00001 /********************************************************************* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of the Willow Garage nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 *********************************************************************/ 00034 00035 #ifndef PROBABILITY_DISTRIBUTION_H 00036 #define PROBABILITY_DISTRIBUTION_H 00037 00038 namespace bayesian_grasp_planner { 00039 00040 class ProbabilityDistribution 00041 { 00042 public: 00043 virtual double evaluate(double value) const = 0; 00044 }; 00045 00046 class IdentityProbabilityDistribution : public ProbabilityDistribution 00047 { 00048 public: 00049 virtual double evaluate(double value) const {return value;} 00050 }; 00051 00052 00054 class GaussianProbabilityDistribution : public ProbabilityDistribution 00055 { 00056 protected: 00057 double mean_; //mean of the shifted distribution 00058 double std_dev_; //std of the shifted distribution 00059 double min_; //raw value min for shifting 00060 double max_; //raw value max for shifting 00061 bool flip_; //whether the raw value should be flipped so that higher is better 00062 public: 00063 GaussianProbabilityDistribution(double mean, double std_dev, double min, double max, bool flip) : 00064 mean_(mean),std_dev_(std_dev),min_(min),max_(max),flip_(flip){} 00065 00066 virtual double evaluate(double value) const 00067 { 00068 //flip and shift the raw value 00069 double clipped_value = value; 00070 if (value > max_+1e-6) 00071 { 00072 clipped_value = max_; 00073 //ROS_WARN("clipping value %.3f to max of %.3f", value, max_); 00074 } 00075 if (value < min_-1e-6) 00076 { 00077 clipped_value = min_; 00078 //ROS_WARN("clipping value %.3f to min of %.3f", value, min_); 00079 } 00080 double shifted_value; 00081 if (flip_) 00082 { 00083 shifted_value = (max_ - clipped_value) / (max_ - min_); 00084 //printf("flipping, max_=%.3f, min_=%.3f ", max_, min_); 00085 } 00086 else 00087 { 00088 shifted_value = (clipped_value - min_) / (max_ - min_); 00089 //printf("not flipping, max_=%.3f, min_=%.3f ", max_, min_); 00090 } 00091 //printf("mean: %.3f, std_dev: %.3f, value: %.3f, shifted_value: %.3f, prob: %.3f\n", mean_, std_dev_, value, shifted_value, 1/sqrt(2*3.14159*pow(std_dev_, 2)) * exp(-.5*pow(shifted_value - mean_, 2)/pow(std_dev_, 2))); 00092 return 1/sqrt(2*3.14159*pow(std_dev_, 2)) * exp(-.5*pow(shifted_value - mean_, 2)/pow(std_dev_, 2)); 00093 } 00094 }; 00095 00096 00098 class BimodalGaussianProbabilityDistribution : public ProbabilityDistribution 00099 { 00100 protected: 00101 double mean_; //mean of the shifted distribution (for all but zero values) 00102 double std_dev_; //std of the shifted distribution (for all but zero values) 00103 double zero_prob_; //probability of getting a zero value 00104 public: 00105 BimodalGaussianProbabilityDistribution(double mean, double std_dev, double zero_prob) : 00106 mean_(mean),std_dev_(std_dev),zero_prob_(zero_prob){} 00107 00108 virtual double evaluate(double value) const 00109 { 00110 if (value == 0) return zero_prob_; 00111 return (1-zero_prob_)*(1/sqrt(2*3.14159*pow(std_dev_, 2)) * exp(-.5*pow(value - mean_, 2)/pow(std_dev_, 2))); 00112 } 00113 }; 00114 00115 00116 } 00117 00118 #endif