SelfadjointRank2Update.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #ifndef EIGEN_SELFADJOINTRANK2UPTADE_H
00026 #define EIGEN_SELFADJOINTRANK2UPTADE_H
00027 
00028 namespace internal {
00029 
00030 /* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
00031  * It corresponds to the Level2 syr2 BLAS routine
00032  */
00033 
00034 template<typename Scalar, typename Index, typename UType, typename VType, int UpLo>
00035 struct selfadjoint_rank2_update_selector;
00036 
00037 template<typename Scalar, typename Index, typename UType, typename VType>
00038 struct selfadjoint_rank2_update_selector<Scalar,Index,UType,VType,Lower>
00039 {
00040   static void run(Scalar* mat, Index stride, const UType& u, const VType& v, Scalar alpha)
00041   {
00042     const Index size = u.size();
00043     for (Index i=0; i<size; ++i)
00044     {
00045       Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+i, size-i) +=
00046                         (conj(alpha)  * conj(u.coeff(i))) * v.tail(size-i)
00047                       + (alpha * conj(v.coeff(i))) * u.tail(size-i);
00048     }
00049   }
00050 };
00051 
00052 template<typename Scalar, typename Index, typename UType, typename VType>
00053 struct selfadjoint_rank2_update_selector<Scalar,Index,UType,VType,Upper>
00054 {
00055   static void run(Scalar* mat, Index stride, const UType& u, const VType& v, Scalar alpha)
00056   {
00057     const Index size = u.size();
00058     for (Index i=0; i<size; ++i)
00059       Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i, i+1) +=
00060                         (conj(alpha)  * conj(u.coeff(i))) * v.head(i+1)
00061                       + (alpha * conj(v.coeff(i))) * u.head(i+1);
00062   }
00063 };
00064 
00065 template<bool Cond, typename T> struct conj_expr_if
00066   : conditional<!Cond, const T&,
00067       CwiseUnaryOp<scalar_conjugate_op<typename traits<T>::Scalar>,T> > {};
00068 
00069 } // end namespace internal
00070 
00071 template<typename MatrixType, unsigned int UpLo>
00072 template<typename DerivedU, typename DerivedV>
00073 SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
00074 ::rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha)
00075 {
00076   typedef internal::blas_traits<DerivedU> UBlasTraits;
00077   typedef typename UBlasTraits::DirectLinearAccessType ActualUType;
00078   typedef typename internal::remove_all<ActualUType>::type _ActualUType;
00079   const ActualUType actualU = UBlasTraits::extract(u.derived());
00080 
00081   typedef internal::blas_traits<DerivedV> VBlasTraits;
00082   typedef typename VBlasTraits::DirectLinearAccessType ActualVType;
00083   typedef typename internal::remove_all<ActualVType>::type _ActualVType;
00084   const ActualVType actualV = VBlasTraits::extract(v.derived());
00085 
00086   // If MatrixType is row major, then we use the routine for lower triangular in the upper triangular case and
00087   // vice versa, and take the complex conjugate of all coefficients and vector entries.
00088 
00089   enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
00090   Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived())
00091                              * internal::conj(VBlasTraits::extractScalarFactor(v.derived()));
00092   if (IsRowMajor)
00093     actualAlpha = internal::conj(actualAlpha);
00094 
00095   internal::selfadjoint_rank2_update_selector<Scalar, Index,
00096     typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ UBlasTraits::NeedToConjugate,_ActualUType>::type>::type,
00097     typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::type>::type,
00098     (IsRowMajor ? int(UpLo==Upper ? Lower : Upper) : UpLo)>
00099     ::run(_expression().const_cast_derived().data(),_expression().outerStride(),actualU,actualV,actualAlpha);
00100 
00101   return *this;
00102 }
00103 
00104 #endif // EIGEN_SELFADJOINTRANK2UPTADE_H


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:21