00001
00002 #ifndef CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00003 #define CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "calibration_msgs/CameraMeasurement.h"
00018 #include "calibration_msgs/LaserMeasurement.h"
00019 #include "calibration_msgs/ChainMeasurement.h"
00020
00021 namespace calibration_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct RobotMeasurement_ {
00025 typedef RobotMeasurement_<ContainerAllocator> Type;
00026
00027 RobotMeasurement_()
00028 : sample_id()
00029 , target_id()
00030 , chain_id()
00031 , M_cam()
00032 , M_laser()
00033 , M_chain()
00034 {
00035 }
00036
00037 RobotMeasurement_(const ContainerAllocator& _alloc)
00038 : sample_id(_alloc)
00039 , target_id(_alloc)
00040 , chain_id(_alloc)
00041 , M_cam(_alloc)
00042 , M_laser(_alloc)
00043 , M_chain(_alloc)
00044 {
00045 }
00046
00047 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _sample_id_type;
00048 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > sample_id;
00049
00050 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _target_id_type;
00051 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > target_id;
00052
00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _chain_id_type;
00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > chain_id;
00055
00056 typedef std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > _M_cam_type;
00057 std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > M_cam;
00058
00059 typedef std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > _M_laser_type;
00060 std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > M_laser;
00061
00062 typedef std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > _M_chain_type;
00063 std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > M_chain;
00064
00065
00066 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > Ptr;
00067 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> const> ConstPtr;
00068 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00069 };
00070 typedef ::calibration_msgs::RobotMeasurement_<std::allocator<void> > RobotMeasurement;
00071
00072 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement> RobotMeasurementPtr;
00073 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement const> RobotMeasurementConstPtr;
00074
00075
00076 template<typename ContainerAllocator>
00077 std::ostream& operator<<(std::ostream& s, const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v)
00078 {
00079 ros::message_operations::Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v);
00080 return s;}
00081
00082 }
00083
00084 namespace ros
00085 {
00086 namespace message_traits
00087 {
00088 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00089 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> const> : public TrueType {};
00090 template<class ContainerAllocator>
00091 struct MD5Sum< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00092 static const char* value()
00093 {
00094 return "fe22486c078efbf7892430dd0b99305c";
00095 }
00096
00097 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00098 static const uint64_t static_value1 = 0xfe22486c078efbf7ULL;
00099 static const uint64_t static_value2 = 0x892430dd0b99305cULL;
00100 };
00101
00102 template<class ContainerAllocator>
00103 struct DataType< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00104 static const char* value()
00105 {
00106 return "calibration_msgs/RobotMeasurement";
00107 }
00108
00109 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00110 };
00111
00112 template<class ContainerAllocator>
00113 struct Definition< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00114 static const char* value()
00115 {
00116 return "string sample_id # Tag to figure out which yaml file this was generated from\n\
00117 \n\
00118 string target_id # Defines the target that we were sensing.\n\
00119 string chain_id # Defines where this target was attached\n\
00120 \n\
00121 CameraMeasurement[] M_cam\n\
00122 LaserMeasurement[] M_laser\n\
00123 ChainMeasurement[] M_chain\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: calibration_msgs/CameraMeasurement\n\
00127 Header header\n\
00128 string camera_id\n\
00129 geometry_msgs/Point[] image_points\n\
00130 sensor_msgs/CameraInfo cam_info\n\
00131 \n\
00132 # True -> The extra debugging fields are populated\n\
00133 bool verbose\n\
00134 \n\
00135 # Extra, partially processed data. Only needed for debugging\n\
00136 sensor_msgs/Image image\n\
00137 sensor_msgs/Image image_rect\n\
00138 calibration_msgs/CalibrationPattern features\n\
00139 \n\
00140 ================================================================================\n\
00141 MSG: std_msgs/Header\n\
00142 # Standard metadata for higher-level stamped data types.\n\
00143 # This is generally used to communicate timestamped data \n\
00144 # in a particular coordinate frame.\n\
00145 # \n\
00146 # sequence ID: consecutively increasing ID \n\
00147 uint32 seq\n\
00148 #Two-integer timestamp that is expressed as:\n\
00149 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00150 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00151 # time-handling sugar is provided by the client library\n\
00152 time stamp\n\
