GraspPlanningActionGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/GraspPlanningActionGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/GraspPlanningGoal.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspPlanningActionGoal_ {
00025   typedef GraspPlanningActionGoal_<ContainerAllocator> Type;
00026 
00027   GraspPlanningActionGoal_()
00028   : header()
00029   , goal_id()
00030   , goal()
00031   {
00032   }
00033 
00034   GraspPlanningActionGoal_(const ContainerAllocator& _alloc)
00035   : header(_alloc)
00036   , goal_id(_alloc)
00037   , goal(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00042    ::std_msgs::Header_<ContainerAllocator>  header;
00043 
00044   typedef  ::actionlib_msgs::GoalID_<ContainerAllocator>  _goal_id_type;
00045    ::actionlib_msgs::GoalID_<ContainerAllocator>  goal_id;
00046 
00047   typedef  ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator>  _goal_type;
00048    ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator>  goal;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct GraspPlanningActionGoal
00055 typedef  ::object_manipulation_msgs::GraspPlanningActionGoal_<std::allocator<void> > GraspPlanningActionGoal;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal> GraspPlanningActionGoalPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal const> GraspPlanningActionGoalConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "bd86cee38f37732db5c86d633be95d66";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0xbd86cee38f37732dULL;
00084   static const uint64_t static_value2 = 0xb5c86d633be95d66ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/GraspPlanningActionGoal";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 GraspPlanningGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/GraspPlanningGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 # Requests that grasp planning be performed on the object to be grasped\n\
00142 # returns a list of grasps to be tested and executed\n\
00143 \n\
00144 # the arm being used\n\
00145 string arm_name\n\
00146 \n\
00147 # the object to be grasped\n\
00148 GraspableObject target\n\
00149 \n\
00150 # the name that the target object has in the collision environment\n\
00151 # can be left empty if no name is available\n\
00152 string collision_object_name\n\
00153 \n\
00154 # the name that the support surface (e.g. table) has in the collision map\n\
00155 # can be left empty if no name is available\n\
00156 string collision_support_surface_name\n\
00157 \n\
00158 # an optional list of grasps to be evaluated by the planner\n\
00159 Grasp[] grasps_to_evaluate\n\
00160 \n\
00161 # an optional list of obstacles that we have semantic information about\n\
00162 # and that can be moved in the course of grasping\n\
00163 GraspableObject[] movable_obstacles\n\
00164 \n\
00165 \n\
00166 ================================================================================\n\
00167 MSG: object_manipulation_msgs/GraspableObject\n\
00168 # an object that the object_manipulator can work on\n\
00169 \n\
00170 # a graspable object can be represented in multiple ways. This message\n\
00171 # can contain all of them. Which one is actually used is up to the receiver\n\
00172 # of this message. When adding new representations, one must be careful that\n\
00173 # they have reasonable lightweight defaults indicating that that particular\n\
00174 # representation is not available.\n\
00175 \n\
00176 # the tf frame to be used as a reference frame when combining information from\n\
00177 # the different representations below\n\
00178 string reference_frame_id\n\
00179 \n\
00180 # potential recognition results from a database of models\n\
00181 # all poses are relative to the object reference pose\n\
00182 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00183 \n\
00184 # the point cloud itself\n\
00185 sensor_msgs/PointCloud cluster\n\
00186 \n\
00187 # a region of a PointCloud2 of interest\n\
00188 object_manipulation_msgs/SceneRegion region\n\
00189 \n\
00190 # the name that this object has in the collision environment\n\
00191 string collision_name\n\
00192 ================================================================================\n\
00193 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00194 # Informs that a specific model from the Model Database has been \n\
00195 # identified at a certain location\n\
00196 \n\
00197 # the database id of the model\n\
00198 int32 model_id\n\
00199 \n\
00200 # the pose that it can be found in\n\
00201 geometry_msgs/PoseStamped pose\n\
00202 \n\
00203 # a measure of the confidence level in this detection result\n\
00204 float32 confidence\n\
00205 \n\
00206 # the name of the object detector that generated this detection result\n\
00207 string detector_name\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: geometry_msgs/PoseStamped\n\
00211 # A Pose with reference coordinate frame and timestamp\n\
00212 Header header\n\
00213 Pose pose\n\
00214 \n\
00215 ================================================================================\n\
00216 MSG: geometry_msgs/Pose\n\
00217 # A representation of pose in free space, composed of postion and orientation. \n\
