GraspPlanningResult.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/GraspPlanningResult.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGRESULT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/Grasp.h"
00018 #include "object_manipulation_msgs/GraspPlanningErrorCode.h"
00019 
00020 namespace object_manipulation_msgs
00021 {
00022 template <class ContainerAllocator>
00023 struct GraspPlanningResult_ {
00024   typedef GraspPlanningResult_<ContainerAllocator> Type;
00025 
00026   GraspPlanningResult_()
00027   : grasps()
00028   , error_code()
00029   {
00030   }
00031 
00032   GraspPlanningResult_(const ContainerAllocator& _alloc)
00033   : grasps(_alloc)
00034   , error_code(_alloc)
00035   {
00036   }
00037 
00038   typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other >  _grasps_type;
00039   std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other >  grasps;
00040 
00041   typedef  ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator>  _error_code_type;
00042    ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator>  error_code;
00043 
00044 
00045   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > Ptr;
00046   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator>  const> ConstPtr;
00047   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00048 }; // struct GraspPlanningResult
00049 typedef  ::object_manipulation_msgs::GraspPlanningResult_<std::allocator<void> > GraspPlanningResult;
00050 
00051 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult> GraspPlanningResultPtr;
00052 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult const> GraspPlanningResultConstPtr;
00053 
00054 
00055 template<typename ContainerAllocator>
00056 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> & v)
00057 {
00058   ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> >::stream(s, "", v);
00059   return s;}
00060 
00061 } // namespace object_manipulation_msgs
00062 
00063 namespace ros
00064 {
00065 namespace message_traits
00066 {
00067 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > : public TrueType {};
00068 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator>  const> : public TrueType {};
00069 template<class ContainerAllocator>
00070 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > {
00071   static const char* value() 
00072   {
00073     return "998e3d06c509abfc46d7fdf96fe1c188";
00074   }
00075 
00076   static const char* value(const  ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> &) { return value(); } 
00077   static const uint64_t static_value1 = 0x998e3d06c509abfcULL;
00078   static const uint64_t static_value2 = 0x46d7fdf96fe1c188ULL;
00079 };
00080 
00081 template<class ContainerAllocator>
00082 struct DataType< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > {
00083   static const char* value() 
00084   {
00085     return "object_manipulation_msgs/GraspPlanningResult";
00086   }
00087 
00088   static const char* value(const  ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> &) { return value(); } 
00089 };
00090 
00091 template<class ContainerAllocator>
00092 struct Definition< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > {
00093   static const char* value() 
00094   {
00095     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00096 \n\
00097 # the list of planned grasps\n\
00098 Grasp[] grasps\n\
00099 \n\
00100 # whether an error occurred\n\
00101 GraspPlanningErrorCode error_code\n\
00102 \n\
00103 \n\
00104 ================================================================================\n\
00105 MSG: object_manipulation_msgs/Grasp\n\
00106 \n\
00107 # The internal posture of the hand for the pre-grasp\n\
00108 # only positions are used\n\
00109 sensor_msgs/JointState pre_grasp_posture\n\
00110 \n\
00111 # The internal posture of the hand for the grasp\n\
00112 # positions and efforts are used\n\
00113 sensor_msgs/JointState grasp_posture\n\
00114 \n\
00115 # The position of the end-effector for the grasp relative to a reference frame \n\
00116 # (that is always specified elsewhere, not in this message)\n\
00117 geometry_msgs/Pose grasp_pose\n\
00118 \n\
00119 # The estimated probability of success for this grasp\n\
00120 float64 success_probability\n\
00121 \n\
00122 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00123 bool cluster_rep\n\
00124 \n\
00125 # how far the pre-grasp should ideally be away from the grasp\n\
00126 float32 desired_approach_distance\n\
00127 \n\
00128 # how much distance between pre-grasp and grasp must actually be feasible \n\
00129 # for the grasp not to be rejected\n\
00130 float32 min_approach_distance\n\
