RobotMeasurement.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-calibration/doc_stacks/2013-08-15_10-13-13.499663/calibration/calibration_msgs/msg/RobotMeasurement.msg */
00002 #ifndef CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00003 #define CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "calibration_msgs/CameraMeasurement.h"
00018 #include "calibration_msgs/LaserMeasurement.h"
00019 #include "calibration_msgs/ChainMeasurement.h"
00020 
00021 namespace calibration_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct RobotMeasurement_ {
00025   typedef RobotMeasurement_<ContainerAllocator> Type;
00026 
00027   RobotMeasurement_()
00028   : sample_id()
00029   , target_id()
00030   , chain_id()
00031   , M_cam()
00032   , M_laser()
00033   , M_chain()
00034   {
00035   }
00036 
00037   RobotMeasurement_(const ContainerAllocator& _alloc)
00038   : sample_id(_alloc)
00039   , target_id(_alloc)
00040   , chain_id(_alloc)
00041   , M_cam(_alloc)
00042   , M_laser(_alloc)
00043   , M_chain(_alloc)
00044   {
00045   }
00046 
00047   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _sample_id_type;
00048   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  sample_id;
00049 
00050   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _target_id_type;
00051   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  target_id;
00052 
00053   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _chain_id_type;
00054   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  chain_id;
00055 
00056   typedef std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other >  _M_cam_type;
00057   std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other >  M_cam;
00058 
00059   typedef std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other >  _M_laser_type;
00060   std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other >  M_laser;
00061 
00062   typedef std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other >  _M_chain_type;
00063   std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other >  M_chain;
00064 
00065 
00066   typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > Ptr;
00067   typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator>  const> ConstPtr;
00068   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00069 }; // struct RobotMeasurement
00070 typedef  ::calibration_msgs::RobotMeasurement_<std::allocator<void> > RobotMeasurement;
00071 
00072 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement> RobotMeasurementPtr;
00073 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement const> RobotMeasurementConstPtr;
00074 
00075 
00076 template<typename ContainerAllocator>
00077 std::ostream& operator<<(std::ostream& s, const  ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v)
00078 {
00079   ros::message_operations::Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v);
00080   return s;}
00081 
00082 } // namespace calibration_msgs
00083 
00084 namespace ros
00085 {
00086 namespace message_traits
00087 {
00088 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00089 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::RobotMeasurement_<ContainerAllocator>  const> : public TrueType {};
00090 template<class ContainerAllocator>
00091 struct MD5Sum< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00092   static const char* value() 
00093   {
00094     return "fe22486c078efbf7892430dd0b99305c";
00095   }
00096 
00097   static const char* value(const  ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 
00098   static const uint64_t static_value1 = 0xfe22486c078efbf7ULL;
00099   static const uint64_t static_value2 = 0x892430dd0b99305cULL;
00100 };
00101 
00102 template<class ContainerAllocator>
00103 struct DataType< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00104   static const char* value() 
00105   {
00106     return "calibration_msgs/RobotMeasurement";
00107   }
00108 
00109   static const char* value(const  ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 
00110 };
00111 
00112 template<class ContainerAllocator>
00113 struct Definition< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00114   static const char* value() 
00115   {
00116     return "string sample_id    # Tag to figure out which yaml file this was generated from\n\
00117 \n\
00118 string target_id    # Defines the target that we were sensing.\n\
00119 string chain_id     # Defines where this target was attached\n\
00120 \n\
00121 CameraMeasurement[] M_cam\n\
00122 LaserMeasurement[]  M_laser\n\
00123 ChainMeasurement[]  M_chain\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: calibration_msgs/CameraMeasurement\n\
00127 Header header\n\
00128 string camera_id\n\
00129 geometry_msgs/Point[] image_points\n\
00130 sensor_msgs/CameraInfo cam_info\n\
00131 \n\
00132 # True -> The extra debugging fields are populated\n\
00133 bool verbose\n\
00134 \n\
00135 # Extra, partially processed data. Only needed for debugging\n\
00136 sensor_msgs/Image image\n\
00137 sensor_msgs/Image image_rect\n\
00138 calibration_msgs/CalibrationPattern features\n\
00139 \n\
00140 ================================================================================\n\
00141 MSG: std_msgs/Header\n\
00142 # Standard metadata for higher-level stamped data types.\n\
00143 # This is generally used to communicate timestamped data \n\
00144 # in a particular coordinate frame.\n\
00145 # \n\
00146 # sequence ID: consecutively increasing ID \n\
00147 uint32 seq\n\
00148 #Two-integer timestamp that is expressed as:\n\
00149 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00150 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00151 # time-handling sugar is provided by the client library\n\
