Quaternion.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
00006 //
00007 // Eigen is free software; you can redistribute it and/or
00008 // modify it under the terms of the GNU Lesser General Public
00009 // License as published by the Free Software Foundation; either
00010 // version 3 of the License, or (at your option) any later version.
00011 //
00012 // Alternatively, you can redistribute it and/or
00013 // modify it under the terms of the GNU General Public License as
00014 // published by the Free Software Foundation; either version 2 of
00015 // the License, or (at your option) any later version.
00016 //
00017 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00018 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00019 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00020 // GNU General Public License for more details.
00021 //
00022 // You should have received a copy of the GNU Lesser General Public
00023 // License and a copy of the GNU General Public License along with
00024 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00025 
00026 #ifndef EIGEN_QUATERNION_H
00027 #define EIGEN_QUATERNION_H
00028 
00029 /***************************************************************************
00030 * Definition of QuaternionBase<Derived>
00031 * The implementation is at the end of the file
00032 ***************************************************************************/
00033 
00034 namespace internal {
00035 template<typename Other,
00036          int OtherRows=Other::RowsAtCompileTime,
00037          int OtherCols=Other::ColsAtCompileTime>
00038 struct quaternionbase_assign_impl;
00039 }
00040 
00041 template<class Derived>
00042 class QuaternionBase : public RotationBase<Derived, 3>
00043 {
00044   typedef RotationBase<Derived, 3> Base;
00045 public:
00046   using Base::operator*;
00047   using Base::derived;
00048 
00049   typedef typename internal::traits<Derived>::Scalar Scalar;
00050   typedef typename NumTraits<Scalar>::Real RealScalar;
00051   typedef typename internal::traits<Derived>::Coefficients Coefficients;
00052   enum {
00053     Flags = Eigen::internal::traits<Derived>::Flags
00054   };
00055 
00056  // typedef typename Matrix<Scalar,4,1> Coefficients;
00058   typedef Matrix<Scalar,3,1> Vector3;
00060   typedef Matrix<Scalar,3,3> Matrix3;
00062   typedef AngleAxis<Scalar> AngleAxisType;
00063 
00064 
00065 
00067   inline Scalar x() const { return this->derived().coeffs().coeff(0); }
00069   inline Scalar y() const { return this->derived().coeffs().coeff(1); }
00071   inline Scalar z() const { return this->derived().coeffs().coeff(2); }
00073   inline Scalar w() const { return this->derived().coeffs().coeff(3); }
00074 
00076   inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
00078   inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
00080   inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
00082   inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
00083 
00085   inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
00086 
00088   inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
00089 
00091   inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
00092 
00094   inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
00095 
00096   EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
00097   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
00098 
00099 // disabled this copy operator as it is giving very strange compilation errors when compiling
00100 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
00101 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
00102 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
00103 //  Derived& operator=(const QuaternionBase& other)
00104 //  { return operator=<Derived>(other); }
00105 
00106   Derived& operator=(const AngleAxisType& aa);
00107   template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
00108 
00112   inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
00113 
00116   inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
00117 
00121   inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
00122 
00126   inline Scalar norm() const { return coeffs().norm(); }
00127 
00130   inline void normalize() { coeffs().normalize(); }
00133   inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
00134 
00140   template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
00141 
00142   template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
00143 
00145   Matrix3 toRotationMatrix() const;
00146 
00148   template<typename Derived1, typename Derived2>
00149   Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
00150 
00151   template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
00152   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
00153 
00155   Quaternion<Scalar> inverse() const;
00156 
00158   Quaternion<Scalar> conjugate() const;
00159 
00164   template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
00165 
00170   template<class OtherDerived>
00171   bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
00172   { return coeffs().isApprox(other.coeffs(), prec); }
00173 
00175   EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
00176 
00182   template<typename NewScalarType>
00183   inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
00184   {
00185     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(
00186       coeffs().template cast<NewScalarType>());
00187   }
00188   
00189 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
00190 # include EIGEN_QUATERNIONBASE_PLUGIN
