product_trmm.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #include "main.h"
00026 
00027 template<typename Scalar> void trmm(int size,int /*othersize*/)
00028 {
00029   typedef typename NumTraits<Scalar>::Real RealScalar;
00030 
00031   typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixColMaj;
00032   typedef Matrix<Scalar,Dynamic,Dynamic,RowMajor> MatrixRowMaj;
00033 
00034   DenseIndex rows = size;
00035   DenseIndex cols = internal::random<DenseIndex>(1,size);
00036 
00037   MatrixColMaj  triV(rows,cols), triH(cols,rows), upTri(cols,rows), loTri(rows,cols),
00038                 unitUpTri(cols,rows), unitLoTri(rows,cols), strictlyUpTri(cols,rows), strictlyLoTri(rows,cols);
00039   MatrixColMaj  ge1(rows,cols), ge2(cols,rows), ge3;
00040   MatrixRowMaj  rge3;
00041 
00042   Scalar s1 = internal::random<Scalar>(),
00043          s2 = internal::random<Scalar>();
00044 
00045   triV.setRandom();
00046   triH.setRandom();
00047   loTri = triV.template triangularView<Lower>();
00048   upTri = triH.template triangularView<Upper>();
00049   unitLoTri = triV.template triangularView<UnitLower>();
00050   unitUpTri = triH.template triangularView<UnitUpper>();
00051   strictlyLoTri = triV.template triangularView<StrictlyLower>();
00052   strictlyUpTri = triH.template triangularView<StrictlyUpper>();
00053   ge1.setRandom();
00054   ge2.setRandom();
00055 
00056   VERIFY_IS_APPROX( ge3 = triV.template triangularView<Lower>() * ge2, loTri * ge2);
00057   VERIFY_IS_APPROX( ge3 = ge2 * triV.template triangularView<Lower>(), ge2 * loTri);
00058   VERIFY_IS_APPROX( ge3 = triH.template triangularView<Upper>() * ge1, upTri * ge1);
00059   VERIFY_IS_APPROX( ge3 = ge1 * triH.template triangularView<Upper>(), ge1 * upTri);
00060   VERIFY_IS_APPROX( ge3 = (s1*triV.adjoint()).template triangularView<Upper>() * (s2*ge1), s1*loTri.adjoint() * (s2*ge1));
00061   VERIFY_IS_APPROX( ge3 = ge1 * triV.adjoint().template triangularView<Upper>(), ge1 * loTri.adjoint());
00062   VERIFY_IS_APPROX( ge3 = triH.adjoint().template triangularView<Lower>() * ge2, upTri.adjoint() * ge2);
00063   VERIFY_IS_APPROX( ge3 = ge2 * triH.adjoint().template triangularView<Lower>(), ge2 * upTri.adjoint());
00064   VERIFY_IS_APPROX( ge3 = triV.template triangularView<Lower>() * ge1.adjoint(), loTri * ge1.adjoint());
00065   VERIFY_IS_APPROX( ge3 = ge1.adjoint() * triV.template triangularView<Lower>(), ge1.adjoint() * loTri);
00066   VERIFY_IS_APPROX( ge3 = triH.template triangularView<Upper>() * ge2.adjoint(), upTri * ge2.adjoint());
00067   VERIFY_IS_APPROX(rge3.noalias() = triH.template triangularView<Upper>() * ge2.adjoint(), upTri * ge2.adjoint());
00068   VERIFY_IS_APPROX( ge3 = (s1*triV).adjoint().template triangularView<Upper>() * ge2.adjoint(), internal::conj(s1) * loTri.adjoint() * ge2.adjoint());
00069   VERIFY_IS_APPROX(rge3.noalias() = triV.adjoint().template triangularView<Upper>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint());
00070   VERIFY_IS_APPROX( ge3 = triH.adjoint().template triangularView<Lower>() * ge1.adjoint(), upTri.adjoint() * ge1.adjoint());
00071   VERIFY_IS_APPROX(rge3.noalias() = triH.adjoint().template triangularView<Lower>() * ge1.adjoint(), upTri.adjoint() * ge1.adjoint());
00072 
00073   VERIFY_IS_APPROX( ge3 = triV.template triangularView<UnitLower>() * ge2, unitLoTri * ge2);
00074   VERIFY_IS_APPROX( rge3.noalias() = ge2 * triV.template triangularView<UnitLower>(), ge2 * unitLoTri);
00075   VERIFY_IS_APPROX( ge3 = ge2 * triV.template triangularView<UnitLower>(), ge2 * unitLoTri);
00076   VERIFY_IS_APPROX( ge3 = (s1*triV).adjoint().template triangularView<UnitUpper>() * ge2.adjoint(), internal::conj(s1) * unitLoTri.adjoint() * ge2.adjoint());
00077 
00078   VERIFY_IS_APPROX( ge3 = triV.template triangularView<StrictlyLower>() * ge2, strictlyLoTri * ge2);
00079   VERIFY_IS_APPROX( rge3.noalias() = ge2 * triV.template triangularView<StrictlyLower>(), ge2 * strictlyLoTri);
00080   VERIFY_IS_APPROX( ge3 = ge2 * triV.template triangularView<StrictlyLower>(), ge2 * strictlyLoTri);
00081   VERIFY_IS_APPROX( ge3 = (s1*triV).adjoint().template triangularView<StrictlyUpper>() * ge2.adjoint(), internal::conj(s1) * strictlyLoTri.adjoint() * ge2.adjoint());
00082 }
00083 
00084 void test_product_trmm()
00085 {
00086   for(int i = 0; i < g_repeat ; i++)
00087   {
00088     CALL_SUBTEST_1((trmm<float>(internal::random<int>(1,320),internal::random<int>(1,320))));
00089     CALL_SUBTEST_2((trmm<double>(internal::random<int>(1,320),internal::random<int>(1,320))));
00090     CALL_SUBTEST_3((trmm<std::complex<float> >(internal::random<int>(1,200),internal::random<int>(1,200))));
00091     CALL_SUBTEST_4((trmm<std::complex<double> >(internal::random<int>(1,200),internal::random<int>(1,200))));
00092   }
00093 }


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:13