00218 Point position\n\
00219 Quaternion orientation\n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: geometry_msgs/Point\n\
00223 # This contains the position of a point in free space\n\
00224 float64 x\n\
00225 float64 y\n\
00226 float64 z\n\
00227 \n\
00228 ================================================================================\n\
00229 MSG: geometry_msgs/Quaternion\n\
00230 # This represents an orientation in free space in quaternion form.\n\
00231 \n\
00232 float64 x\n\
00233 float64 y\n\
00234 float64 z\n\
00235 float64 w\n\
00236 \n\
00237 ================================================================================\n\
00238 MSG: sensor_msgs/PointCloud\n\
00239 # This message holds a collection of 3d points, plus optional additional\n\
00240 # information about each point.\n\
00241 \n\
00242 # Time of sensor data acquisition, coordinate frame ID.\n\
00243 Header header\n\
00244 \n\
00245 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00246 # in the frame given in the header.\n\
00247 geometry_msgs/Point32[] points\n\
00248 \n\
00249 # Each channel should have the same number of elements as points array,\n\
00250 # and the data in each channel should correspond 1:1 with each point.\n\
00251 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00252 ChannelFloat32[] channels\n\
00253 \n\
00254 ================================================================================\n\
00255 MSG: geometry_msgs/Point32\n\
00256 # This contains the position of a point in free space(with 32 bits of precision).\n\
00257 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00258 # \n\
00259 # This recommendation is to promote interoperability.  \n\
00260 #\n\
00261 # This message is designed to take up less space when sending\n\
00262 # lots of points at once, as in the case of a PointCloud.  \n\
00263 \n\
00264 float32 x\n\
00265 float32 y\n\
00266 float32 z\n\
00267 ================================================================================\n\
00268 MSG: sensor_msgs/ChannelFloat32\n\
00269 # This message is used by the PointCloud message to hold optional data\n\
00270 # associated with each point in the cloud. The length of the values\n\
00271 # array should be the same as the length of the points array in the\n\
00272 # PointCloud, and each value should be associated with the corresponding\n\
00273 # point.\n\
00274 \n\
00275 # Channel names in existing practice include:\n\
00276 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00277 #              This is opposite to usual conventions but remains for\n\
00278 #              historical reasons. The newer PointCloud2 message has no\n\
00279 #              such problem.\n\
00280 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00281 #           (R,G,B) values packed into the least significant 24 bits,\n\
00282 #           in order.\n\
00283 #   \"intensity\" - laser or pixel intensity.\n\
00284 #   \"distance\"\n\
00285 \n\
00286 # The channel name should give semantics of the channel (e.g.\n\
00287 # \"intensity\" instead of \"value\").\n\
00288 string name\n\
00289 \n\
00290 # The values array should be 1-1 with the elements of the associated\n\
00291 # PointCloud.\n\
00292 float32[] values\n\
00293 \n\
00294 ================================================================================\n\
00295 MSG: object_manipulation_msgs/SceneRegion\n\
00296 # Point cloud\n\
00297 sensor_msgs/PointCloud2 cloud\n\
00298 \n\
00299 # Indices for the region of interest\n\
00300 int32[] mask\n\
00301 \n\
00302 # One of the corresponding 2D images, if applicable\n\
00303 sensor_msgs/Image image\n\
00304 \n\
00305 # The disparity image, if applicable\n\
00306 sensor_msgs/Image disparity_image\n\
00307 \n\
00308 # Camera info for the camera that took the image\n\
00309 sensor_msgs/CameraInfo cam_info\n\
00310 \n\
00311 # a 3D region of interest for grasp planning\n\
00312 geometry_msgs/PoseStamped  roi_box_pose\n\
00313 geometry_msgs/Vector3      roi_box_dims\n\
00314 \n\
00315 ================================================================================\n\
00316 MSG: sensor_msgs/PointCloud2\n\
00317 # This message holds a collection of N-dimensional points, which may\n\
00318 # contain additional information such as normals, intensity, etc. The\n\
00319 # point data is stored as a binary blob, its layout described by the\n\
00320 # contents of the \"fields\" array.\n\
00321 \n\
00322 # The point cloud data may be organized 2d (image-like) or 1d\n\
00323 # (unordered). Point clouds organized as 2d images may be produced by\n\
00324 # camera depth sensors such as stereo or time-of-flight.\n\
00325 \n\
00326 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00327 # points).\n\
00328 Header header\n\
00329 \n\
00330 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00331 # 1 and width is the length of the point cloud.\n\
00332 uint32 height\n\
00333 uint32 width\n\
00334 \n\
00335 # Describes the channels and their layout in the binary data blob.\n\
00336 PointField[] fields\n\
00337 \n\
00338 bool    is_bigendian # Is this data bigendian?\n\
00339 uint32  point_step   # Length of a point in bytes\n\
00340 uint32  row_step     # Length of a row in bytes\n\
