schur_real.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra. Eigen itself is part of the KDE project.
00003 //
00004 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #include "main.h"
00026 #include <limits>
00027 #include <Eigen/Eigenvalues>
00028 
00029 template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
00030 {
00031   typedef typename MatrixType::Index Index;
00032 
00033   const Index size = T.cols();
00034   typedef typename MatrixType::Scalar Scalar;
00035 
00036   // Check T is lower Hessenberg
00037   for(int row = 2; row < size; ++row) {
00038     for(int col = 0; col < row - 1; ++col) {
00039       VERIFY(T(row,col) == Scalar(0));
00040     }
00041   }
00042 
00043   // Check that any non-zero on the subdiagonal is followed by a zero and is
00044   // part of a 2x2 diagonal block with imaginary eigenvalues.
00045   for(int row = 1; row < size; ++row) {
00046     if (T(row,row-1) != Scalar(0)) {
00047       VERIFY(row == size-1 || T(row+1,row) == 0);
00048       Scalar tr = T(row-1,row-1) + T(row,row);
00049       Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1);
00050       VERIFY(4 * det > tr * tr);
00051     }
00052   }
00053 }
00054 
00055 template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
00056 {
00057   // Test basic functionality: T is quasi-triangular and A = U T U*
00058   for(int counter = 0; counter < g_repeat; ++counter) {
00059     MatrixType A = MatrixType::Random(size, size);
00060     RealSchur<MatrixType> schurOfA(A);
00061     VERIFY_IS_EQUAL(schurOfA.info(), Success);
00062     MatrixType U = schurOfA.matrixU();
00063     MatrixType T = schurOfA.matrixT();
00064     verifyIsQuasiTriangular(T);
00065     VERIFY_IS_APPROX(A, U * T * U.transpose());
00066   }
00067 
00068   // Test asserts when not initialized
00069   RealSchur<MatrixType> rsUninitialized;
00070   VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
00071   VERIFY_RAISES_ASSERT(rsUninitialized.matrixU());
00072   VERIFY_RAISES_ASSERT(rsUninitialized.info());
00073   
00074   // Test whether compute() and constructor returns same result
00075   MatrixType A = MatrixType::Random(size, size);
00076   RealSchur<MatrixType> rs1;
00077   rs1.compute(A);
00078   RealSchur<MatrixType> rs2(A);
00079   VERIFY_IS_EQUAL(rs1.info(), Success);
00080   VERIFY_IS_EQUAL(rs2.info(), Success);
00081   VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
00082   VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
00083 
00084   // Test computation of only T, not U
00085   RealSchur<MatrixType> rsOnlyT(A, false);
00086   VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
00087   VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
00088   VERIFY_RAISES_ASSERT(rsOnlyT.matrixU());
00089 
00090   if (size > 2)
00091   {
00092     // Test matrix with NaN
00093     A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN();
00094     RealSchur<MatrixType> rsNaN(A);
00095     VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence);
00096   }
00097 }
00098 
00099 void test_schur_real()
00100 {
00101   CALL_SUBTEST_1(( schur<Matrix4f>() ));
00102   CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,50)) ));
00103   CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() ));
00104   CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() ));
00105 
00106   // Test problem size constructors
00107   CALL_SUBTEST_5(RealSchur<MatrixXf>(10));
00108 }


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:19