00153 #Frame this data is associated with\n\
00154 # 0: no frame\n\
00155 # 1: global frame\n\
00156 string frame_id\n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: geometry_msgs/Point\n\
00160 # This contains the position of a point in free space\n\
00161 float64 x\n\
00162 float64 y\n\
00163 float64 z\n\
00164 \n\
00165 ================================================================================\n\
00166 MSG: sensor_msgs/CameraInfo\n\
00167 # This message defines meta information for a camera. It should be in a\n\
00168 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00169 # image topics named:\n\
00170 #\n\
00171 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00172 # image - monochrome, distorted\n\
00173 # image_color - color, distorted\n\
00174 # image_rect - monochrome, rectified\n\
00175 # image_rect_color - color, rectified\n\
00176 #\n\
00177 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00178 # for producing the four processed image topics from image_raw and\n\
00179 # camera_info. The meaning of the camera parameters are described in\n\
00180 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00181 #\n\
00182 # The image_geometry package provides a user-friendly interface to\n\
00183 # common operations using this meta information. If you want to, e.g.,\n\
00184 # project a 3d point into image coordinates, we strongly recommend\n\
00185 # using image_geometry.\n\
00186 #\n\
00187 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00188 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00189 # indicates an uncalibrated camera.\n\
00190 \n\
00191 #######################################################################\n\
00192 # Image acquisition info #\n\
00193 #######################################################################\n\
00194 \n\
00195 # Time of image acquisition, camera coordinate frame ID\n\
00196 Header header # Header timestamp should be acquisition time of image\n\
00197 # Header frame_id should be optical frame of camera\n\
00198 # origin of frame should be optical center of camera\n\
00199 # +x should point to the right in the image\n\
00200 # +y should point down in the image\n\
00201 # +z should point into the plane of the image\n\
00202 \n\
00203 \n\
00204 #######################################################################\n\
00205 # Calibration Parameters #\n\
00206 #######################################################################\n\
00207 # These are fixed during camera calibration. Their values will be the #\n\
00208 # same in all messages until the camera is recalibrated. Note that #\n\
00209 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00210 # #\n\
00211 # The internal parameters can be used to warp a raw (distorted) image #\n\
00212 # to: #\n\
00213 # 1. An undistorted image (requires D and K) #\n\
00214 # 2. A rectified image (requires D, K, R) #\n\
00215 # The projection matrix P projects 3D points into the rectified image.#\n\
00216 #######################################################################\n\
00217 \n\
00218 # The image dimensions with which the camera was calibrated. Normally\n\
00219 # this will be the full camera resolution in pixels.\n\
00220 uint32 height\n\
00221 uint32 width\n\
00222 \n\
00223 # The distortion model used. Supported models are listed in\n\
00224 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00225 # simple model of radial and tangential distortion - is sufficent.\n\
00226 string distortion_model\n\
00227 \n\
00228 # The distortion parameters, size depending on the distortion model.\n\
00229 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00230 float64[] D\n\
00231 \n\
00232 # Intrinsic camera matrix for the raw (distorted) images.\n\
00233 # [fx 0 cx]\n\
00234 # K = [ 0 fy cy]\n\
00235 # [ 0 0 1]\n\
00236 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00237 # coordinates using the focal lengths (fx, fy) and principal point\n\
00238 # (cx, cy).\n\
00239 float64[9] K # 3x3 row-major matrix\n\
00240 \n\
00241 # Rectification matrix (stereo cameras only)\n\
00242 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00243 # stereo image plane so that epipolar lines in both stereo images are\n\
00244 # parallel.\n\
00245 float64[9] R # 3x3 row-major matrix\n\
00246 \n\
00247 # Projection/camera matrix\n\
00248 # [fx' 0 cx' Tx]\n\
00249 # P = [ 0 fy' cy' Ty]\n\
00250 # [ 0 0 1 0]\n\
00251 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00252 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00253 # is the normal camera intrinsic matrix for the rectified image.\n\
00254 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00255 # coordinates using the focal lengths (fx', fy') and principal point\n\
00256 # (cx', cy') - these may differ from the values in K.\n\
00257 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00258 # also have R = the identity and P[1:3,1:3] = K.\n\
00259 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00260 # position of the optical center of the second camera in the first\n\
00261 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00262 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00263 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00264 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00265 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00266 # the rectified image is given by:\n\
