product_threshold.cpp
Go to the documentation of this file.
00001 
00002 #include <iostream>
00003 #include <Eigen/Core>
00004 #include <bench/BenchTimer.h>
00005 
00006 using namespace Eigen;
00007 using namespace std;
00008 
00009 #define END 9
00010 
00011 template<int S> struct map_size { enum { ret = S }; };
00012 template<>  struct map_size<10> { enum { ret = 20 }; };
00013 template<>  struct map_size<11> { enum { ret = 50 }; };
00014 template<>  struct map_size<12> { enum { ret = 100 }; };
00015 template<>  struct map_size<13> { enum { ret = 300 }; };
00016 
00017 template<int M, int N,int K> struct alt_prod
00018 {
00019   enum {
00020     ret = M==1 && N==1 ? InnerProduct
00021         : K==1 ? OuterProduct
00022         : M==1 ? GemvProduct
00023         : N==1 ? GemvProduct
00024         : GemmProduct
00025   };
00026 };
00027         
00028 void print_mode(int mode)
00029 {
00030   if(mode==InnerProduct) std::cout << "i";
00031   if(mode==OuterProduct) std::cout << "o";
00032   if(mode==CoeffBasedProductMode) std::cout << "c";
00033   if(mode==LazyCoeffBasedProductMode) std::cout << "l";
00034   if(mode==GemvProduct) std::cout << "v";
00035   if(mode==GemmProduct) std::cout << "m";
00036 }
00037 
00038 template<int Mode, typename Lhs, typename Rhs, typename Res>
00039 EIGEN_DONT_INLINE void prod(const Lhs& a, const Rhs& b, Res& c)
00040 {
00041   c.noalias() += typename ProductReturnType<Lhs,Rhs,Mode>::Type(a,b);
00042 }
00043 
00044 template<int M, int N, int K, typename Scalar, int Mode>
00045 EIGEN_DONT_INLINE void bench_prod()
00046 {
00047   typedef Matrix<Scalar,M,K> Lhs; Lhs a; a.setRandom();
00048   typedef Matrix<Scalar,K,N> Rhs; Rhs b; b.setRandom();
00049   typedef Matrix<Scalar,M,N> Res; Res c; c.setRandom();
00050 
00051   BenchTimer t;
00052   double n = 2.*double(M)*double(N)*double(K);
00053   int rep = 100000./n;
00054   rep /= 2;
00055   if(rep<1) rep = 1;
00056   do {
00057     rep *= 2;
00058     t.reset();
00059     BENCH(t,1,rep,prod<CoeffBasedProductMode>(a,b,c));
00060   } while(t.best()<0.1);
00061   
00062   t.reset();
00063   BENCH(t,5,rep,prod<Mode>(a,b,c));
00064 
00065   print_mode(Mode);
00066   std::cout << int(1e-6*n*rep/t.best()) << "\t";
00067 }
00068 
00069 template<int N> struct print_n;
00070 template<int M, int N, int K> struct loop_on_m;
00071 template<int M, int N, int K, typename Scalar, int Mode> struct loop_on_n;
00072 
00073 template<int M, int N, int K>
00074 struct loop_on_k
00075 {
00076   static void run()
00077   {
00078     std::cout << "K=" << K << "\t";
00079     print_n<N>::run();
00080     std::cout << "\n";
00081 
00082     loop_on_m<M,N,K>::run();
00083     std::cout << "\n\n";
00084 
00085     loop_on_k<M,N,K+1>::run();
00086   }
00087 };
00088 
00089 template<int M, int N>
00090 struct loop_on_k<M,N,END> { static void run(){} };
00091 
00092 
00093 template<int M, int N, int K>
00094 struct loop_on_m
00095 {
00096   static void run()
00097   {
00098     std::cout << M << "f\t";
00099     loop_on_n<M,N,K,float,CoeffBasedProductMode>::run();
00100     std::cout << "\n";
00101     
00102     std::cout << M << "f\t";
00103     loop_on_n<M,N,K,float,-1>::run();
00104     std::cout << "\n";
00105 
00106     loop_on_m<M+1,N,K>::run();
00107   }
00108 };
00109 
00110 template<int N, int K>
00111 struct loop_on_m<END,N,K> { static void run(){} };
00112 
00113 template<int M, int N, int K, typename Scalar, int Mode>
00114 struct loop_on_n
00115 {
00116   static void run()
00117   {
00118     bench_prod<M,N,K,Scalar,Mode==-1? alt_prod<M,N,K>::ret : Mode>();
00119     
00120     loop_on_n<M,N+1,K,Scalar,Mode>::run();
00121   }
00122 };
00123 
00124 template<int M, int K, typename Scalar, int Mode>
00125 struct loop_on_n<M,END,K,Scalar,Mode> { static void run(){} };
00126 
00127 template<int N> struct print_n
00128 {
00129   static void run()
00130   {
00131     std::cout << map_size<N>::ret << "\t";
00132     print_n<N+1>::run();
00133   }
00134 };
00135 
00136 template<> struct print_n<END> { static void run(){} };
00137 
00138 int main()
00139 {
00140   loop_on_k<1,1,1>::run();
00141   
00142   return 0; 
00143 }


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:13