00191 #endif
00192 };
00193 
00194 /***************************************************************************
00195 * Definition/implementation of Quaternion<Scalar>
00196 ***************************************************************************/
00197 
00220 namespace internal {
00221 template<typename _Scalar,int _Options>
00222 struct traits<Quaternion<_Scalar,_Options> >
00223 {
00224   typedef Quaternion<_Scalar,_Options> PlainObject;
00225   typedef _Scalar Scalar;
00226   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
00227   enum{
00228     IsAligned = bool(EIGEN_ALIGN) && ((int(_Options)&Aligned)==Aligned),
00229     Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
00230   };
00231 };
00232 }
00233 
00234 template<typename _Scalar, int _Options>
00235 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >{
00236   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
00237 public:
00238   typedef _Scalar Scalar;
00239 
00240   EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
00241   using Base::operator*=;
00242 
00243   typedef typename internal::traits<Quaternion<Scalar,_Options> >::Coefficients Coefficients;
00244   typedef typename Base::AngleAxisType AngleAxisType;
00245 
00247   inline Quaternion() {}
00248 
00256   inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
00257 
00259   inline Quaternion(const Scalar* data) : m_coeffs(data) {}
00260 
00262   template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
00263 
00265   explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
00266 
00271   template<typename Derived>
00272   explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
00273 
00274   inline Coefficients& coeffs() { return m_coeffs;}
00275   inline const Coefficients& coeffs() const { return m_coeffs;}
00276 
00277 protected:
00278   Coefficients m_coeffs;
00279   
00280 #ifndef EIGEN_PARSED_BY_DOXYGEN
00281     EIGEN_STRONG_INLINE static void _check_template_params()
00282     {
00283       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
00284         INVALID_MATRIX_TEMPLATE_PARAMETERS)
00285     }
00286 #endif
00287 };
00288 
00291 typedef Quaternion<float> Quaternionf;
00294 typedef Quaternion<double> Quaterniond;
00295 
00296 /***************************************************************************
00297 * Specialization of Map<Quaternion<Scalar>>
00298 ***************************************************************************/
00299 
00300 namespace internal {
00301   template<typename _Scalar, int _Options>
00302   struct traits<Map<Quaternion<_Scalar>, _Options> >:
00303   traits<Quaternion<_Scalar, _Options> >
00304   {
00305     typedef _Scalar Scalar;
00306     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
00307 
00308     typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
00309     enum {
00310       IsAligned = TraitsBase::IsAligned,
00311 
00312       Flags = TraitsBase::Flags
00313     };
00314   };
00315 }
00316 
00317 namespace internal {
00318   template<typename _Scalar, int _Options>
00319   struct traits<Map<const Quaternion<_Scalar>, _Options> >:
00320   traits<Quaternion<_Scalar> >
00321   {
00322     typedef _Scalar Scalar;
00323     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
00324 
00325     typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
00326     enum {
00327       IsAligned = TraitsBase::IsAligned,
00328       Flags = TraitsBase::Flags & ~LvalueBit
00329     };
00330   };
00331 }
00332 
00343 template<typename _Scalar, int _Options>
00344 class Map<const Quaternion<_Scalar>, _Options >
00345   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
00346 {
00347     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
00348 
00349   public:
00350     typedef _Scalar Scalar;
00351     typedef typename internal::traits<Map>::Coefficients Coefficients;
00352     EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
00353     using Base::operator*=;
00354 
00361     EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
00362 
00363     inline const Coefficients& coeffs() const { return m_coeffs;}
00364 
00365   protected:
00366     const Coefficients m_coeffs;
00367 };
00368 
00379 template<typename _Scalar, int _Options>
00380 class Map<Quaternion<_Scalar>, _Options >
00381   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
00382 {
00383     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
00384 
00385   public:
00386     typedef _Scalar Scalar;
00387     typedef typename internal::traits<Map>::Coefficients Coefficients;
00388     EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
00389     using Base::operator*=;
00390 
00397     EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
00398 
00399     inline Coefficients& coeffs() { return m_coeffs; }
00400     inline const Coefficients& coeffs() const { return m_coeffs; }
00401 
00402   protected:
00403     Coefficients m_coeffs;
00404 };
00405 
00408 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
00411 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
00414 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
00417 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
00418 
00419 /***************************************************************************
00420 * Implementation of QuaternionBase methods
00421 ***************************************************************************/
00422 
00423 // Generic Quaternion * Quaternion product
00424 // This product can be specialized for a given architecture via the Arch template argument.
