Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_STABLENORM_H
00026 #define EIGEN_STABLENORM_H
00027
00028 namespace internal {
00029 template<typename ExpressionType, typename Scalar>
00030 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
00031 {
00032 Scalar max = bl.cwiseAbs().maxCoeff();
00033 if (max>scale)
00034 {
00035 ssq = ssq * abs2(scale/max);
00036 scale = max;
00037 invScale = Scalar(1)/scale;
00038 }
00039
00040
00041 ssq += (bl*invScale).squaredNorm();
00042 }
00043 }
00044
00055 template<typename Derived>
00056 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00057 MatrixBase<Derived>::stableNorm() const
00058 {
00059 using std::min;
00060 const Index blockSize = 4096;
00061 RealScalar scale = 0;
00062 RealScalar invScale = 1;
00063 RealScalar ssq = 0;
00064 enum {
00065 Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
00066 };
00067 Index n = size();
00068 Index bi = internal::first_aligned(derived());
00069 if (bi>0)
00070 internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
00071 for (; bi<n; bi+=blockSize)
00072 internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
00073 return scale * internal::sqrt(ssq);
00074 }
00075
00085 template<typename Derived>
00086 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00087 MatrixBase<Derived>::blueNorm() const
00088 {
00089 using std::pow;
00090 using std::min;
00091 using std::max;
00092 static Index nmax = -1;
00093 static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
00094 if(nmax <= 0)
00095 {
00096 int nbig, ibeta, it, iemin, iemax, iexp;
00097 RealScalar abig, eps;
00098
00099
00100
00101
00102
00103
00104
00105
00106 nbig = (std::numeric_limits<Index>::max)();
00107 ibeta = std::numeric_limits<RealScalar>::radix;
00108 it = std::numeric_limits<RealScalar>::digits;
00109 iemin = std::numeric_limits<RealScalar>::min_exponent;
00110 iemax = std::numeric_limits<RealScalar>::max_exponent;
00111 rbig = (std::numeric_limits<RealScalar>::max)();
00112
00113 iexp = -((1-iemin)/2);
00114 b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
00115 iexp = (iemax + 1 - it)/2;
00116 b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
00117
00118 iexp = (2-iemin)/2;
00119 s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
00120 iexp = - ((iemax+it)/2);
00121 s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));
00122
00123 overfl = rbig*s2m;
00124 eps = RealScalar(pow(double(ibeta), 1-it));
00125 relerr = internal::sqrt(eps);
00126 abig = RealScalar(1.0/eps - 1.0);
00127 if (RealScalar(nbig)>abig) nmax = int(abig);
00128 else nmax = nbig;
00129 }
00130 Index n = size();
00131 RealScalar ab2 = b2 / RealScalar(n);
00132 RealScalar asml = RealScalar(0);
00133 RealScalar amed = RealScalar(0);
00134 RealScalar abig = RealScalar(0);
00135 for(Index j=0; j<n; ++j)
00136 {
00137 RealScalar ax = internal::abs(coeff(j));
00138 if(ax > ab2) abig += internal::abs2(ax*s2m);
00139 else if(ax < b1) asml += internal::abs2(ax*s1m);
00140 else amed += internal::abs2(ax);
00141 }
00142 if(abig > RealScalar(0))
00143 {
00144 abig = internal::sqrt(abig);
00145 if(abig > overfl)
00146 {
00147 eigen_assert(false && "overflow");
00148 return rbig;
00149 }
00150 if(amed > RealScalar(0))
00151 {
00152 abig = abig/s2m;
00153 amed = internal::sqrt(amed);
00154 }
00155 else
00156 return abig/s2m;
00157 }
00158 else if(asml > RealScalar(0))
00159 {
00160 if (amed > RealScalar(0))
00161 {
00162 abig = internal::sqrt(amed);
00163 amed = internal::sqrt(asml) / s1m;
00164 }
00165 else
00166 return internal::sqrt(asml)/s1m;
00167 }
00168 else
00169 return internal::sqrt(amed);
00170 asml = (min)(abig, amed);
00171 abig = (max)(abig, amed);
00172 if(asml <= abig*relerr)
00173 return abig;
00174 else
00175 return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
00176 }
00177
00183 template<typename Derived>
00184 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00185 MatrixBase<Derived>::hypotNorm() const
00186 {
00187 return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
00188 }
00189
00190 #endif // EIGEN_STABLENORM_H