sparse_ldlt.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #include "sparse.h"
00026 #include <Eigen/SparseExtra>
00027 
00028 #ifdef EIGEN_CHOLMOD_SUPPORT
00029 #include <Eigen/CholmodSupport>
00030 #endif
00031 
00032 template<typename Scalar> void sparse_ldlt(int rows, int cols)
00033 {
00034   static bool odd = true;
00035   odd = !odd;
00036   double density = std::max(8./(rows*cols), 0.01);
00037   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
00038   typedef Matrix<Scalar,Dynamic,1> DenseVector;
00039 
00040   SparseMatrix<Scalar> m2(rows, cols);
00041   DenseMatrix refMat2(rows, cols);
00042 
00043   DenseVector b = DenseVector::Random(cols);
00044   DenseVector refX(cols), x(cols);
00045 
00046   initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
00047   
00048   SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
00049   DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
00050   
00051   refX = refMat3.template selfadjointView<Upper>().ldlt().solve(b);
00052   typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
00053   x = b;
00054   SparseLDLT<SparseSelfAdjointMatrix> ldlt(m3);
00055   if (ldlt.succeeded())
00056     ldlt.solveInPlace(x);
00057   else
00058     std::cerr << "warning LDLT failed\n";
00059 
00060   VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
00061   VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
00062   
00063 #ifdef EIGEN_CHOLMOD_SUPPORT
00064   {
00065     x = b;
00066     SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m3);
00067     if (ldlt2.succeeded())
00068     {
00069       ldlt2.solveInPlace(x);
00070       VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
00071       VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace");
00072       
00073       x = ldlt2.solve(b);
00074       VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
00075       VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve");
00076     }
00077     else
00078       std::cerr << "warning LDLT failed\n";
00079   }
00080 #endif
00081   
00082   // new Simplicial LLT
00083   
00084   
00085   // new API
00086   {
00087     SparseMatrix<Scalar> m2(rows, cols);
00088     DenseMatrix refMat2(rows, cols);
00089 
00090     DenseVector b = DenseVector::Random(cols);
00091     DenseVector ref_x(cols), x(cols);
00092     DenseMatrix B = DenseMatrix::Random(rows,cols);
00093     DenseMatrix ref_X(rows,cols), X(rows,cols);
00094 
00095     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
00096 
00097     for(int i=0; i<rows; ++i)
00098       m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
00099     
00100     
00101     SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
00102     DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
00103     
00104     m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
00105     m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
00106     
00107     // with a single vector as the rhs
00108     ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
00109 
00110     x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
00111     VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, single dense rhs");
00112     
00113     x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
00114     VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, single dense rhs");
00115     
00116     x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3_lo).solve(b);
00117     VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs");
00118     
00119     x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3_up).solve(b);
00120     VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs");
00121     
00122     
00123     // with multiple rhs
00124     ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B);
00125 
00126     X = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
00127     VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, multiple dense rhs");
00128     
00129     X = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
00130     VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, multiple dense rhs");
00131     
00132     
00133     // with a sparse rhs
00134 //     SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols);
00135 //     B.diagonal().array() += 1;
00136 //     spB = B.sparseView(0.5,1);
00137 //     
00138 //     ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
00139 // 
00140 //     spX = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3).solve(spB);
00141 //     VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
00142 //     
00143 //     spX = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3).solve(spB);
00144 //     VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
00145   }
00146   
00147   
00148   
00149 //   for(int i=0; i<rows; ++i)
00150 //     m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
00151 // 
00152 //   refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
00153 //   typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
00154 //   x = b;
00155 //   SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
00156 //   if (ldlt.succeeded())
00157 //     ldlt.solveInPlace(x);
00158 //   else
00159 //     std::cerr << "warning LDLT failed\n";
00160 // 
00161 //   VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
00162 //   VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
00163 
00164 
00165 }
00166 
00167 void test_sparse_ldlt()
00168 {
00169   for(int i = 0; i < g_repeat; i++) {
00170     CALL_SUBTEST_1(sparse_ldlt<double>(8, 8) );
00171     int s = internal::random<int>(1,300);
00172     CALL_SUBTEST_2(sparse_ldlt<std::complex<double> >(s,s) );
00173     CALL_SUBTEST_1(sparse_ldlt<double>(s,s) );
00174   }
00175 }


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:32