00425 namespace internal {
00426 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
00427 {
00428   EIGEN_STRONG_INLINE static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
00429     return Quaternion<Scalar>
00430     (
00431       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
00432       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
00433       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
00434       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
00435     );
00436   }
00437 };
00438 }
00439 
00441 template <class Derived>
00442 template <class OtherDerived>
00443 EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
00444 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
00445 {
00446   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
00447    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00448   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
00449                          typename internal::traits<Derived>::Scalar,
00450                          internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
00451 }
00452 
00454 template <class Derived>
00455 template <class OtherDerived>
00456 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
00457 {
00458   derived() = derived() * other.derived();
00459   return derived();
00460 }
00461 
00469 template <class Derived>
00470 EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
00471 QuaternionBase<Derived>::_transformVector(Vector3 v) const
00472 {
00473     // Note that this algorithm comes from the optimization by hand
00474     // of the conversion to a Matrix followed by a Matrix/Vector product.
00475     // It appears to be much faster than the common algorithm found
00476     // in the litterature (30 versus 39 flops). It also requires two
00477     // Vector3 as temporaries.
00478     Vector3 uv = this->vec().cross(v);
00479     uv += uv;
00480     return v + this->w() * uv + this->vec().cross(uv);
00481 }
00482 
00483 template<class Derived>
00484 EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
00485 {
00486   coeffs() = other.coeffs();
00487   return derived();
00488 }
00489 
00490 template<class Derived>
00491 template<class OtherDerived>
00492 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
00493 {
00494   coeffs() = other.coeffs();
00495   return derived();
00496 }
00497 
00500 template<class Derived>
00501 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
00502 {
00503   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
00504   this->w() = internal::cos(ha);
00505   this->vec() = internal::sin(ha) * aa.axis();
00506   return derived();
00507 }
00508 
00515 template<class Derived>
00516 template<class MatrixDerived>
00517 inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
00518 {
00519   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
00520    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00521   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
00522   return derived();
00523 }
00524 
00528 template<class Derived>
00529 inline typename QuaternionBase<Derived>::Matrix3
00530 QuaternionBase<Derived>::toRotationMatrix(void) const
00531 {
00532   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
00533   // if not inlined then the cost of the return by value is huge ~ +35%,
00534   // however, not inlining this function is an order of magnitude slower, so
00535   // it has to be inlined, and so the return by value is not an issue
00536   Matrix3 res;
00537 
00538   const Scalar tx  = 2*this->x();
00539   const Scalar ty  = 2*this->y();
00540   const Scalar tz  = 2*this->z();
00541   const Scalar twx = tx*this->w();
00542   const Scalar twy = ty*this->w();
00543   const Scalar twz = tz*this->w();
00544   const Scalar txx = tx*this->x();
00545   const Scalar txy = ty*this->x();
00546   const Scalar txz = tz*this->x();
00547   const Scalar tyy = ty*this->y();
00548   const Scalar tyz = tz*this->y();
00549   const Scalar tzz = tz*this->z();
00550 
00551   res.coeffRef(0,0) = 1-(tyy+tzz);
00552   res.coeffRef(0,1) = txy-twz;
00553   res.coeffRef(0,2) = txz+twy;
00554   res.coeffRef(1,0) = txy+twz;
00555   res.coeffRef(1,1) = 1-(txx+tzz);
00556   res.coeffRef(1,2) = tyz-twx;
00557   res.coeffRef(2,0) = txz-twy;
00558   res.coeffRef(2,1) = tyz+twx;
00559   res.coeffRef(2,2) = 1-(txx+tyy);
00560 
00561   return res;
00562 }
00563 
00574 template<class Derived>
00575 template<typename Derived1, typename Derived2>
00576 inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
00577 {
00578   using std::max;
00579   Vector3 v0 = a.normalized();
00580   Vector3 v1 = b.normalized();
00581   Scalar c = v1.dot(v0);
00582 
00583   // if dot == -1, vectors are nearly opposites
00584   // => accuraletly compute the rotation axis by computing the
00585   //    intersection of the two planes. This is done by solving:
00586   //       x^T v0 = 0
00587   //       x^T v1 = 0
