Functors.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #ifndef EIGEN_FUNCTORS_H
00026 #define EIGEN_FUNCTORS_H
00027 
00028 namespace internal {
00029 
00030 // associative functors:
00031 
00037 template<typename Scalar> struct scalar_sum_op {
00038   EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
00039   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
00040   template<typename Packet>
00041   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00042   { return internal::padd(a,b); }
00043   template<typename Packet>
00044   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
00045   { return internal::predux(a); }
00046 };
00047 template<typename Scalar>
00048 struct functor_traits<scalar_sum_op<Scalar> > {
00049   enum {
00050     Cost = NumTraits<Scalar>::AddCost,
00051     PacketAccess = packet_traits<Scalar>::HasAdd
00052   };
00053 };
00054 
00060 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
00061   enum {
00062     // TODO vectorize mixed product
00063     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
00064   };
00065   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
00066   EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
00067   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
00068   template<typename Packet>
00069   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00070   { return internal::pmul(a,b); }
00071   template<typename Packet>
00072   EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
00073   { return internal::predux_mul(a); }
00074 };
00075 template<typename LhsScalar,typename RhsScalar>
00076 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
00077   enum {
00078     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
00079     PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
00080   };
00081 };
00082 
00088 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
00089 
00090   enum {
00091     Conj = NumTraits<LhsScalar>::IsComplex
00092   };
00093   
00094   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
00095   
00096   EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
00097   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
00098   { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
00099   
00100   template<typename Packet>
00101   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00102   { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
00103 };
00104 template<typename LhsScalar,typename RhsScalar>
00105 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
00106   enum {
00107     Cost = NumTraits<LhsScalar>::MulCost,
00108     PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
00109   };
00110 };
00111 
00117 template<typename Scalar> struct scalar_min_op {
00118   EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
00119   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
00120   template<typename Packet>
00121   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00122   { return internal::pmin(a,b); }
00123   template<typename Packet>
00124   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
00125   { return internal::predux_min(a); }
00126 };
00127 template<typename Scalar>
00128 struct functor_traits<scalar_min_op<Scalar> > {
00129   enum {
00130     Cost = NumTraits<Scalar>::AddCost,
00131     PacketAccess = packet_traits<Scalar>::HasMin
00132   };
00133 };
00134 
00140 template<typename Scalar> struct scalar_max_op {
00141   EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
00142   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
00143   template<typename Packet>
00144   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00145   { return internal::pmax(a,b); }
00146   template<typename Packet>
00147   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
00148   { return internal::predux_max(a); }
00149 };
00150 template<typename Scalar>
00151 struct functor_traits<scalar_max_op<Scalar> > {
00152   enum {
00153     Cost = NumTraits<Scalar>::AddCost,
00154     PacketAccess = packet_traits<Scalar>::HasMax
00155   };
00156 };
00157 
00163 template<typename Scalar> struct scalar_hypot_op {
00164   EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
00165 //   typedef typename NumTraits<Scalar>::Real result_type;
00166   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
00167   {
00168     using std::max;
00169     using std::min;
00170     Scalar p = (max)(_x, _y);
00171     Scalar q = (min)(_x, _y);
00172     Scalar qp = q/p;
00173     return p * sqrt(Scalar(1) + qp*qp);
00174   }
00175 };
00176 template<typename Scalar>
00177 struct functor_traits<scalar_hypot_op<Scalar> > {
00178   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
00179 };
00180 
00181 // other binary functors:
00182 
00188 template<typename Scalar> struct scalar_difference_op {
00189   EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
00190   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
00191   template<typename Packet>
00192   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00193   { return internal::psub(a,b); }
00194 };
00195 template<typename Scalar>
00196 struct functor_traits<scalar_difference_op<Scalar> > {
00197   enum {
00198     Cost = NumTraits<Scalar>::AddCost,
00199     PacketAccess = packet_traits<Scalar>::HasSub
00200   };
00201 };
00202 
00208 template<typename Scalar> struct scalar_quotient_op {
00209   EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
00210   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
00211   template<typename Packet>
00212   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
00213   { return internal::pdiv(a,b); }
00214 };
00215 template<typename Scalar>
00216 struct functor_traits<scalar_quotient_op<Scalar> > {
