\n\
00633 # the grasp planner is expected to make sure they move in an OK way; during\n\
00634 # execution, grasp executors will not check for collisions against these objects\n\
00635 GraspableObject[] moved_obstacles\n\
00636 \n\
00637 ================================================================================\n\
00638 MSG: sensor_msgs/JointState\n\
00639 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00640 #\n\
00641 # The state of each joint (revolute or prismatic) is defined by:\n\
00642 #  * the position of the joint (rad or m),\n\
00643 #  * the velocity of the joint (rad/s or m/s) and \n\
00644 #  * the effort that is applied in the joint (Nm or N).\n\
00645 #\n\
00646 # Each joint is uniquely identified by its name\n\
00647 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00648 # in one message have to be recorded at the same time.\n\
00649 #\n\
00650 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00651 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00652 # effort associated with them, you can leave the effort array empty. \n\
00653 #\n\
00654 # All arrays in this message should have the same size, or be empty.\n\
00655 # This is the only way to uniquely associate the joint name with the correct\n\
00656 # states.\n\
00657 \n\
00658 \n\
00659 Header header\n\
00660 \n\
00661 string[] name\n\
00662 float64[] position\n\
00663 float64[] velocity\n\
00664 float64[] effort\n\
00665 \n\
00666 ================================================================================\n\
00667 MSG: object_manipulation_msgs/GripperTranslation\n\
00668 # defines a translation for the gripper, used in pickup or place tasks\n\
00669 # for example for lifting an object off a table or approaching the table for placing\n\
00670 \n\
00671 # the direction of the translation\n\
00672 geometry_msgs/Vector3Stamped direction\n\
00673 \n\
00674 # the desired translation distance\n\
00675 float32 desired_distance\n\
00676 \n\
00677 # the min distance that must be considered feasible before the\n\
00678 # grasp is even attempted\n\
00679 float32 min_distance\n\
00680 ================================================================================\n\
00681 MSG: geometry_msgs/Vector3Stamped\n\
00682 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00683 Header header\n\
00684 Vector3 vector\n\
00685 \n\
00686 ================================================================================\n\
00687 MSG: arm_navigation_msgs/Constraints\n\
00688 # This message contains a list of motion planning constraints.\n\
00689 \n\
00690 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00691 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00692 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00693 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00694 \n\
00695 ================================================================================\n\
00696 MSG: arm_navigation_msgs/JointConstraint\n\
00697 # Constrain the position of a joint to be within a certain bound\n\
00698 string joint_name\n\
00699 \n\
00700 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00701 float64 position\n\
00702 float64 tolerance_above\n\
00703 float64 tolerance_below\n\
00704 \n\
00705 # A weighting factor for this constraint\n\
00706 float64 weight\n\
00707 ================================================================================\n\
00708 MSG: arm_navigation_msgs/PositionConstraint\n\
00709 # This message contains the definition of a position constraint.\n\
00710 Header header\n\
00711 \n\
00712 # The robot link this constraint refers to\n\
00713 string link_name\n\
00714 \n\
00715 # The offset (in the link frame) for the target point on the link we are planning for\n\
00716 geometry_msgs/Point target_point_offset\n\
00717 \n\
00718 # The nominal/target position for the point we are planning for\n\
00719 geometry_msgs/Point position\n\
00720 \n\
00721 # The shape of the bounded region that constrains the position of the end-effector\n\
00722 # This region is always centered at the position defined above\n\
00723 arm_navigation_msgs/Shape constraint_region_shape\n\
00724 \n\
00725 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00726 # This allows the specification of non-axis aligned constraints\n\
00727 geometry_msgs/Quaternion constraint_region_orientation\n\
00728 \n\
00729 # Constraint weighting factor - a weight for this constraint\n\
00730 float64 weight\n\
00731 \n\
00732 ================================================================================\n\
00733 MSG: arm_navigation_msgs/Shape\n\
00734 byte SPHERE=0\n\
00735 byte BOX=1\n\
00736 byte CYLINDER=2\n\
00737 byte MESH=3\n\
00738 \n\
00739 byte type\n\
00740 \n\
00741 \n\
00742 #### define sphere, box, cylinder ####\n\
00743 # the origin of each shape is considered at the shape's center\n\
00744 \n\
00745 # for sphere\n\
00746 # radius := dimensions[0]\n\
00747 \n\
00748 # for cylinder\n\
00749 # radius := dimensions[0]\n\
00750 # length := dimensions[1]\n\
00751 # the length is along the Z axis\n\
00752 \n\
00753 # for box\n\
00754 # size_x := dimensions[0]\n\
00755 # size_y := dimensions[1]\n\
00756 # size_z := dimensions[2]\n\
00757 float64[] dimensions\n\
00758 \n\
00759 \n\
00760 #### define mesh ####\n\
00761 \n\
00762 # list of triangles; triangle k is defined by tre vertices located\n\