00588   //    under the constraint:
00589   //       ||x|| = 1
00590   //    which yields a singular value problem
00591   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
00592   {
00593     c = max<Scalar>(c,-1);
00594     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
00595     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
00596     Vector3 axis = svd.matrixV().col(2);
00597 
00598     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
00599     this->w() = internal::sqrt(w2);
00600     this->vec() = axis * internal::sqrt(Scalar(1) - w2);
00601     return derived();
00602   }
00603   Vector3 axis = v0.cross(v1);
00604   Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
00605   Scalar invs = Scalar(1)/s;
00606   this->vec() = axis * invs;
00607   this->w() = s * Scalar(0.5);
00608 
00609   return derived();
00610 }
00611 
00618 template <class Derived>
00619 inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
00620 {
00621   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
00622   Scalar n2 = this->squaredNorm();
00623   if (n2 > 0)
00624     return Quaternion<Scalar>(conjugate().coeffs() / n2);
00625   else
00626   {
00627     // return an invalid result to flag the error
00628     return Quaternion<Scalar>(Coefficients::Zero());
00629   }
00630 }
00631 
00638 template <class Derived>
00639 inline Quaternion<typename internal::traits<Derived>::Scalar>
00640 QuaternionBase<Derived>::conjugate() const
00641 {
00642   return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
00643 }
00644 
00648 template <class Derived>
00649 template <class OtherDerived>
00650 inline typename internal::traits<Derived>::Scalar
00651 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
00652 {
00653   using std::acos;
00654   double d = internal::abs(this->dot(other));
00655   if (d>=1.0)
00656     return Scalar(0);
00657   return static_cast<Scalar>(2 * acos(d));
00658 }
00659 
00663 template <class Derived>
00664 template <class OtherDerived>
00665 Quaternion<typename internal::traits<Derived>::Scalar>
00666 QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
00667 {
00668   using std::acos;
00669   static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
00670   Scalar d = this->dot(other);
00671   Scalar absD = internal::abs(d);
00672 
00673   Scalar scale0;
00674   Scalar scale1;
00675 
00676   if (absD>=one)
00677   {
00678     scale0 = Scalar(1) - t;
00679     scale1 = t;
00680   }
00681   else
00682   {
00683     // theta is the angle between the 2 quaternions
00684     Scalar theta = acos(absD);
00685     Scalar sinTheta = internal::sin(theta);
00686 
00687     scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
00688     scale1 = internal::sin( ( t * theta) ) / sinTheta;
00689     if (d<0)
00690       scale1 = -scale1;
00691   }
00692 
00693   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
00694 }
00695 
00696 namespace internal {
00697 
00698 // set from a rotation matrix
00699 template<typename Other>
00700 struct quaternionbase_assign_impl<Other,3,3>
00701 {
00702   typedef typename Other::Scalar Scalar;
00703   typedef DenseIndex Index;
00704   template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& mat)
00705   {
00706     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
00707     // Ken Shoemake, 1987 SIGGRAPH course notes
00708     Scalar t = mat.trace();
00709     if (t > Scalar(0))
00710     {
00711       t = sqrt(t + Scalar(1.0));
00712       q.w() = Scalar(0.5)*t;
00713       t = Scalar(0.5)/t;
00714       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
00715       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
00716       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
00717     }
00718     else
00719     {
00720       DenseIndex i = 0;
00721       if (mat.coeff(1,1) > mat.coeff(0,0))
00722         i = 1;
00723       if (mat.coeff(2,2) > mat.coeff(i,i))
00724         i = 2;
00725       DenseIndex j = (i+1)%3;
00726       DenseIndex k = (j+1)%3;
00727 
00728       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
00729       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
00730       t = Scalar(0.5)/t;
00731       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
00732       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
00733       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
00734     }
00735   }
00736 };
00737 
00738 // set from a vector of coefficients assumed to be a quaternion
00739 template<typename Other>
00740 struct quaternionbase_assign_impl<Other,4,1>
00741 {
00742   typedef typename Other::Scalar Scalar;
00743   template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& vec)
00744   {
00745     q.coeffs() = vec;
00746   }
00747 };
00748 
00749 } // end namespace internal
00750 
00751 #endif // EIGEN_QUATERNION_H


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:16