sparse_cholesky.cpp
Go to the documentation of this file.
00001 // #define EIGEN_TAUCS_SUPPORT
00002 // #define EIGEN_CHOLMOD_SUPPORT
00003 #include <iostream>
00004 #include <Eigen/Sparse>
00005 
00006 // g++ -DSIZE=10000 -DDENSITY=0.001  sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG   -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/  -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
00007 
00008 #define NOGMM
00009 #define NOMTL
00010 
00011 #ifndef SIZE
00012 #define SIZE 10
00013 #endif
00014 
00015 #ifndef DENSITY
00016 #define DENSITY 0.01
00017 #endif
00018 
00019 #ifndef REPEAT
00020 #define REPEAT 1
00021 #endif
00022 
00023 #include "BenchSparseUtil.h"
00024 
00025 #ifndef MINDENSITY
00026 #define MINDENSITY 0.0004
00027 #endif
00028 
00029 #ifndef NBTRIES
00030 #define NBTRIES 10
00031 #endif
00032 
00033 #define BENCH(X) \
00034   timer.reset(); \
00035   for (int _j=0; _j<NBTRIES; ++_j) { \
00036     timer.start(); \
00037     for (int _k=0; _k<REPEAT; ++_k) { \
00038         X  \
00039   } timer.stop(); }
00040 
00041 // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
00042 typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix;
00043 
00044 void fillSpdMatrix(float density, int rows, int cols,  EigenSparseSelfAdjointMatrix& dst)
00045 {
00046   dst.startFill(rows*cols*density);
00047   for(int j = 0; j < cols; j++)
00048   {
00049     dst.fill(j,j) = internal::random<Scalar>(10,20);
00050     for(int i = j+1; i < rows; i++)
00051     {
00052       Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
00053       if (v!=0)
00054         dst.fill(i,j) = v;
00055     }
00056 
00057   }
00058   dst.endFill();
00059 }
00060 
00061 #include <Eigen/Cholesky>
00062 
00063 template<int Backend>
00064 void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0)
00065 {
00066   std::cout << name << "..." << std::flush;
00067   BenchTimer timer;
00068   timer.start();
00069   SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags);
00070   timer.stop();
00071   std::cout << ":\t" << timer.value() << endl;
00072 
00073   std::cout << "  nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
00074 //   std::cout << "sparse\n" << chol.matrixL() << "%\n";
00075 }
00076 
00077 int main(int argc, char *argv[])
00078 {
00079   int rows = SIZE;
00080   int cols = SIZE;
00081   float density = DENSITY;
00082   BenchTimer timer;
00083 
00084   VectorXf b = VectorXf::Random(cols);
00085   VectorXf x = VectorXf::Random(cols);
00086 
00087   bool densedone = false;
00088 
00089   //for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
00090 //   float density = 0.5;
00091   {
00092     EigenSparseSelfAdjointMatrix sm1(rows, cols);
00093     std::cout << "Generate sparse matrix (might take a while)...\n";
00094     fillSpdMatrix(density, rows, cols, sm1);
00095     std::cout << "DONE\n\n";
00096 
00097     // dense matrices
00098     #ifdef DENSEMATRIX
00099     if (!densedone)
00100     {
00101       densedone = true;
00102       std::cout << "Eigen Dense\t" << density*100 << "%\n";
00103       DenseMatrix m1(rows,cols);
00104       eiToDense(sm1, m1);
00105       m1 = (m1 + m1.transpose()).eval();
00106       m1.diagonal() *= 0.5;
00107 
00108 //       BENCH(LLT<DenseMatrix> chol(m1);)
00109 //       std::cout << "dense:\t" << timer.value() << endl;
00110 
00111       BenchTimer timer;
00112       timer.start();
00113       LLT<DenseMatrix> chol(m1);
00114       timer.stop();
00115       std::cout << "dense:\t" << timer.value() << endl;
00116       int count = 0;
00117       for (int j=0; j<cols; ++j)
00118         for (int i=j; i<rows; ++i)
00119           if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1))
00120             count++;
00121       std::cout << "dense: " << "nnz = " << count << "\n";
00122 //       std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
00123     }
00124     #endif
00125 
00126     // eigen sparse matrices
00127     doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
00128 
00129     #ifdef EIGEN_CHOLMOD_SUPPORT
00130     doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization);
00131     #endif
00132 
00133     #ifdef EIGEN_TAUCS_SUPPORT
00134     doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization);
00135     #endif
00136 
00137     #if 0
00138     // TAUCS
00139     {
00140       taucs_ccs_matrix A = sm1.asTaucsMatrix();
00141 
00142       //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
00143 //       BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
00144 //       std::cout << "taucs:\t" << timer.value() << endl;
00145 
00146       taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
00147 
00148       for (int j=0; j<cols; ++j)
00149       {
00150         for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
00151           std::cout << chol->values.d[i] << " ";
00152       }
00153     }
00154 
00155     // CHOLMOD
00156     #ifdef EIGEN_CHOLMOD_SUPPORT
00157     {
00158       cholmod_common c;
00159       cholmod_start (&c);
00160       cholmod_sparse A;
00161       cholmod_factor *L;
00162 
00163       A = sm1.asCholmodMatrix();
00164       BenchTimer timer;
00165 //       timer.reset();
00166       timer.start();
00167       std::vector<int> perm(cols);
00168 //       std::vector<int> set(ncols);
00169       for (int i=0; i<cols; ++i)
00170         perm[i] = i;
00171 //       c.nmethods = 1;
00172 //       c.method[0] = 1;
00173 
00174       c.nmethods = 1;
00175       c.method [0].ordering = CHOLMOD_NATURAL;
00176       c.postorder = 0;
00177       c.final_ll = 1;
00178 
00179       L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
00180       timer.stop();
00181       std::cout << "cholmod/analyze:\t" << timer.value() << endl;
00182       timer.reset();
00183       timer.start();
00184       cholmod_factorize(&A, L, &c);
00185       timer.stop();
00186       std::cout << "cholmod/factorize:\t" << timer.value() << endl;
00187 
00188       cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
00189 
00190       cholmod_print_factor(L, "Factors", &c);
00191 
00192       cholmod_print_sparse(cholmat, "Chol", &c);
00193       cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
00194 //
00195 //       cholmod_print_sparse(&A, "A", &c);
00196 //       cholmod_write_sparse(stdout, &A, 0, 0, &c);
00197 
00198 
00199 //       for (int j=0; j<cols; ++j)
00200 //       {
00201 //           for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
00202 //             std::cout << chol->values.s[i] << " ";
00203 //       }
00204     }
00205     #endif
00206 
00207     #endif
00208 
00209 
00210 
00211   }
00212 
00213 
00214   return 0;
00215 }
00216 


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:32