00217   enum {
00218     Cost = 2 * NumTraits<Scalar>::MulCost,
00219     PacketAccess = packet_traits<Scalar>::HasDiv
00220   };
00221 };
00222 
00223 // unary functors:
00224 
00230 template<typename Scalar> struct scalar_opposite_op {
00231   EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
00232   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
00233   template<typename Packet>
00234   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
00235   { return internal::pnegate(a); }
00236 };
00237 template<typename Scalar>
00238 struct functor_traits<scalar_opposite_op<Scalar> >
00239 { enum {
00240     Cost = NumTraits<Scalar>::AddCost,
00241     PacketAccess = packet_traits<Scalar>::HasNegate };
00242 };
00243 
00249 template<typename Scalar> struct scalar_abs_op {
00250   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
00251   typedef typename NumTraits<Scalar>::Real result_type;
00252   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return abs(a); }
00253   template<typename Packet>
00254   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
00255   { return internal::pabs(a); }
00256 };
00257 template<typename Scalar>
00258 struct functor_traits<scalar_abs_op<Scalar> >
00259 {
00260   enum {
00261     Cost = NumTraits<Scalar>::AddCost,
00262     PacketAccess = packet_traits<Scalar>::HasAbs
00263   };
00264 };
00265 
00271 template<typename Scalar> struct scalar_abs2_op {
00272   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
00273   typedef typename NumTraits<Scalar>::Real result_type;
00274   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return abs2(a); }
00275   template<typename Packet>
00276   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
00277   { return internal::pmul(a,a); }
00278 };
00279 template<typename Scalar>
00280 struct functor_traits<scalar_abs2_op<Scalar> >
00281 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
00282 
00288 template<typename Scalar> struct scalar_conjugate_op {
00289   EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
00290   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return conj(a); }
00291   template<typename Packet>
00292   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
00293 };
00294 template<typename Scalar>
00295 struct functor_traits<scalar_conjugate_op<Scalar> >
00296 {
00297   enum {
00298     Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
00299     PacketAccess = packet_traits<Scalar>::HasConj
00300   };
00301 };
00302 
00308 template<typename Scalar, typename NewType>
00309 struct scalar_cast_op {
00310   EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
00311   typedef NewType result_type;
00312   EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
00313 };
00314 template<typename Scalar, typename NewType>
00315 struct functor_traits<scalar_cast_op<Scalar,NewType> >
00316 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
00317 
00323 template<typename Scalar>
00324 struct scalar_real_op {
00325   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
00326   typedef typename NumTraits<Scalar>::Real result_type;
00327   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return real(a); }
00328 };
00329 template<typename Scalar>
00330 struct functor_traits<scalar_real_op<Scalar> >
00331 { enum { Cost = 0, PacketAccess = false }; };
00332 
00338 template<typename Scalar>
00339 struct scalar_imag_op {
00340   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
00341   typedef typename NumTraits<Scalar>::Real result_type;
00342   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return imag(a); }
00343 };
00344 template<typename Scalar>
00345 struct functor_traits<scalar_imag_op<Scalar> >
00346 { enum { Cost = 0, PacketAccess = false }; };
00347 
00353 template<typename Scalar>
00354 struct scalar_real_ref_op {
00355   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
00356   typedef typename NumTraits<Scalar>::Real result_type;
00357   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return real_ref(*const_cast<Scalar*>(&a)); }
00358 };
00359 template<typename Scalar>
00360 struct functor_traits<scalar_real_ref_op<Scalar> >
00361 { enum { Cost = 0, PacketAccess = false }; };
00362 
00368 template<typename Scalar>
00369 struct scalar_imag_ref_op {
00370   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
00371   typedef typename NumTraits<Scalar>::Real result_type;
00372   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return imag_ref(*const_cast<Scalar*>(&a)); }
00373 };
00374 template<typename Scalar>
00375 struct functor_traits<scalar_imag_ref_op<Scalar> >
00376 { enum { Cost = 0, PacketAccess = false }; };
00377 
00384 template<typename Scalar> struct scalar_exp_op {
00385   EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
00386   inline const Scalar operator() (const Scalar& a) const { return exp(a); }
00387   typedef typename packet_traits<Scalar>::type Packet;
00388   inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
00389 };
00390 template<typename Scalar>
00391 struct functor_traits<scalar_exp_op<Scalar> >
00392 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
00393 
00400 template<typename Scalar> struct scalar_log_op {
00401   EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
00402   inline const Scalar operator() (const Scalar& a) const { return log(a); }
00403   typedef typename packet_traits<Scalar>::type Packet;
00404   inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
00405 };
00406 template<typename Scalar>
00407 struct functor_traits<scalar_log_op<Scalar> >
00408 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
00409 
00415 /* NOTE why doing the pset1() in packetOp *is* an optimization ?