00131 \n\
00132 # an optional list of obstacles that we have semantic information about\n\
00133 # and that we expect might move in the course of executing this grasp\n\
00134 # the grasp planner is expected to make sure they move in an OK way; during\n\
00135 # execution, grasp executors will not check for collisions against these objects\n\
00136 GraspableObject[] moved_obstacles\n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: sensor_msgs/JointState\n\
00140 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00141 #\n\
00142 # The state of each joint (revolute or prismatic) is defined by:\n\
00143 #  * the position of the joint (rad or m),\n\
00144 #  * the velocity of the joint (rad/s or m/s) and \n\
00145 #  * the effort that is applied in the joint (Nm or N).\n\
00146 #\n\
00147 # Each joint is uniquely identified by its name\n\
00148 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00149 # in one message have to be recorded at the same time.\n\
00150 #\n\
00151 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00152 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00153 # effort associated with them, you can leave the effort array empty. \n\
00154 #\n\
00155 # All arrays in this message should have the same size, or be empty.\n\
00156 # This is the only way to uniquely associate the joint name with the correct\n\
00157 # states.\n\
00158 \n\
00159 \n\
00160 Header header\n\
00161 \n\
00162 string[] name\n\
00163 float64[] position\n\
00164 float64[] velocity\n\
00165 float64[] effort\n\
00166 \n\
00167 ================================================================================\n\
00168 MSG: std_msgs/Header\n\
00169 # Standard metadata for higher-level stamped data types.\n\
00170 # This is generally used to communicate timestamped data \n\
00171 # in a particular coordinate frame.\n\
00172 # \n\
00173 # sequence ID: consecutively increasing ID \n\
00174 uint32 seq\n\
00175 #Two-integer timestamp that is expressed as:\n\
00176 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00177 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00178 # time-handling sugar is provided by the client library\n\
00179 time stamp\n\
00180 #Frame this data is associated with\n\
00181 # 0: no frame\n\
00182 # 1: global frame\n\
00183 string frame_id\n\
00184 \n\
00185 ================================================================================\n\
00186 MSG: geometry_msgs/Pose\n\
00187 # A representation of pose in free space, composed of postion and orientation. \n\
00188 Point position\n\
00189 Quaternion orientation\n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: geometry_msgs/Point\n\
00193 # This contains the position of a point in free space\n\
00194 float64 x\n\
00195 float64 y\n\
00196 float64 z\n\
00197 \n\
00198 ================================================================================\n\
00199 MSG: geometry_msgs/Quaternion\n\
00200 # This represents an orientation in free space in quaternion form.\n\
00201 \n\
00202 float64 x\n\
00203 float64 y\n\
00204 float64 z\n\
00205 float64 w\n\
00206 \n\
00207 ================================================================================\n\
00208 MSG: object_manipulation_msgs/GraspableObject\n\
00209 # an object that the object_manipulator can work on\n\
00210 \n\
00211 # a graspable object can be represented in multiple ways. This message\n\
00212 # can contain all of them. Which one is actually used is up to the receiver\n\
00213 # of this message. When adding new representations, one must be careful that\n\
00214 # they have reasonable lightweight defaults indicating that that particular\n\
00215 # representation is not available.\n\
00216 \n\
00217 # the tf frame to be used as a reference frame when combining information from\n\
00218 # the different representations below\n\
00219 string reference_frame_id\n\
00220 \n\
00221 # potential recognition results from a database of models\n\
00222 # all poses are relative to the object reference pose\n\
00223 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00224 \n\
00225 # the point cloud itself\n\
00226 sensor_msgs/PointCloud cluster\n\
00227 \n\
00228 # a region of a PointCloud2 of interest\n\
00229 object_manipulation_msgs/SceneRegion region\n\
00230 \n\
00231 # the name that this object has in the collision environment\n\
00232 string collision_name\n\
00233 ================================================================================\n\
00234 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00235 # Informs that a specific model from the Model Database has been \n\
00236 # identified at a certain location\n\