00763 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00764 int32[] triangles\n\
00765 geometry_msgs/Point[] vertices\n\
00766 \n\
00767 ================================================================================\n\
00768 MSG: arm_navigation_msgs/OrientationConstraint\n\
00769 # This message contains the definition of an orientation constraint.\n\
00770 Header header\n\
00771 \n\
00772 # The robot link this constraint refers to\n\
00773 string link_name\n\
00774 \n\
00775 # The type of the constraint\n\
00776 int32 type\n\
00777 int32 LINK_FRAME=0\n\
00778 int32 HEADER_FRAME=1\n\
00779 \n\
00780 # The desired orientation of the robot link specified as a quaternion\n\
00781 geometry_msgs/Quaternion orientation\n\
00782 \n\
00783 # optional RPY error tolerances specified if \n\
00784 float64 absolute_roll_tolerance\n\
00785 float64 absolute_pitch_tolerance\n\
00786 float64 absolute_yaw_tolerance\n\
00787 \n\
00788 # Constraint weighting factor - a weight for this constraint\n\
00789 float64 weight\n\
00790 \n\
00791 ================================================================================\n\
00792 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00793 # This message contains the definition of a visibility constraint.\n\
00794 Header header\n\
00795 \n\
00796 # The point stamped target that needs to be kept within view of the sensor\n\
00797 geometry_msgs/PointStamped target\n\
00798 \n\
00799 # The local pose of the frame in which visibility is to be maintained\n\
00800 # The frame id should represent the robot link to which the sensor is attached\n\
00801 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00802 geometry_msgs/PoseStamped sensor_pose\n\
00803 \n\
00804 # The deviation (in radians) that will be tolerated\n\
00805 # Constraint error will be measured as the solid angle between the \n\
00806 # X axis of the frame defined above and the vector between the origin \n\
00807 # of the frame defined above and the target location\n\
00808 float64 absolute_tolerance\n\
00809 \n\
00810 \n\
00811 ================================================================================\n\
00812 MSG: geometry_msgs/PointStamped\n\
00813 # This represents a Point with reference coordinate frame and timestamp\n\
00814 Header header\n\
00815 Point point\n\
00816 \n\
00817 ================================================================================\n\
00818 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00819 # A set of collision operations that will be performed in the order they are specified\n\
00820 CollisionOperation[] collision_operations\n\
00821 ================================================================================\n\
00822 MSG: arm_navigation_msgs/CollisionOperation\n\
00823 # A definition of a collision operation\n\
00824 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00825 # between the gripper and all objects in the collision space\n\
00826 \n\
00827 string object1\n\
00828 string object2\n\
00829 string COLLISION_SET_ALL=\"all\"\n\
00830 string COLLISION_SET_OBJECTS=\"objects\"\n\
00831 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00832 \n\
00833 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00834 float64 penetration_distance\n\
00835 \n\
00836 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00837 int32 operation\n\
00838 int32 DISABLE=0\n\
00839 int32 ENABLE=1\n\
00840 \n\
00841 ================================================================================\n\
00842 MSG: arm_navigation_msgs/LinkPadding\n\
00843 #name for the link\n\
00844 string link_name\n\
00845 \n\
00846 # padding to apply to the link\n\
00847 float64 padding\n\
00848 \n\
00849 ";
00850   }
00851 
00852   static const char* value(const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); } 
00853 };
00854 
00855 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00856 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00857 } // namespace message_traits
00858 } // namespace ros
00859 
00860 namespace ros
00861 {
00862 namespace serialization
00863 {
00864 
00865 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
00866 {
00867   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00868   {
00869     stream.next(m.header);
00870     stream.next(m.goal_id);
00871     stream.next(m.goal);
00872   }
00873 
00874   ROS_DECLARE_ALLINONE_SERIALIZER;
00875 }; // struct PickupActionGoal_
00876 } // namespace serialization
00877 } // namespace ros
00878 
00879 namespace ros
00880 {
00881 namespace message_operations
00882 {
00883 
00884 template<class ContainerAllocator>
00885 struct Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
00886 {
00887   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v) 
00888   {
00889     s << indent << "header: ";
00890 s << std::endl;
00891     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00892     s << indent << "goal_id: ";
00893 s << std::endl;
00894     Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + "  ", v.goal_id);
00895     s << indent << "goal: ";
00896 s << std::endl;
00897     Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.goal);
00898   }
00899 };
00900 
00901 
00902 } // namespace message_operations
00903 } // namespace ros
00904 
00905 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00906 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12