00416  * indeed it seems better to declare m_other as a Packet and do the pset1() once
00417  * in the constructor. However, in practice:
00418  *  - GCC does not like m_other as a Packet and generate a load every time it needs it
00419  *  - on the other hand GCC is able to moves the pset1() away the loop :)
00420  *  - simpler code ;)
00421  * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
00422  */
00423 template<typename Scalar>
00424 struct scalar_multiple_op {
00425   typedef typename packet_traits<Scalar>::type Packet;
00426   // FIXME default copy constructors seems bugged with std::complex<>
00427   EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
00428   EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
00429   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
00430   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
00431   { return internal::pmul(a, pset1<Packet>(m_other)); }
00432   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
00433 };
00434 template<typename Scalar>
00435 struct functor_traits<scalar_multiple_op<Scalar> >
00436 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
00437 
00438 template<typename Scalar1, typename Scalar2>
00439 struct scalar_multiple2_op {
00440   typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
00441   EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
00442   EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
00443   EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
00444   typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
00445 };
00446 template<typename Scalar1,typename Scalar2>
00447 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
00448 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
00449 
00450 template<typename Scalar, bool IsInteger>
00451 struct scalar_quotient1_impl {
00452   typedef typename packet_traits<Scalar>::type Packet;
00453   // FIXME default copy constructors seems bugged with std::complex<>
00454   EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
00455   EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
00456   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
00457   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
00458   { return internal::pmul(a, pset1<Packet>(m_other)); }
00459   const Scalar m_other;
00460 };
00461 template<typename Scalar>
00462 struct functor_traits<scalar_quotient1_impl<Scalar,false> >
00463 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
00464 
00465 template<typename Scalar>
00466 struct scalar_quotient1_impl<Scalar,true> {
00467   // FIXME default copy constructors seems bugged with std::complex<>
00468   EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
00469   EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
00470   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
00471   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
00472 };
00473 template<typename Scalar>
00474 struct functor_traits<scalar_quotient1_impl<Scalar,true> >
00475 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
00476 
00485 template<typename Scalar>
00486 struct scalar_quotient1_op : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > {
00487   EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other)
00488     : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {}
00489 };
00490 template<typename Scalar>
00491 struct functor_traits<scalar_quotient1_op<Scalar> >
00492 : functor_traits<scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> >
00493 {};
00494 
00495 // nullary functors
00496 
00497 template<typename Scalar>
00498 struct scalar_constant_op {
00499   typedef typename packet_traits<Scalar>::type Packet;
00500   EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
00501   EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
00502   template<typename Index>
00503   EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
00504   template<typename Index>
00505   EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
00506   const Scalar m_other;
00507 };
00508 template<typename Scalar>
00509 struct functor_traits<scalar_constant_op<Scalar> >
00510 // FIXME replace this packet test by a safe one
00511 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
00512 
00513 template<typename Scalar> struct scalar_identity_op {
00514   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
00515   template<typename Index>
00516   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
00517 };
00518 template<typename Scalar>
00519 struct functor_traits<scalar_identity_op<Scalar> >
00520 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
00521 
00522 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
00523 
00524 // linear access for packet ops:
00525 // 1) initialization
00526 //   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
00527 // 2) each step