00237 \n\
00238 # the database id of the model\n\
00239 int32 model_id\n\
00240 \n\
00241 # the pose that it can be found in\n\
00242 geometry_msgs/PoseStamped pose\n\
00243 \n\
00244 # a measure of the confidence level in this detection result\n\
00245 float32 confidence\n\
00246 \n\
00247 # the name of the object detector that generated this detection result\n\
00248 string detector_name\n\
00249 \n\
00250 ================================================================================\n\
00251 MSG: geometry_msgs/PoseStamped\n\
00252 # A Pose with reference coordinate frame and timestamp\n\
00253 Header header\n\
00254 Pose pose\n\
00255 \n\
00256 ================================================================================\n\
00257 MSG: sensor_msgs/PointCloud\n\
00258 # This message holds a collection of 3d points, plus optional additional\n\
00259 # information about each point.\n\
00260 \n\
00261 # Time of sensor data acquisition, coordinate frame ID.\n\
00262 Header header\n\
00263 \n\
00264 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00265 # in the frame given in the header.\n\
00266 geometry_msgs/Point32[] points\n\
00267 \n\
00268 # Each channel should have the same number of elements as points array,\n\
00269 # and the data in each channel should correspond 1:1 with each point.\n\
00270 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00271 ChannelFloat32[] channels\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: geometry_msgs/Point32\n\
00275 # This contains the position of a point in free space(with 32 bits of precision).\n\
00276 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00277 # \n\
00278 # This recommendation is to promote interoperability.  \n\
00279 #\n\
00280 # This message is designed to take up less space when sending\n\
00281 # lots of points at once, as in the case of a PointCloud.  \n\
00282 \n\
00283 float32 x\n\
00284 float32 y\n\
00285 float32 z\n\
00286 ================================================================================\n\
00287 MSG: sensor_msgs/ChannelFloat32\n\
00288 # This message is used by the PointCloud message to hold optional data\n\
00289 # associated with each point in the cloud. The length of the values\n\
00290 # array should be the same as the length of the points array in the\n\
00291 # PointCloud, and each value should be associated with the corresponding\n\
00292 # point.\n\
00293 \n\
00294 # Channel names in existing practice include:\n\
00295 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00296 #              This is opposite to usual conventions but remains for\n\
00297 #              historical reasons. The newer PointCloud2 message has no\n\
00298 #              such problem.\n\
00299 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00300 #           (R,G,B) values packed into the least significant 24 bits,\n\
00301 #           in order.\n\
00302 #   \"intensity\" - laser or pixel intensity.\n\
00303 #   \"distance\"\n\
00304 \n\
00305 # The channel name should give semantics of the channel (e.g.\n\
00306 # \"intensity\" instead of \"value\").\n\
00307 string name\n\
00308 \n\
00309 # The values array should be 1-1 with the elements of the associated\n\
00310 # PointCloud.\n\
00311 float32[] values\n\
00312 \n\
00313 ================================================================================\n\
00314 MSG: object_manipulation_msgs/SceneRegion\n\
00315 # Point cloud\n\
00316 sensor_msgs/PointCloud2 cloud\n\
00317 \n\
00318 # Indices for the region of interest\n\
00319 int32[] mask\n\
00320 \n\
00321 # One of the corresponding 2D images, if applicable\n\
00322 sensor_msgs/Image image\n\
00323 \n\
00324 # The disparity image, if applicable\n\
00325 sensor_msgs/Image disparity_image\n\
00326 \n\
00327 # Camera info for the camera that took the image\n\
00328 sensor_msgs/CameraInfo cam_info\n\
00329 \n\
00330 # a 3D region of interest for grasp planning\n\
00331 geometry_msgs/PoseStamped  roi_box_pose\n\
00332 geometry_msgs/Vector3      roi_box_dims\n\
00333 \n\
00334 ================================================================================\n\
00335 MSG: sensor_msgs/PointCloud2\n\
00336 # This message holds a collection of N-dimensional points, which may\n\
00337 # contain additional information such as normals, intensity, etc. The\n\
00338 # point data is stored as a binary blob, its layout described by the\n\
00339 # contents of the \"fields\" array.\n\
00340 \n\
00341 # The point cloud data may be organized 2d (image-like) or 1d\n\
00342 # (unordered). Point clouds organized as 2d images may be produced by\n\