00341 uint8[] data         # Actual point data, size is (row_step*height)\n\
00342 \n\
00343 bool is_dense        # True if there are no invalid points\n\
00344 \n\
00345 ================================================================================\n\
00346 MSG: sensor_msgs/PointField\n\
00347 # This message holds the description of one point entry in the\n\
00348 # PointCloud2 message format.\n\
00349 uint8 INT8    = 1\n\
00350 uint8 UINT8   = 2\n\
00351 uint8 INT16   = 3\n\
00352 uint8 UINT16  = 4\n\
00353 uint8 INT32   = 5\n\
00354 uint8 UINT32  = 6\n\
00355 uint8 FLOAT32 = 7\n\
00356 uint8 FLOAT64 = 8\n\
00357 \n\
00358 string name      # Name of field\n\
00359 uint32 offset    # Offset from start of point struct\n\
00360 uint8  datatype  # Datatype enumeration, see above\n\
00361 uint32 count     # How many elements in the field\n\
00362 \n\
00363 ================================================================================\n\
00364 MSG: sensor_msgs/Image\n\
00365 # This message contains an uncompressed image\n\
00366 # (0, 0) is at top-left corner of image\n\
00367 #\n\
00368 \n\
00369 Header header        # Header timestamp should be acquisition time of image\n\
00370                      # Header frame_id should be optical frame of camera\n\
00371                      # origin of frame should be optical center of cameara\n\
00372                      # +x should point to the right in the image\n\
00373                      # +y should point down in the image\n\
00374                      # +z should point into to plane of the image\n\
00375                      # If the frame_id here and the frame_id of the CameraInfo\n\
00376                      # message associated with the image conflict\n\
00377                      # the behavior is undefined\n\
00378 \n\
00379 uint32 height         # image height, that is, number of rows\n\
00380 uint32 width          # image width, that is, number of columns\n\
00381 \n\
00382 # The legal values for encoding are in file src/image_encodings.cpp\n\
00383 # If you want to standardize a new string format, join\n\
00384 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00385 \n\
00386 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00387                       # taken from the list of strings in src/image_encodings.cpp\n\
00388 \n\
00389 uint8 is_bigendian    # is this data bigendian?\n\
00390 uint32 step           # Full row length in bytes\n\
00391 uint8[] data          # actual matrix data, size is (step * rows)\n\
00392 \n\
00393 ================================================================================\n\
00394 MSG: sensor_msgs/CameraInfo\n\
00395 # This message defines meta information for a camera. It should be in a\n\
00396 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00397 # image topics named:\n\
00398 #\n\
00399 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00400 #   image            - monochrome, distorted\n\
00401 #   image_color      - color, distorted\n\
00402 #   image_rect       - monochrome, rectified\n\
00403 #   image_rect_color - color, rectified\n\
00404 #\n\
00405 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00406 # for producing the four processed image topics from image_raw and\n\
00407 # camera_info. The meaning of the camera parameters are described in\n\
00408 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00409 #\n\
00410 # The image_geometry package provides a user-friendly interface to\n\
00411 # common operations using this meta information. If you want to, e.g.,\n\
00412 # project a 3d point into image coordinates, we strongly recommend\n\
00413 # using image_geometry.\n\
00414 #\n\
00415 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00416 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00417 # indicates an uncalibrated camera.\n\
00418 \n\
00419 #######################################################################\n\
00420 #                     Image acquisition info                          #\n\
00421 #######################################################################\n\
00422 \n\
00423 # Time of image acquisition, camera coordinate frame ID\n\
00424 Header header    # Header timestamp should be acquisition time of image\n\
00425                  # Header frame_id should be optical frame of camera\n\
00426                  # origin of frame should be optical center of camera\n\
00427                  # +x should point to the right in the image\n\
00428                  # +y should point down in the image\n\
00429                  # +z should point into the plane of the image\n\
00430 \n\
00431 \n\
00432 #######################################################################\n\
00433 #                      Calibration Parameters                         #\n\
00434 #######################################################################\n\
00435 # These are fixed during camera calibration. Their values will be the #\n\
00436 # same in all messages until the camera is recalibrated. Note that    #\n\
00437 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00438 #                                                                     #\n\