00528 //   base += [size*step, ..., size*step]
00529 template <typename Scalar>
00530 struct linspaced_op_impl<Scalar,false>
00531 {
00532   typedef typename packet_traits<Scalar>::type Packet;
00533 
00534   linspaced_op_impl(Scalar low, Scalar step) :
00535   m_low(low), m_step(step),
00536   m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
00537   m_base(padd(pset1<Packet>(low),pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
00538 
00539   template<typename Index>
00540   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
00541   template<typename Index>
00542   EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
00543 
00544   const Scalar m_low;
00545   const Scalar m_step;
00546   const Packet m_packetStep;
00547   mutable Packet m_base;
00548 };
00549 
00550 // random access for packet ops:
00551 // 1) each step
00552 //   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
00553 template <typename Scalar>
00554 struct linspaced_op_impl<Scalar,true>
00555 {
00556   typedef typename packet_traits<Scalar>::type Packet;
00557 
00558   linspaced_op_impl(Scalar low, Scalar step) :
00559   m_low(low), m_step(step),
00560   m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
00561 
00562   template<typename Index>
00563   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
00564 
00565   template<typename Index>
00566   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
00567   { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
00568 
00569   const Scalar m_low;
00570   const Scalar m_step;
00571   const Packet m_lowPacket;
00572   const Packet m_stepPacket;
00573   const Packet m_interPacket;
00574 };
00575 
00576 // ----- Linspace functor ----------------------------------------------------------------
00577 
00578 // Forward declaration (we default to random access which does not really give
00579 // us a speed gain when using packet access but it allows to use the functor in
00580 // nested expressions).
00581 template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
00582 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
00583 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
00584 template <typename Scalar, bool RandomAccess> struct linspaced_op
00585 {
00586   typedef typename packet_traits<Scalar>::type Packet;
00587   linspaced_op(Scalar low, Scalar high, int num_steps) : impl(low, (high-low)/(num_steps-1)) {}
00588 
00589   template<typename Index>
00590   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
00591 
00592   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
00593   // there row==0 and col is used for the actual iteration.
00594   template<typename Index>
00595   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const 
00596   {
00597     eigen_assert(col==0 || row==0);
00598     return impl(col + row);
00599   }
00600 
00601   template<typename Index>
00602   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
00603 
00604   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
00605   // there row==0 and col is used for the actual iteration.
00606   template<typename Index>
00607   EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
00608   {
00609     eigen_assert(col==0 || row==0);
00610     return impl.packetOp(col + row);
00611   }
00612 
00613   // This proxy object handles the actual required temporaries, the different
00614   // implementations (random vs. sequential access) as well as the
00615   // correct piping to size 2/4 packet operations.
00616   const linspaced_op_impl<Scalar,RandomAccess> impl;
00617 };
00618 
00619 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
00620 // to indicate whether a functor allows linear access, just always answering 'yes' except for
00621 // scalar_identity_op.
00622 // FIXME move this to functor_traits adding a functor_default
00623 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
00624 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
00625 
00626 // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
00627 // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
00628 // FIXME move this to functor_traits adding a functor_default
00629 template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
00630 template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
00631 template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
00632 
00633 
00638 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
00639 template<typename Scalar>
00640 struct scalar_add_op {
00641   typedef typename packet_traits<Scalar>::type Packet;
00642   // FIXME default copy constructors seems bugged with std::complex<>
00643   inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
00644   inline scalar_add_op(const Scalar& other) : m_other(other) { }
00645   inline Scalar operator() (const Scalar& a) const { return a + m_other; }
00646   inline const Packet packetOp(const Packet& a) const