00343 # camera depth sensors such as stereo or time-of-flight.\n\
00344 \n\
00345 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00346 # points).\n\
00347 Header header\n\
00348 \n\
00349 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00350 # 1 and width is the length of the point cloud.\n\
00351 uint32 height\n\
00352 uint32 width\n\
00353 \n\
00354 # Describes the channels and their layout in the binary data blob.\n\
00355 PointField[] fields\n\
00356 \n\
00357 bool    is_bigendian # Is this data bigendian?\n\
00358 uint32  point_step   # Length of a point in bytes\n\
00359 uint32  row_step     # Length of a row in bytes\n\
00360 uint8[] data         # Actual point data, size is (row_step*height)\n\
00361 \n\
00362 bool is_dense        # True if there are no invalid points\n\
00363 \n\
00364 ================================================================================\n\
00365 MSG: sensor_msgs/PointField\n\
00366 # This message holds the description of one point entry in the\n\
00367 # PointCloud2 message format.\n\
00368 uint8 INT8    = 1\n\
00369 uint8 UINT8   = 2\n\
00370 uint8 INT16   = 3\n\
00371 uint8 UINT16  = 4\n\
00372 uint8 INT32   = 5\n\
00373 uint8 UINT32  = 6\n\
00374 uint8 FLOAT32 = 7\n\
00375 uint8 FLOAT64 = 8\n\
00376 \n\
00377 string name      # Name of field\n\
00378 uint32 offset    # Offset from start of point struct\n\
00379 uint8  datatype  # Datatype enumeration, see above\n\
00380 uint32 count     # How many elements in the field\n\
00381 \n\
00382 ================================================================================\n\
00383 MSG: sensor_msgs/Image\n\
00384 # This message contains an uncompressed image\n\
00385 # (0, 0) is at top-left corner of image\n\
00386 #\n\
00387 \n\
00388 Header header        # Header timestamp should be acquisition time of image\n\
00389                      # Header frame_id should be optical frame of camera\n\
00390                      # origin of frame should be optical center of cameara\n\
00391                      # +x should point to the right in the image\n\
00392                      # +y should point down in the image\n\
00393                      # +z should point into to plane of the image\n\
00394                      # If the frame_id here and the frame_id of the CameraInfo\n\
00395                      # message associated with the image conflict\n\
00396                      # the behavior is undefined\n\
00397 \n\
00398 uint32 height         # image height, that is, number of rows\n\
00399 uint32 width          # image width, that is, number of columns\n\
00400 \n\
00401 # The legal values for encoding are in file src/image_encodings.cpp\n\
00402 # If you want to standardize a new string format, join\n\
00403 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00404 \n\
00405 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00406                       # taken from the list of strings in src/image_encodings.cpp\n\
00407 \n\
00408 uint8 is_bigendian    # is this data bigendian?\n\
00409 uint32 step           # Full row length in bytes\n\
00410 uint8[] data          # actual matrix data, size is (step * rows)\n\
00411 \n\
00412 ================================================================================\n\
00413 MSG: sensor_msgs/CameraInfo\n\
00414 # This message defines meta information for a camera. It should be in a\n\
00415 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00416 # image topics named:\n\
00417 #\n\
00418 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00419 #   image            - monochrome, distorted\n\
00420 #   image_color      - color, distorted\n\
00421 #   image_rect       - monochrome, rectified\n\
00422 #   image_rect_color - color, rectified\n\
00423 #\n\
00424 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00425 # for producing the four processed image topics from image_raw and\n\
00426 # camera_info. The meaning of the camera parameters are described in\n\
00427 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00428 #\n\
00429 # The image_geometry package provides a user-friendly interface to\n\
00430 # common operations using this meta information. If you want to, e.g.,\n\
00431 # project a 3d point into image coordinates, we strongly recommend\n\
00432 # using image_geometry.\n\
00433 #\n\
00434 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00435 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00436 # indicates an uncalibrated camera.\n\
00437 \n\
00438 #######################################################################\n\
00439 #                     Image acquisition info                          #\n\