00439 # The internal parameters can be used to warp a raw (distorted) image #\n\
00440 # to:                                                                 #\n\
00441 #   1. An undistorted image (requires D and K)                        #\n\
00442 #   2. A rectified image (requires D, K, R)                           #\n\
00443 # The projection matrix P projects 3D points into the rectified image.#\n\
00444 #######################################################################\n\
00445 \n\
00446 # The image dimensions with which the camera was calibrated. Normally\n\
00447 # this will be the full camera resolution in pixels.\n\
00448 uint32 height\n\
00449 uint32 width\n\
00450 \n\
00451 # The distortion model used. Supported models are listed in\n\
00452 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00453 # simple model of radial and tangential distortion - is sufficent.\n\
00454 string distortion_model\n\
00455 \n\
00456 # The distortion parameters, size depending on the distortion model.\n\
00457 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00458 float64[] D\n\
00459 \n\
00460 # Intrinsic camera matrix for the raw (distorted) images.\n\
00461 #     [fx  0 cx]\n\
00462 # K = [ 0 fy cy]\n\
00463 #     [ 0  0  1]\n\
00464 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00465 # coordinates using the focal lengths (fx, fy) and principal point\n\
00466 # (cx, cy).\n\
00467 float64[9]  K # 3x3 row-major matrix\n\
00468 \n\
00469 # Rectification matrix (stereo cameras only)\n\
00470 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00471 # stereo image plane so that epipolar lines in both stereo images are\n\
00472 # parallel.\n\
00473 float64[9]  R # 3x3 row-major matrix\n\
00474 \n\
00475 # Projection/camera matrix\n\
00476 #     [fx'  0  cx' Tx]\n\
00477 # P = [ 0  fy' cy' Ty]\n\
00478 #     [ 0   0   1   0]\n\
00479 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00480 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00481 #  is the normal camera intrinsic matrix for the rectified image.\n\
00482 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00483 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00484 #  (cx', cy') - these may differ from the values in K.\n\
00485 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00486 #  also have R = the identity and P[1:3,1:3] = K.\n\
00487 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00488 #  position of the optical center of the second camera in the first\n\
00489 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00490 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00491 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00492 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00493 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00494 #  the rectified image is given by:\n\
00495 #  [u v w]' = P * [X Y Z 1]'\n\
00496 #         x = u / w\n\
00497 #         y = v / w\n\
00498 #  This holds for both images of a stereo pair.\n\
00499 float64[12] P # 3x4 row-major matrix\n\
00500 \n\
00501 \n\
00502 #######################################################################\n\
00503 #                      Operational Parameters                         #\n\
00504 #######################################################################\n\
00505 # These define the image region actually captured by the camera       #\n\
00506 # driver. Although they affect the geometry of the output image, they #\n\
00507 # may be changed freely without recalibrating the camera.             #\n\
00508 #######################################################################\n\
00509 \n\
00510 # Binning refers here to any camera setting which combines rectangular\n\
00511 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00512 #  resolution of the output image to\n\
00513 #  (width / binning_x) x (height / binning_y).\n\
00514 # The default values binning_x = binning_y = 0 is considered the same\n\
00515 #  as binning_x = binning_y = 1 (no subsampling).\n\
00516 uint32 binning_x\n\
00517 uint32 binning_y\n\
00518 \n\
00519 # Region of interest (subwindow of full camera resolution), given in\n\
00520 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00521 #  always denotes the same window of pixels on the camera sensor,\n\
00522 #  regardless of binning settings.\n\
00523 # The default setting of roi (all values 0) is considered the same as\n\
00524 #  full resolution (roi.width = width, roi.height = height).\n\
00525 RegionOfInterest roi\n\
00526 \n\
00527 ================================================================================\n\
00528 MSG: sensor_msgs/RegionOfInterest\n\
00529 # This message is used to specify a region of interest within an image.\n\
00530 #\n\
00531 # When used to specify the ROI setting of the camera when the image was\n\
00532 # taken, the height and width fields should either match the height and\n\
00533 # width fields for the associated image; or height = width = 0\n\
00534 # indicates that the full resolution image was captured.\n\
00535 \n\
00536 uint32 x_offset  # Leftmost pixel of the ROI\n\
00537                  # (0 if the ROI includes the left edge of the image)\n\