00647   { return internal::padd(a, pset1<Packet>(m_other)); }
00648   const Scalar m_other;
00649 };
00650 template<typename Scalar>
00651 struct functor_traits<scalar_add_op<Scalar> >
00652 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
00653 
00658 template<typename Scalar> struct scalar_sqrt_op {
00659   EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
00660   inline const Scalar operator() (const Scalar& a) const { return sqrt(a); }
00661   typedef typename packet_traits<Scalar>::type Packet;
00662   inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
00663 };
00664 template<typename Scalar>
00665 struct functor_traits<scalar_sqrt_op<Scalar> >
00666 { enum {
00667     Cost = 5 * NumTraits<Scalar>::MulCost,
00668     PacketAccess = packet_traits<Scalar>::HasSqrt
00669   };
00670 };
00671 
00676 template<typename Scalar> struct scalar_cos_op {
00677   EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
00678   inline Scalar operator() (const Scalar& a) const { return cos(a); }
00679   typedef typename packet_traits<Scalar>::type Packet;
00680   inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
00681 };
00682 template<typename Scalar>
00683 struct functor_traits<scalar_cos_op<Scalar> >
00684 {
00685   enum {
00686     Cost = 5 * NumTraits<Scalar>::MulCost,
00687     PacketAccess = packet_traits<Scalar>::HasCos
00688   };
00689 };
00690 
00695 template<typename Scalar> struct scalar_sin_op {
00696   EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
00697   inline const Scalar operator() (const Scalar& a) const { return sin(a); }
00698   typedef typename packet_traits<Scalar>::type Packet;
00699   inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
00700 };
00701 template<typename Scalar>
00702 struct functor_traits<scalar_sin_op<Scalar> >
00703 {
00704   enum {
00705     Cost = 5 * NumTraits<Scalar>::MulCost,
00706     PacketAccess = packet_traits<Scalar>::HasSin
00707   };
00708 };
00709 
00710 
00715 template<typename Scalar> struct scalar_tan_op {
00716   EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
00717   inline const Scalar operator() (const Scalar& a) const { return tan(a); }
00718   typedef typename packet_traits<Scalar>::type Packet;
00719   inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
00720 };
00721 template<typename Scalar>
00722 struct functor_traits<scalar_tan_op<Scalar> >
00723 {
00724   enum {
00725     Cost = 5 * NumTraits<Scalar>::MulCost,
00726     PacketAccess = packet_traits<Scalar>::HasTan
00727   };
00728 };
00729 
00734 template<typename Scalar> struct scalar_acos_op {
00735   EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
00736   inline const Scalar operator() (const Scalar& a) const { return acos(a); }
00737   typedef typename packet_traits<Scalar>::type Packet;
00738   inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
00739 };
00740 template<typename Scalar>
00741 struct functor_traits<scalar_acos_op<Scalar> >
00742 {
00743   enum {
00744     Cost = 5 * NumTraits<Scalar>::MulCost,
00745     PacketAccess = packet_traits<Scalar>::HasACos
00746   };
00747 };
00748 
00753 template<typename Scalar> struct scalar_asin_op {
00754   EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
00755   inline const Scalar operator() (const Scalar& a) const { return asin(a); }
00756   typedef typename packet_traits<Scalar>::type Packet;
00757   inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
00758 };
00759 template<typename Scalar>
00760 struct functor_traits<scalar_asin_op<Scalar> >
00761 {
00762   enum {
00763     Cost = 5 * NumTraits<Scalar>::MulCost,
00764     PacketAccess = packet_traits<Scalar>::HasASin
00765   };
00766 };
00767 
00772 template<typename Scalar>
00773 struct scalar_pow_op {
00774   // FIXME default copy constructors seems bugged with std::complex<>
00775   inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
00776   inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
00777   inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
00778   const Scalar m_exponent;
00779 };
00780 template<typename Scalar>
00781 struct functor_traits<scalar_pow_op<Scalar> >
00782 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
00783 
00788 template<typename Scalar>
00789 struct scalar_inverse_op {
00790   EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
00791   inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
00792   template<typename Packet>
00793   inline const Packet packetOp(const Packet& a) const
00794   { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
00795 };
00796 template<typename Scalar>
00797 struct functor_traits<scalar_inverse_op<Scalar> >
00798 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
00799 
00804 template<typename Scalar>
00805 struct scalar_square_op {
00806   EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