00152 time stamp\n\
00153 #Frame this data is associated with\n\
00154 # 0: no frame\n\
00155 # 1: global frame\n\
00156 string frame_id\n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: geometry_msgs/Point\n\
00160 # This contains the position of a point in free space\n\
00161 float64 x\n\
00162 float64 y\n\
00163 float64 z\n\
00164 \n\
00165 ================================================================================\n\
00166 MSG: sensor_msgs/CameraInfo\n\
00167 # This message defines meta information for a camera. It should be in a\n\
00168 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00169 # image topics named:\n\
00170 #\n\
00171 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00172 #   image            - monochrome, distorted\n\
00173 #   image_color      - color, distorted\n\
00174 #   image_rect       - monochrome, rectified\n\
00175 #   image_rect_color - color, rectified\n\
00176 #\n\
00177 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00178 # for producing the four processed image topics from image_raw and\n\
00179 # camera_info. The meaning of the camera parameters are described in\n\
00180 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00181 #\n\
00182 # The image_geometry package provides a user-friendly interface to\n\
00183 # common operations using this meta information. If you want to, e.g.,\n\
00184 # project a 3d point into image coordinates, we strongly recommend\n\
00185 # using image_geometry.\n\
00186 #\n\
00187 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00188 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00189 # indicates an uncalibrated camera.\n\
00190 \n\
00191 #######################################################################\n\
00192 #                     Image acquisition info                          #\n\
00193 #######################################################################\n\
00194 \n\
00195 # Time of image acquisition, camera coordinate frame ID\n\
00196 Header header    # Header timestamp should be acquisition time of image\n\
00197                  # Header frame_id should be optical frame of camera\n\
00198                  # origin of frame should be optical center of camera\n\
00199                  # +x should point to the right in the image\n\
00200                  # +y should point down in the image\n\
00201                  # +z should point into the plane of the image\n\
00202 \n\
00203 \n\
00204 #######################################################################\n\
00205 #                      Calibration Parameters                         #\n\
00206 #######################################################################\n\
00207 # These are fixed during camera calibration. Their values will be the #\n\
00208 # same in all messages until the camera is recalibrated. Note that    #\n\
00209 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00210 #                                                                     #\n\
00211 # The internal parameters can be used to warp a raw (distorted) image #\n\
00212 # to:                                                                 #\n\
00213 #   1. An undistorted image (requires D and K)                        #\n\
00214 #   2. A rectified image (requires D, K, R)                           #\n\
00215 # The projection matrix P projects 3D points into the rectified image.#\n\
00216 #######################################################################\n\
00217 \n\
00218 # The image dimensions with which the camera was calibrated. Normally\n\
00219 # this will be the full camera resolution in pixels.\n\
00220 uint32 height\n\
00221 uint32 width\n\
00222 \n\
00223 # The distortion model used. Supported models are listed in\n\
00224 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00225 # simple model of radial and tangential distortion - is sufficent.\n\
00226 string distortion_model\n\
00227 \n\
00228 # The distortion parameters, size depending on the distortion model.\n\
00229 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00230 float64[] D\n\
00231 \n\
00232 # Intrinsic camera matrix for the raw (distorted) images.\n\
00233 #     [fx  0 cx]\n\
00234 # K = [ 0 fy cy]\n\
00235 #     [ 0  0  1]\n\
00236 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00237 # coordinates using the focal lengths (fx, fy) and principal point\n\
00238 # (cx, cy).\n\
00239 float64[9]  K # 3x3 row-major matrix\n\
00240 \n\
00241 # Rectification matrix (stereo cameras only)\n\
00242 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00243 # stereo image plane so that epipolar lines in both stereo images are\n\
00244 # parallel.\n\
00245 float64[9]  R # 3x3 row-major matrix\n\
00246 \n\
00247 # Projection/camera matrix\n\
00248 #     [fx'  0  cx' Tx]\n\
00249 # P = [ 0  fy' cy' Ty]\n\
00250 #     [ 0   0   1   0]\n\
00251 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00252 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00253 #  is the normal camera intrinsic matrix for the rectified image.\n\
00254 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00255 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00256 #  (cx', cy') - these may differ from the values in K.\n\
00257 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00258 #  also have R = the identity and P[1:3,1:3] = K.\n\
00259 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00260 #  position of the optical center of the second camera in the first\n\
00261 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00262 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00263 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00264 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00265 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00266 #  the rectified image is given by:\n\