00440 #######################################################################\n\
00441 \n\
00442 # Time of image acquisition, camera coordinate frame ID\n\
00443 Header header    # Header timestamp should be acquisition time of image\n\
00444                  # Header frame_id should be optical frame of camera\n\
00445                  # origin of frame should be optical center of camera\n\
00446                  # +x should point to the right in the image\n\
00447                  # +y should point down in the image\n\
00448                  # +z should point into the plane of the image\n\
00449 \n\
00450 \n\
00451 #######################################################################\n\
00452 #                      Calibration Parameters                         #\n\
00453 #######################################################################\n\
00454 # These are fixed during camera calibration. Their values will be the #\n\
00455 # same in all messages until the camera is recalibrated. Note that    #\n\
00456 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00457 #                                                                     #\n\
00458 # The internal parameters can be used to warp a raw (distorted) image #\n\
00459 # to:                                                                 #\n\
00460 #   1. An undistorted image (requires D and K)                        #\n\
00461 #   2. A rectified image (requires D, K, R)                           #\n\
00462 # The projection matrix P projects 3D points into the rectified image.#\n\
00463 #######################################################################\n\
00464 \n\
00465 # The image dimensions with which the camera was calibrated. Normally\n\
00466 # this will be the full camera resolution in pixels.\n\
00467 uint32 height\n\
00468 uint32 width\n\
00469 \n\
00470 # The distortion model used. Supported models are listed in\n\
00471 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00472 # simple model of radial and tangential distortion - is sufficent.\n\
00473 string distortion_model\n\
00474 \n\
00475 # The distortion parameters, size depending on the distortion model.\n\
00476 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00477 float64[] D\n\
00478 \n\
00479 # Intrinsic camera matrix for the raw (distorted) images.\n\
00480 #     [fx  0 cx]\n\
00481 # K = [ 0 fy cy]\n\
00482 #     [ 0  0  1]\n\
00483 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00484 # coordinates using the focal lengths (fx, fy) and principal point\n\
00485 # (cx, cy).\n\
00486 float64[9]  K # 3x3 row-major matrix\n\
00487 \n\
00488 # Rectification matrix (stereo cameras only)\n\
00489 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00490 # stereo image plane so that epipolar lines in both stereo images are\n\
00491 # parallel.\n\
00492 float64[9]  R # 3x3 row-major matrix\n\
00493 \n\
00494 # Projection/camera matrix\n\
00495 #     [fx'  0  cx' Tx]\n\
00496 # P = [ 0  fy' cy' Ty]\n\
00497 #     [ 0   0   1   0]\n\
00498 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00499 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00500 #  is the normal camera intrinsic matrix for the rectified image.\n\
00501 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00502 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00503 #  (cx', cy') - these may differ from the values in K.\n\
00504 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00505 #  also have R = the identity and P[1:3,1:3] = K.\n\
00506 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00507 #  position of the optical center of the second camera in the first\n\
00508 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00509 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00510 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00511 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00512 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00513 #  the rectified image is given by:\n\
00514 #  [u v w]' = P * [X Y Z 1]'\n\
00515 #         x = u / w\n\
00516 #         y = v / w\n\
00517 #  This holds for both images of a stereo pair.\n\
00518 float64[12] P # 3x4 row-major matrix\n\
00519 \n\
00520 \n\
00521 #######################################################################\n\
00522 #                      Operational Parameters                         #\n\
00523 #######################################################################\n\
00524 # These define the image region actually captured by the camera       #\n\
00525 # driver. Although they affect the geometry of the output image, they #\n\
