Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_DOT_H
00026 #define EIGEN_DOT_H
00027
00028 namespace internal {
00029
00030
00031
00032
00033 template<typename T, typename U,
00034
00035 bool NeedToTranspose = T::IsVectorAtCompileTime
00036 && U::IsVectorAtCompileTime
00037 && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
00038 |
00039
00040 (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
00041 >
00042 struct dot_nocheck
00043 {
00044 typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
00045 static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
00046 {
00047 return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
00048 }
00049 };
00050
00051 template<typename T, typename U>
00052 struct dot_nocheck<T, U, true>
00053 {
00054 typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
00055 static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
00056 {
00057 return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
00058 }
00059 };
00060
00061 }
00062
00073 template<typename Derived>
00074 template<typename OtherDerived>
00075 typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
00076 MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
00077 {
00078 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
00079 EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
00080 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
00081 typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
00082 EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
00083
00084 eigen_assert(size() == other.size());
00085
00086 return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
00087 }
00088
00089 #ifdef EIGEN2_SUPPORT
00090
00099 template<typename Derived>
00100 template<typename OtherDerived>
00101 typename internal::traits<Derived>::Scalar
00102 MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
00103 {
00104 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
00105 EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
00106 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
00107 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
00108 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00109
00110 eigen_assert(size() == other.size());
00111
00112 return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
00113 }
00114 #endif
00115
00116
00117
00118
00125 template<typename Derived>
00126 EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
00127 {
00128 return internal::real((*this).cwiseAbs2().sum());
00129 }
00130
00137 template<typename Derived>
00138 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
00139 {
00140 return internal::sqrt(squaredNorm());
00141 }
00142
00149 template<typename Derived>
00150 inline const typename MatrixBase<Derived>::PlainObject
00151 MatrixBase<Derived>::normalized() const
00152 {
00153 typedef typename internal::nested<Derived>::type Nested;
00154 typedef typename internal::remove_reference<Nested>::type _Nested;
00155 _Nested n(derived());
00156 return n / n.norm();
00157 }
00158
00165 template<typename Derived>
00166 inline void MatrixBase<Derived>::normalize()
00167 {
00168 *this /= norm();
00169 }
00170
00171
00172
00173 namespace internal {
00174
00175 template<typename Derived, int p>
00176 struct lpNorm_selector
00177 {
00178 typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
00179 inline static RealScalar run(const MatrixBase<Derived>& m)
00180 {
00181 return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
00182 }
00183 };
00184
00185 template<typename Derived>
00186 struct lpNorm_selector<Derived, 1>
00187 {
00188 inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
00189 {
00190 return m.cwiseAbs().sum();
00191 }
00192 };
00193
00194 template<typename Derived>
00195 struct lpNorm_selector<Derived, 2>
00196 {
00197 inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
00198 {
00199 return m.norm();
00200 }
00201 };
00202
00203 template<typename Derived>
00204 struct lpNorm_selector<Derived, Infinity>
00205 {
00206 inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
00207 {
00208 return m.cwiseAbs().maxCoeff();
00209 }
00210 };
00211
00212 }
00213
00220 template<typename Derived>
00221 template<int p>
00222 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00223 MatrixBase<Derived>::lpNorm() const
00224 {
00225 return internal::lpNorm_selector<Derived, p>::run(*this);
00226 }
00227
00228
00229
00236 template<typename Derived>
00237 template<typename OtherDerived>
00238 bool MatrixBase<Derived>::isOrthogonal
00239 (const MatrixBase<OtherDerived>& other, RealScalar prec) const
00240 {
00241 typename internal::nested<Derived,2>::type nested(derived());
00242 typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
00243 return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
00244 }
00245
00257 template<typename Derived>
00258 bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
00259 {
00260 typename Derived::Nested nested(derived());
00261 for(Index i = 0; i < cols(); ++i)
00262 {
00263 if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
00264 return false;
00265 for(Index j = 0; j < i; ++j)
00266 if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
00267 return false;
00268 }
00269 return true;
00270 }
00271
00272 #endif // EIGEN_DOT_H