00267 #  [u v w]' = P * [X Y Z 1]'\n\
00268 #         x = u / w\n\
00269 #         y = v / w\n\
00270 #  This holds for both images of a stereo pair.\n\
00271 float64[12] P # 3x4 row-major matrix\n\
00272 \n\
00273 \n\
00274 #######################################################################\n\
00275 #                      Operational Parameters                         #\n\
00276 #######################################################################\n\
00277 # These define the image region actually captured by the camera       #\n\
00278 # driver. Although they affect the geometry of the output image, they #\n\
00279 # may be changed freely without recalibrating the camera.             #\n\
00280 #######################################################################\n\
00281 \n\
00282 # Binning refers here to any camera setting which combines rectangular\n\
00283 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00284 #  resolution of the output image to\n\
00285 #  (width / binning_x) x (height / binning_y).\n\
00286 # The default values binning_x = binning_y = 0 is considered the same\n\
00287 #  as binning_x = binning_y = 1 (no subsampling).\n\
00288 uint32 binning_x\n\
00289 uint32 binning_y\n\
00290 \n\
00291 # Region of interest (subwindow of full camera resolution), given in\n\
00292 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00293 #  always denotes the same window of pixels on the camera sensor,\n\
00294 #  regardless of binning settings.\n\
00295 # The default setting of roi (all values 0) is considered the same as\n\
00296 #  full resolution (roi.width = width, roi.height = height).\n\
00297 RegionOfInterest roi\n\
00298 \n\
00299 ================================================================================\n\
00300 MSG: sensor_msgs/RegionOfInterest\n\
00301 # This message is used to specify a region of interest within an image.\n\
00302 #\n\
00303 # When used to specify the ROI setting of the camera when the image was\n\
00304 # taken, the height and width fields should either match the height and\n\
00305 # width fields for the associated image; or height = width = 0\n\
00306 # indicates that the full resolution image was captured.\n\
00307 \n\
00308 uint32 x_offset  # Leftmost pixel of the ROI\n\
00309                  # (0 if the ROI includes the left edge of the image)\n\
00310 uint32 y_offset  # Topmost pixel of the ROI\n\
00311                  # (0 if the ROI includes the top edge of the image)\n\
00312 uint32 height    # Height of ROI\n\
00313 uint32 width     # Width of ROI\n\
00314 \n\
00315 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00316 # ROI in this message. Typically this should be False if the full image\n\
00317 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00318 # used).\n\
00319 bool do_rectify\n\
00320 \n\
00321 ================================================================================\n\
00322 MSG: sensor_msgs/Image\n\
00323 # This message contains an uncompressed image\n\
00324 # (0, 0) is at top-left corner of image\n\
00325 #\n\
00326 \n\
00327 Header header        # Header timestamp should be acquisition time of image\n\
00328                      # Header frame_id should be optical frame of camera\n\
00329                      # origin of frame should be optical center of cameara\n\
00330                      # +x should point to the right in the image\n\
00331                      # +y should point down in the image\n\
00332                      # +z should point into to plane of the image\n\
00333                      # If the frame_id here and the frame_id of the CameraInfo\n\
00334                      # message associated with the image conflict\n\
00335                      # the behavior is undefined\n\
00336 \n\
00337 uint32 height         # image height, that is, number of rows\n\
00338 uint32 width          # image width, that is, number of columns\n\
00339 \n\
00340 # The legal values for encoding are in file src/image_encodings.cpp\n\
00341 # If you want to standardize a new string format, join\n\
00342 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00343 \n\
00344 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00345                       # taken from the list of strings in src/image_encodings.cpp\n\
00346 \n\
00347 uint8 is_bigendian    # is this data bigendian?\n\
00348 uint32 step           # Full row length in bytes\n\
00349 uint8[] data          # actual matrix data, size is (step * rows)\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: calibration_msgs/CalibrationPattern\n\
00353 Header header\n\
00354 geometry_msgs/Point[] object_points\n\
00355 geometry_msgs/Point[] image_points\n\
00356 uint8 success\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: calibration_msgs/LaserMeasurement\n\
00360 Header header\n\
00361 string laser_id\n\
00362 sensor_msgs/JointState[] joint_points\n\
00363 \n\
00364 # True -> The extra debugging fields are populated\n\
00365 bool verbose\n\
00366 \n\
00367 # Extra, partially processed data. Only needed for debugging\n\
00368 calibration_msgs/DenseLaserSnapshot snapshot\n\
00369 sensor_msgs/Image laser_image\n\
00370 calibration_msgs/CalibrationPattern image_features\n\
00371 calibration_msgs/JointStateCalibrationPattern joint_features\n\
00372 \n\
00373 ================================================================================\n\
00374 MSG: sensor_msgs/JointState\n\
00375 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00376 #\n\
00377 # The state of each joint (revolute or prismatic) is defined by:\n\
00378 #  * the position of the joint (rad or m),\n\