00538 uint32 y_offset  # Topmost pixel of the ROI\n\
00539                  # (0 if the ROI includes the top edge of the image)\n\
00540 uint32 height    # Height of ROI\n\
00541 uint32 width     # Width of ROI\n\
00542 \n\
00543 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00544 # ROI in this message. Typically this should be False if the full image\n\
00545 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00546 # used).\n\
00547 bool do_rectify\n\
00548 \n\
00549 ================================================================================\n\
00550 MSG: geometry_msgs/Vector3\n\
00551 # This represents a vector in free space. \n\
00552 \n\
00553 float64 x\n\
00554 float64 y\n\
00555 float64 z\n\
00556 ================================================================================\n\
00557 MSG: object_manipulation_msgs/Grasp\n\
00558 \n\
00559 # The internal posture of the hand for the pre-grasp\n\
00560 # only positions are used\n\
00561 sensor_msgs/JointState pre_grasp_posture\n\
00562 \n\
00563 # The internal posture of the hand for the grasp\n\
00564 # positions and efforts are used\n\
00565 sensor_msgs/JointState grasp_posture\n\
00566 \n\
00567 # The position of the end-effector for the grasp relative to a reference frame \n\
00568 # (that is always specified elsewhere, not in this message)\n\
00569 geometry_msgs/Pose grasp_pose\n\
00570 \n\
00571 # The estimated probability of success for this grasp\n\
00572 float64 success_probability\n\
00573 \n\
00574 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00575 bool cluster_rep\n\
00576 \n\
00577 # how far the pre-grasp should ideally be away from the grasp\n\
00578 float32 desired_approach_distance\n\
00579 \n\
00580 # how much distance between pre-grasp and grasp must actually be feasible \n\
00581 # for the grasp not to be rejected\n\
00582 float32 min_approach_distance\n\
00583 \n\
00584 # an optional list of obstacles that we have semantic information about\n\
00585 # and that we expect might move in the course of executing this grasp\n\
00586 # the grasp planner is expected to make sure they move in an OK way; during\n\
00587 # execution, grasp executors will not check for collisions against these objects\n\
00588 GraspableObject[] moved_obstacles\n\
00589 \n\
00590 ================================================================================\n\
00591 MSG: sensor_msgs/JointState\n\
00592 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00593 #\n\
00594 # The state of each joint (revolute or prismatic) is defined by:\n\
00595 #  * the position of the joint (rad or m),\n\
00596 #  * the velocity of the joint (rad/s or m/s) and \n\
00597 #  * the effort that is applied in the joint (Nm or N).\n\
00598 #\n\
00599 # Each joint is uniquely identified by its name\n\
00600 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00601 # in one message have to be recorded at the same time.\n\
00602 #\n\
00603 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00604 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00605 # effort associated with them, you can leave the effort array empty. \n\
00606 #\n\
00607 # All arrays in this message should have the same size, or be empty.\n\
00608 # This is the only way to uniquely associate the joint name with the correct\n\
00609 # states.\n\
00610 \n\
00611 \n\
00612 Header header\n\
00613 \n\
00614 string[] name\n\
00615 float64[] position\n\
00616 float64[] velocity\n\
00617 float64[] effort\n\
00618 \n\
00619 ";
00620   }
00621 
00622   static const char* value(const  ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); } 
00623 };
00624 
00625 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {};
00626 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {};
00627 } // namespace message_traits
00628 } // namespace ros
00629 
00630 namespace ros
00631 {
00632 namespace serialization
00633 {
00634 
00635 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >
00636 {
00637   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00638   {
00639     stream.next(m.header);
00640     stream.next(m.goal_id);
00641     stream.next(m.goal);
00642   }
00643 
00644   ROS_DECLARE_ALLINONE_SERIALIZER;
00645 }; // struct GraspPlanningActionGoal_
00646 } // namespace serialization
00647 } // namespace ros
00648 
00649 namespace ros
00650 {
00651 namespace message_operations
00652 {
00653 
00654 template<class ContainerAllocator>
00655 struct Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >
00656 {
00657   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> & v) 
00658   {
00659     s << indent << "header: ";
00660 s << std::endl;
00661     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00662     s << indent << "goal_id: ";
00663 s << std::endl;
00664     Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + "  ", v.goal_id);
00665     s << indent << "goal: ";
00666 s << std::endl;
00667     Printer< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.goal);
00668   }
00669 };
00670 
00671 
00672 } // namespace message_operations
00673 } // namespace ros
00674 
00675 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H
00676 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12