eig33.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 // The computeRoots function included in this is based on materials
00026 // covered by the following copyright and license:
00027 // 
00028 // Geometric Tools, LLC
00029 // Copyright (c) 1998-2010
00030 // Distributed under the Boost Software License, Version 1.0.
00031 // 
00032 // Permission is hereby granted, free of charge, to any person or organization
00033 // obtaining a copy of the software and accompanying documentation covered by
00034 // this license (the "Software") to use, reproduce, display, distribute,
00035 // execute, and transmit the Software, and to prepare derivative works of the
00036 // Software, and to permit third-parties to whom the Software is furnished to
00037 // do so, all subject to the following:
00038 // 
00039 // The copyright notices in the Software and this entire statement, including
00040 // the above license grant, this restriction and the following disclaimer,
00041 // must be included in all copies of the Software, in whole or in part, and
00042 // all derivative works of the Software, unless such copies or derivative
00043 // works are solely in the form of machine-executable object code generated by
00044 // a source language processor.
00045 // 
00046 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00047 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00048 // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
00049 // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
00050 // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
00051 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
00052 // DEALINGS IN THE SOFTWARE.
00053 
00054 #include <iostream>
00055 #include <Eigen/Core>
00056 #include <Eigen/Eigenvalues>
00057 #include <Eigen/Geometry>
00058 #include <bench/BenchTimer.h>
00059 
00060 using namespace Eigen;
00061 using namespace std;
00062 
00063 template<typename Matrix, typename Roots>
00064 inline void computeRoots(const Matrix& m, Roots& roots)
00065 {
00066   typedef typename Matrix::Scalar Scalar;
00067   const Scalar s_inv3 = 1.0/3.0;
00068   const Scalar s_sqrt3 = internal::sqrt(Scalar(3.0));
00069 
00070   // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
00071   // eigenvalues are the roots to this equation, all guaranteed to be
00072   // real-valued, because the matrix is symmetric.
00073   Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
00074   Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
00075   Scalar c2 = m(0,0) + m(1,1) + m(2,2);
00076 
00077   // Construct the parameters used in classifying the roots of the equation
00078   // and in solving the equation for the roots in closed form.
00079   Scalar c2_over_3 = c2*s_inv3;
00080   Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
00081   if (a_over_3 > Scalar(0))
00082     a_over_3 = Scalar(0);
00083 
00084   Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
00085 
00086   Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
00087   if (q > Scalar(0))
00088     q = Scalar(0);
00089 
00090   // Compute the eigenvalues by solving for the roots of the polynomial.
00091   Scalar rho = internal::sqrt(-a_over_3);
00092   Scalar theta = std::atan2(internal::sqrt(-q),half_b)*s_inv3;
00093   Scalar cos_theta = internal::cos(theta);
00094   Scalar sin_theta = internal::sin(theta);
00095   roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
00096   roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
00097   roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
00098 
00099   // Sort in increasing order.
00100   if (roots(0) >= roots(1))
00101     std::swap(roots(0),roots(1));
00102   if (roots(1) >= roots(2))
00103   {
00104     std::swap(roots(1),roots(2));
00105     if (roots(0) >= roots(1))
00106       std::swap(roots(0),roots(1));
00107   }
00108 }
00109 
00110 template<typename Matrix, typename Vector>
00111 void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
00112 {
00113   typedef typename Matrix::Scalar Scalar;
00114   // Scale the matrix so its entries are in [-1,1].  The scaling is applied
00115   // only when at least one matrix entry has magnitude larger than 1.
00116 
00117   Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
00118   scale = std::max(scale,Scalar(1));
00119   Matrix scaledMat = mat / scale;
00120 
00121   // Compute the eigenvalues
00122 //   scaledMat.setZero();
00123   computeRoots(scaledMat,evals);
00124 
00125   // compute the eigen vectors
00126   // **here we assume 3 differents eigenvalues**
00127 
00128   // "optimized version" which appears to be slower with gcc!
00129 //     Vector base;
00130 //     Scalar alpha, beta;
00131 //     base <<   scaledMat(1,0) * scaledMat(2,1),
00132 //               scaledMat(1,0) * scaledMat(2,0),
00133 //              -scaledMat(1,0) * scaledMat(1,0);
00134 //     for(int k=0; k<2; ++k)
00135 //     {
00136 //       alpha = scaledMat(0,0) - evals(k);
00137 //       beta  = scaledMat(1,1) - evals(k);
00138 //       evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
00139 //     }
00140 //     evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
00141 
00142 //   // naive version
00143 //   Matrix tmp;
00144 //   tmp = scaledMat;
00145 //   tmp.diagonal().array() -= evals(0);
00146 //   evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
00147 // 
00148 //   tmp = scaledMat;
00149 //   tmp.diagonal().array() -= evals(1);
00150 //   evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
00151 // 
00152 //   tmp = scaledMat;
00153 //   tmp.diagonal().array() -= evals(2);
00154 //   evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
00155   
00156   // a more stable version:
00157   if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon())
00158   {
00159     evecs.setIdentity();
00160   }
00161   else
00162   {
00163     Matrix tmp;
00164     tmp = scaledMat;
00165     tmp.diagonal ().array () -= evals (2);
00166     evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized ();
00167     
00168     tmp = scaledMat;
00169     tmp.diagonal ().array () -= evals (1);
00170     evecs.col(1) = tmp.row (0).cross(tmp.row (1));
00171     Scalar n1 = evecs.col(1).norm();
00172     if(n1<=Eigen::NumTraits<Scalar>::epsilon())
00173       evecs.col(1) = evecs.col(2).unitOrthogonal();
00174     else
00175       evecs.col(1) /= n1;
00176     
00177     // make sure that evecs[1] is orthogonal to evecs[2]
00178     evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
00179     evecs.col(0) = evecs.col(2).cross(evecs.col(1));
00180   }
00181   
00182   // Rescale back to the original size.
00183   evals *= scale;
00184 }
00185 
00186 int main()
00187 {
00188   BenchTimer t;
00189   int tries = 10;
00190   int rep = 400000;
00191   typedef Matrix3f Mat;
00192   typedef Vector3f Vec;
00193   Mat A = Mat::Random(3,3);
00194   A = A.adjoint() * A;
00195 
00196   SelfAdjointEigenSolver<Mat> eig(A);
00197   BENCH(t, tries, rep, eig.compute(A));
00198   std::cout << "Eigen:  " << t.best() << "s\n";
00199 
00200   Mat evecs;
00201   Vec evals;
00202   BENCH(t, tries, rep, eigen33(A,evecs,evals));
00203   std::cout << "Direct: " << t.best() << "s\n\n";
00204 
00205   std::cerr << "Eigenvalue/eigenvector diffs:\n";
00206   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
00207   for(int k=0;k<3;++k)
00208     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
00209       evecs.col(k) = -evecs.col(k);
00210   std::cerr << evecs - eig.eigenvectors() << "\n\n";
00211 }


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:32:37