00379 #  * the velocity of the joint (rad/s or m/s) and \n\
00380 #  * the effort that is applied in the joint (Nm or N).\n\
00381 #\n\
00382 # Each joint is uniquely identified by its name\n\
00383 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00384 # in one message have to be recorded at the same time.\n\
00385 #\n\
00386 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00387 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00388 # effort associated with them, you can leave the effort array empty. \n\
00389 #\n\
00390 # All arrays in this message should have the same size, or be empty.\n\
00391 # This is the only way to uniquely associate the joint name with the correct\n\
00392 # states.\n\
00393 \n\
00394 \n\
00395 Header header\n\
00396 \n\
00397 string[] name\n\
00398 float64[] position\n\
00399 float64[] velocity\n\
00400 float64[] effort\n\
00401 \n\
00402 ================================================================================\n\
00403 MSG: calibration_msgs/DenseLaserSnapshot\n\
00404 # Provides all the state & sensor information for\n\
00405 # a single sweep of laser attached to some mechanism.\n\
00406 # Most likely, this will be used with PR2's tilting laser mechanism\n\
00407 Header header\n\
00408 \n\
00409 # Store the laser intrinsics. This is very similar to the\n\
00410 # intrinsics commonly stored in \n\
00411 float32 angle_min        # start angle of the scan [rad]\n\
00412 float32 angle_max        # end angle of the scan [rad]\n\
00413 float32 angle_increment  # angular distance between measurements [rad]\n\
00414 float32 time_increment   # time between measurements [seconds]\n\
00415 float32 range_min        # minimum range value [m]\n\
00416 float32 range_max        # maximum range value [m]\n\
00417 \n\
00418 # Define the size of the binary data\n\
00419 uint32 readings_per_scan    # (Width)\n\
00420 uint32 num_scans            # (Height)\n\
00421 \n\
00422 # 2D Arrays storing laser data.\n\
00423 # We can think of each type data as being a single channel image.\n\
00424 # Each row of the image has data from a single scan, and scans are\n\
00425 # concatenated to form the entire 'image'.\n\
00426 float32[] ranges            # (Image data)\n\
00427 float32[] intensities       # (Image data)\n\
00428 \n\
00429 # Store the start time of each scan\n\
00430 time[] scan_start\n\
00431 \n\
00432 ================================================================================\n\
00433 MSG: calibration_msgs/JointStateCalibrationPattern\n\
00434 Header header\n\
00435 geometry_msgs/Point[]  object_points\n\
00436 sensor_msgs/JointState[] joint_points\n\
00437 \n\
00438 \n\
00439 ================================================================================\n\
00440 MSG: calibration_msgs/ChainMeasurement\n\
00441 Header header\n\
00442 string chain_id\n\
00443 sensor_msgs/JointState chain_state\n\
00444 \n\
00445 ";
00446   }
00447 
00448   static const char* value(const  ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 
00449 };
00450 
00451 } // namespace message_traits
00452 } // namespace ros
00453 
00454 namespace ros
00455 {
00456 namespace serialization
00457 {
00458 
00459 template<class ContainerAllocator> struct Serializer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >
00460 {
00461   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00462   {
00463     stream.next(m.sample_id);
00464     stream.next(m.target_id);
00465     stream.next(m.chain_id);
00466     stream.next(m.M_cam);
00467     stream.next(m.M_laser);
00468     stream.next(m.M_chain);
00469   }
00470 
00471   ROS_DECLARE_ALLINONE_SERIALIZER;
00472 }; // struct RobotMeasurement_
00473 } // namespace serialization
00474 } // namespace ros
00475 
00476 namespace ros
00477 {
00478 namespace message_operations
00479 {
00480 
00481 template<class ContainerAllocator>
00482 struct Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >
00483 {
00484   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v) 
00485   {
00486     s << indent << "sample_id: ";
00487     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.sample_id);
00488     s << indent << "target_id: ";
00489     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.target_id);
00490     s << indent << "chain_id: ";
00491     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.chain_id);
00492     s << indent << "M_cam[]" << std::endl;
00493     for (size_t i = 0; i < v.M_cam.size(); ++i)
00494     {
00495       s << indent << "  M_cam[" << i << "]: ";
00496       s << std::endl;
00497       s << indent;
00498       Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + "    ", v.M_cam[i]);
00499     }
00500     s << indent << "M_laser[]" << std::endl;
00501     for (size_t i = 0; i < v.M_laser.size(); ++i)
00502     {
00503       s << indent << "  M_laser[" << i << "]: ";
00504       s << std::endl;
00505       s << indent;
00506       Printer< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::stream(s, indent + "    ", v.M_laser[i]);
00507     }
00508     s << indent << "M_chain[]" << std::endl;
00509     for (size_t i = 0; i < v.M_chain.size(); ++i)
00510     {
00511       s << indent << "  M_chain[" << i << "]: ";
00512       s << std::endl;
00513       s << indent;
00514       Printer< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::stream(s, indent + "    ", v.M_chain[i]);
00515     }
00516   }
00517 };
00518 
00519 
00520 } // namespace message_operations
00521 } // namespace ros
00522 
00523 #endif // CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00524 
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Properties Friends


calibration_msgs
Author(s): Vijay Pradeep
autogenerated on Thu Aug 15 2013 10:15:15