00267 # [u v w]' = P * [X Y Z 1]'\n\
00268 # x = u / w\n\
00269 # y = v / w\n\
00270 # This holds for both images of a stereo pair.\n\
00271 float64[12] P # 3x4 row-major matrix\n\
00272 \n\
00273 \n\
00274 #######################################################################\n\
00275 # Operational Parameters #\n\
00276 #######################################################################\n\
00277 # These define the image region actually captured by the camera #\n\
00278 # driver. Although they affect the geometry of the output image, they #\n\
00279 # may be changed freely without recalibrating the camera. #\n\
00280 #######################################################################\n\
00281 \n\
00282 # Binning refers here to any camera setting which combines rectangular\n\
00283 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00284 # resolution of the output image to\n\
00285 # (width / binning_x) x (height / binning_y).\n\
00286 # The default values binning_x = binning_y = 0 is considered the same\n\
00287 # as binning_x = binning_y = 1 (no subsampling).\n\
00288 uint32 binning_x\n\
00289 uint32 binning_y\n\
00290 \n\
00291 # Region of interest (subwindow of full camera resolution), given in\n\
00292 # full resolution (unbinned) image coordinates. A particular ROI\n\
00293 # always denotes the same window of pixels on the camera sensor,\n\
00294 # regardless of binning settings.\n\
00295 # The default setting of roi (all values 0) is considered the same as\n\
00296 # full resolution (roi.width = width, roi.height = height).\n\
00297 RegionOfInterest roi\n\
00298 \n\
00299 ================================================================================\n\
00300 MSG: sensor_msgs/RegionOfInterest\n\
00301 # This message is used to specify a region of interest within an image.\n\
00302 #\n\
00303 # When used to specify the ROI setting of the camera when the image was\n\
00304 # taken, the height and width fields should either match the height and\n\
00305 # width fields for the associated image; or height = width = 0\n\
00306 # indicates that the full resolution image was captured.\n\
00307 \n\
00308 uint32 x_offset # Leftmost pixel of the ROI\n\
00309 # (0 if the ROI includes the left edge of the image)\n\
00310 uint32 y_offset # Topmost pixel of the ROI\n\
00311 # (0 if the ROI includes the top edge of the image)\n\
00312 uint32 height # Height of ROI\n\
00313 uint32 width # Width of ROI\n\
00314 \n\
00315 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00316 # ROI in this message. Typically this should be False if the full image\n\
00317 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00318 # used).\n\
00319 bool do_rectify\n\
00320 \n\
00321 ================================================================================\n\
00322 MSG: sensor_msgs/Image\n\
00323 # This message contains an uncompressed image\n\
00324 # (0, 0) is at top-left corner of image\n\
00325 #\n\
00326 \n\
00327 Header header # Header timestamp should be acquisition time of image\n\
00328 # Header frame_id should be optical frame of camera\n\
00329 # origin of frame should be optical center of cameara\n\
00330 # +x should point to the right in the image\n\
00331 # +y should point down in the image\n\
00332 # +z should point into to plane of the image\n\
00333 # If the frame_id here and the frame_id of the CameraInfo\n\
00334 # message associated with the image conflict\n\
00335 # the behavior is undefined\n\
00336 \n\
00337 uint32 height # image height, that is, number of rows\n\
00338 uint32 width # image width, that is, number of columns\n\
00339 \n\
00340 # The legal values for encoding are in file src/image_encodings.cpp\n\
00341 # If you want to standardize a new string format, join\n\
00342 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00343 \n\
00344 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00345 # taken from the list of strings in src/image_encodings.cpp\n\
00346 \n\
00347 uint8 is_bigendian # is this data bigendian?\n\
00348 uint32 step # Full row length in bytes\n\
00349 uint8[] data # actual matrix data, size is (step * rows)\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: calibration_msgs/CalibrationPattern\n\
00353 Header header\n\
00354 geometry_msgs/Point[] object_points\n\
00355 geometry_msgs/Point[] image_points\n\
00356 uint8 success\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: calibration_msgs/LaserMeasurement\n\
00360 Header header\n\
00361 string laser_id\n\
00362 sensor_msgs/JointState[] joint_points\n\
00363 \n\
00364 # True -> The extra debugging fields are populated\n\
00365 bool verbose\n\
00366 \n\
00367 # Extra, partially processed data. Only needed for debugging\n\
00368 calibration_msgs/DenseLaserSnapshot snapshot\n\
00369 sensor_msgs/Image laser_image\n\
00370 calibration_msgs/CalibrationPattern image_features\n\
00371 calibration_msgs/JointStateCalibrationPattern joint_features\n\
00372 \n\
00373 ================================================================================\n\
00374 MSG: sensor_msgs/JointState\n\