00526 # may be changed freely without recalibrating the camera.             #\n\
00527 #######################################################################\n\
00528 \n\
00529 # Binning refers here to any camera setting which combines rectangular\n\
00530 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00531 #  resolution of the output image to\n\
00532 #  (width / binning_x) x (height / binning_y).\n\
00533 # The default values binning_x = binning_y = 0 is considered the same\n\
00534 #  as binning_x = binning_y = 1 (no subsampling).\n\
00535 uint32 binning_x\n\
00536 uint32 binning_y\n\
00537 \n\
00538 # Region of interest (subwindow of full camera resolution), given in\n\
00539 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00540 #  always denotes the same window of pixels on the camera sensor,\n\
00541 #  regardless of binning settings.\n\
00542 # The default setting of roi (all values 0) is considered the same as\n\
00543 #  full resolution (roi.width = width, roi.height = height).\n\
00544 RegionOfInterest roi\n\
00545 \n\
00546 ================================================================================\n\
00547 MSG: sensor_msgs/RegionOfInterest\n\
00548 # This message is used to specify a region of interest within an image.\n\
00549 #\n\
00550 # When used to specify the ROI setting of the camera when the image was\n\
00551 # taken, the height and width fields should either match the height and\n\
00552 # width fields for the associated image; or height = width = 0\n\
00553 # indicates that the full resolution image was captured.\n\
00554 \n\
00555 uint32 x_offset  # Leftmost pixel of the ROI\n\
00556                  # (0 if the ROI includes the left edge of the image)\n\
00557 uint32 y_offset  # Topmost pixel of the ROI\n\
00558                  # (0 if the ROI includes the top edge of the image)\n\
00559 uint32 height    # Height of ROI\n\
00560 uint32 width     # Width of ROI\n\
00561 \n\
00562 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00563 # ROI in this message. Typically this should be False if the full image\n\
00564 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00565 # used).\n\
00566 bool do_rectify\n\
00567 \n\
00568 ================================================================================\n\
00569 MSG: geometry_msgs/Vector3\n\
00570 # This represents a vector in free space. \n\
00571 \n\
00572 float64 x\n\
00573 float64 y\n\
00574 float64 z\n\
00575 ================================================================================\n\
00576 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
00577 # Error codes for grasp and place planning\n\
00578 \n\
00579 # plan completed as expected\n\
00580 int32 SUCCESS = 0\n\
00581 \n\
00582 # tf error encountered while transforming\n\
00583 int32 TF_ERROR = 1 \n\
00584 \n\
00585 # some other error\n\
00586 int32 OTHER_ERROR = 2\n\
00587 \n\
00588 # the actual value of this error code\n\
00589 int32 value\n\
00590 ";
00591   }
00592 
00593   static const char* value(const  ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> &) { return value(); } 
00594 };
00595 
00596 } // namespace message_traits
00597 } // namespace ros
00598 
00599 namespace ros
00600 {
00601 namespace serialization
00602 {
00603 
00604 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> >
00605 {
00606   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00607   {
00608     stream.next(m.grasps);
00609     stream.next(m.error_code);
00610   }
00611 
00612   ROS_DECLARE_ALLINONE_SERIALIZER;
00613 }; // struct GraspPlanningResult_
00614 } // namespace serialization
00615 } // namespace ros
00616 
00617 namespace ros
00618 {
00619 namespace message_operations
00620 {
00621 
00622 template<class ContainerAllocator>
00623 struct Printer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> >
00624 {
00625   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> & v) 
00626   {
00627     s << indent << "grasps[]" << std::endl;
00628     for (size_t i = 0; i < v.grasps.size(); ++i)
00629     {
00630       s << indent << "  grasps[" << i << "]: ";
00631       s << std::endl;
00632       s << indent;
00633       Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + "    ", v.grasps[i]);
00634     }
00635     s << indent << "error_code: ";
00636 s << std::endl;
00637     Printer< ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> >::stream(s, indent + "  ", v.error_code);
00638   }
00639 };
00640 
00641 
00642 } // namespace message_operations
00643 } // namespace ros
00644 
00645 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGRESULT_H
00646 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12