00807   inline Scalar operator() (const Scalar& a) const { return a*a; }
00808   template<typename Packet>
00809   inline const Packet packetOp(const Packet& a) const
00810   { return internal::pmul(a,a); }
00811 };
00812 template<typename Scalar>
00813 struct functor_traits<scalar_square_op<Scalar> >
00814 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
00815 
00820 template<typename Scalar>
00821 struct scalar_cube_op {
00822   EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
00823   inline Scalar operator() (const Scalar& a) const { return a*a*a; }
00824   template<typename Packet>
00825   inline const Packet packetOp(const Packet& a) const
00826   { return internal::pmul(a,pmul(a,a)); }
00827 };
00828 template<typename Scalar>
00829 struct functor_traits<scalar_cube_op<Scalar> >
00830 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
00831 
00832 // default functor traits for STL functors:
00833 
00834 template<typename T>
00835 struct functor_traits<std::multiplies<T> >
00836 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
00837 
00838 template<typename T>
00839 struct functor_traits<std::divides<T> >
00840 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
00841 
00842 template<typename T>
00843 struct functor_traits<std::plus<T> >
00844 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
00845 
00846 template<typename T>
00847 struct functor_traits<std::minus<T> >
00848 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
00849 
00850 template<typename T>
00851 struct functor_traits<std::negate<T> >
00852 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
00853 
00854 template<typename T>
00855 struct functor_traits<std::logical_or<T> >
00856 { enum { Cost = 1, PacketAccess = false }; };
00857 
00858 template<typename T>
00859 struct functor_traits<std::logical_and<T> >
00860 { enum { Cost = 1, PacketAccess = false }; };
00861 
00862 template<typename T>
00863 struct functor_traits<std::logical_not<T> >
00864 { enum { Cost = 1, PacketAccess = false }; };
00865 
00866 template<typename T>
00867 struct functor_traits<std::greater<T> >
00868 { enum { Cost = 1, PacketAccess = false }; };
00869 
00870 template<typename T>
00871 struct functor_traits<std::less<T> >
00872 { enum { Cost = 1, PacketAccess = false }; };
00873 
00874 template<typename T>
00875 struct functor_traits<std::greater_equal<T> >
00876 { enum { Cost = 1, PacketAccess = false }; };
00877 
00878 template<typename T>
00879 struct functor_traits<std::less_equal<T> >
00880 { enum { Cost = 1, PacketAccess = false }; };
00881 
00882 template<typename T>
00883 struct functor_traits<std::equal_to<T> >
00884 { enum { Cost = 1, PacketAccess = false }; };
00885 
00886 template<typename T>
00887 struct functor_traits<std::not_equal_to<T> >
00888 { enum { Cost = 1, PacketAccess = false }; };
00889 
00890 template<typename T>
00891 struct functor_traits<std::binder2nd<T> >
00892 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
00893 
00894 template<typename T>
00895 struct functor_traits<std::binder1st<T> >
00896 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
00897 
00898 template<typename T>
00899 struct functor_traits<std::unary_negate<T> >
00900 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
00901 
00902 template<typename T>
00903 struct functor_traits<std::binary_negate<T> >
00904 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
00905 
00906 #ifdef EIGEN_STDEXT_SUPPORT
00907 
00908 template<typename T0,typename T1>
00909 struct functor_traits<std::project1st<T0,T1> >
00910 { enum { Cost = 0, PacketAccess = false }; };
00911 
00912 template<typename T0,typename T1>
00913 struct functor_traits<std::project2nd<T0,T1> >
00914 { enum { Cost = 0, PacketAccess = false }; };
00915 
00916 template<typename T0,typename T1>
00917 struct functor_traits<std::select2nd<std::pair<T0,T1> > >
00918 { enum { Cost = 0, PacketAccess = false }; };
00919 
00920 template<typename T0,typename T1>
00921 struct functor_traits<std::select1st<std::pair<T0,T1> > >
00922 { enum { Cost = 0, PacketAccess = false }; };
00923 
00924 template<typename T0,typename T1>
00925 struct functor_traits<std::unary_compose<T0,T1> >
00926 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
00927 
00928 template<typename T0,typename T1,typename T2>
00929 struct functor_traits<std::binary_compose<T0,T1,T2> >
00930 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
00931 
00932 #endif // EIGEN_STDEXT_SUPPORT
00933 
00934 // allow to add new functors and specializations of functor_traits from outside Eigen.
00935 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
00936 #ifdef EIGEN_FUNCTORS_PLUGIN
00937 #include EIGEN_FUNCTORS_PLUGIN
00938 #endif
00939 
00940 } // end namespace internal
00941 
00942 #endif // EIGEN_FUNCTORS_H


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:32:43