00375 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00376 #\n\
00377 # The state of each joint (revolute or prismatic) is defined by:\n\
00378 # * the position of the joint (rad or m),\n\
00379 # * the velocity of the joint (rad/s or m/s) and \n\
00380 # * the effort that is applied in the joint (Nm or N).\n\
00381 #\n\
00382 # Each joint is uniquely identified by its name\n\
00383 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00384 # in one message have to be recorded at the same time.\n\
00385 #\n\
00386 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00387 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00388 # effort associated with them, you can leave the effort array empty. \n\
00389 #\n\
00390 # All arrays in this message should have the same size, or be empty.\n\
00391 # This is the only way to uniquely associate the joint name with the correct\n\
00392 # states.\n\
00393 \n\
00394 \n\
00395 Header header\n\
00396 \n\
00397 string[] name\n\
00398 float64[] position\n\
00399 float64[] velocity\n\
00400 float64[] effort\n\
00401 \n\
00402 ================================================================================\n\
00403 MSG: calibration_msgs/DenseLaserSnapshot\n\
00404 # Provides all the state & sensor information for\n\
00405 # a single sweep of laser attached to some mechanism.\n\
00406 # Most likely, this will be used with PR2's tilting laser mechanism\n\
00407 Header header\n\
00408 \n\
00409 # Store the laser intrinsics. This is very similar to the\n\
00410 # intrinsics commonly stored in \n\
00411 float32 angle_min # start angle of the scan [rad]\n\
00412 float32 angle_max # end angle of the scan [rad]\n\
00413 float32 angle_increment # angular distance between measurements [rad]\n\
00414 float32 time_increment # time between measurements [seconds]\n\
00415 float32 range_min # minimum range value [m]\n\
00416 float32 range_max # maximum range value [m]\n\
00417 \n\
00418 # Define the size of the binary data\n\
00419 uint32 readings_per_scan # (Width)\n\
00420 uint32 num_scans # (Height)\n\
00421 \n\
00422 # 2D Arrays storing laser data.\n\
00423 # We can think of each type data as being a single channel image.\n\
00424 # Each row of the image has data from a single scan, and scans are\n\
00425 # concatenated to form the entire 'image'.\n\
00426 float32[] ranges # (Image data)\n\
00427 float32[] intensities # (Image data)\n\
00428 \n\
00429 # Store the start time of each scan\n\
00430 time[] scan_start\n\
00431 \n\
00432 ================================================================================\n\
00433 MSG: calibration_msgs/JointStateCalibrationPattern\n\
00434 Header header\n\
00435 geometry_msgs/Point[] object_points\n\
00436 sensor_msgs/JointState[] joint_points\n\
00437 \n\
00438 \n\
00439 ================================================================================\n\
00440 MSG: calibration_msgs/ChainMeasurement\n\
00441 Header header\n\
00442 string chain_id\n\
00443 sensor_msgs/JointState chain_state\n\
00444 \n\
00445 ";
00446 }
00447
00448 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00449 };
00450
00451 }
00452 }
00453
00454 namespace ros
00455 {
00456 namespace serialization
00457 {
00458
00459 template<class ContainerAllocator> struct Serializer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >
00460 {
00461 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00462 {
00463 stream.next(m.sample_id);
00464 stream.next(m.target_id);
00465 stream.next(m.chain_id);
00466 stream.next(m.M_cam);
00467 stream.next(m.M_laser);
00468 stream.next(m.M_chain);
00469 }
00470
00471 ROS_DECLARE_ALLINONE_SERIALIZER;
00472 };
00473 }
00474 }
00475
00476 namespace ros
00477 {
00478 namespace message_operations
00479 {
00480
00481 template<class ContainerAllocator>
00482 struct Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >
00483 {
00484 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v)
00485 {
00486 s << indent << "sample_id: ";
00487 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.sample_id);
00488 s << indent << "target_id: ";
00489 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.target_id);
00490 s << indent << "chain_id: ";
00491 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.chain_id);
00492 s << indent << "M_cam[]" << std::endl;
00493 for (size_t i = 0; i < v.M_cam.size(); ++i)
00494 {
00495 s << indent << " M_cam[" << i << "]: ";
00496 s << std::endl;
00497 s << indent;
00498 Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_cam[i]);
00499 }
00500 s << indent << "M_laser[]" << std::endl;
00501 for (size_t i = 0; i < v.M_laser.size(); ++i)
00502 {
00503 s << indent << " M_laser[" << i << "]: ";
00504 s << std::endl;
00505 s << indent;
00506 Printer< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_laser[i]);
00507 }
00508 s << indent << "M_chain[]" << std::endl;
00509 for (size_t i = 0; i < v.M_chain.size(); ++i)
00510 {
00511 s << indent << " M_chain[" << i << "]: ";
00512 s << std::endl;
00513 s << indent;
00514 Printer< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_chain[i]);
00515 }
00516 }
00517 };
00518
00519
00520 }
00521 }
00522
00523 #endif // CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00524