00001
00002 #ifndef SENSOR_MSGS_SERVICE_SETCAMERAINFO_H
00003 #define SENSOR_MSGS_SERVICE_SETCAMERAINFO_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "sensor_msgs/CameraInfo.h"
00020
00021
00022
00023 namespace sensor_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct SetCameraInfoRequest_ {
00027 typedef SetCameraInfoRequest_<ContainerAllocator> Type;
00028
00029 SetCameraInfoRequest_()
00030 : camera_info()
00031 {
00032 }
00033
00034 SetCameraInfoRequest_(const ContainerAllocator& _alloc)
00035 : camera_info(_alloc)
00036 {
00037 }
00038
00039 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00040 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00041
00042
00043 private:
00044 static const char* __s_getDataType_() { return "sensor_msgs/SetCameraInfoRequest"; }
00045 public:
00046 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00047
00048 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00049
00050 private:
00051 static const char* __s_getMD5Sum_() { return "ee34be01fdeee563d0d99cd594d5581d"; }
00052 public:
00053 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00054
00055 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00056
00057 private:
00058 static const char* __s_getServerMD5Sum_() { return "bef1df590ed75ed1f393692395e15482"; }
00059 public:
00060 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00061
00062 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00063
00064 private:
00065 static const char* __s_getMessageDefinition_() { return "\n\
00066 \n\
00067 \n\
00068 \n\
00069 \n\
00070 \n\
00071 \n\
00072 \n\
00073 sensor_msgs/CameraInfo camera_info\n\
00074 \n\
00075 ================================================================================\n\
00076 MSG: sensor_msgs/CameraInfo\n\
00077 # This message defines meta information for a camera. It should be in a\n\
00078 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00079 # image topics named:\n\
00080 #\n\
00081 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00082 # image - monochrome, distorted\n\
00083 # image_color - color, distorted\n\
00084 # image_rect - monochrome, rectified\n\
00085 # image_rect_color - color, rectified\n\
00086 #\n\
00087 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00088 # for producing the four processed image topics from image_raw and\n\
00089 # camera_info. The meaning of the camera parameters are described in\n\
00090 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00091 #\n\
00092 # The image_geometry package provides a user-friendly interface to\n\
00093 # common operations using this meta information. If you want to, e.g.,\n\
00094 # project a 3d point into image coordinates, we strongly recommend\n\
00095 # using image_geometry.\n\
00096 #\n\
00097 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00098 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00099 # indicates an uncalibrated camera.\n\
00100 \n\
00101 #######################################################################\n\
00102 # Image acquisition info #\n\
00103 #######################################################################\n\
00104 \n\
00105 # Time of image acquisition, camera coordinate frame ID\n\
00106 Header header # Header timestamp should be acquisition time of image\n\
00107 # Header frame_id should be optical frame of camera\n\
00108 # origin of frame should be optical center of camera\n\
00109 # +x should point to the right in the image\n\
00110 # +y should point down in the image\n\
00111 # +z should point into the plane of the image\n\
00112 \n\
00113 \n\
00114 #######################################################################\n\
00115 # Calibration Parameters #\n\
00116 #######################################################################\n\
00117 # These are fixed during camera calibration. Their values will be the #\n\
00118 # same in all messages until the camera is recalibrated. Note that #\n\
00119 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00120 # #\n\
00121 # The internal parameters can be used to warp a raw (distorted) image #\n\
00122 # to: #\n\
00123 # 1. An undistorted image (requires D and K) #\n\
00124 # 2. A rectified image (requires D, K, R) #\n\
00125 # The projection matrix P projects 3D points into the rectified image.#\n\
00126 #######################################################################\n\
00127 \n\
00128 # The image dimensions with which the camera was calibrated. Normally\n\
00129 # this will be the full camera resolution in pixels.\n\
00130 uint32 height\n\
00131 uint32 width\n\
00132 \n\
00133 # The distortion model used. Supported models are listed in\n\
00134 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00135 # simple model of radial and tangential distortion - is sufficent.\n\
00136 string distortion_model\n\
00137 \n\
00138 # The distortion parameters, size depending on the distortion model.\n\
00139 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00140 float64[] D\n\
00141 \n\
00142 # Intrinsic camera matrix for the raw (distorted) images.\n\
00143 # [fx 0 cx]\n\
00144 # K = [ 0 fy cy]\n\
00145 # [ 0 0 1]\n\
00146 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00147 # coordinates using the focal lengths (fx, fy) and principal point\n\
00148 # (cx, cy).\n\
00149 float64[9] K # 3x3 row-major matrix\n\
00150 \n\
00151 # Rectification matrix (stereo cameras only)\n\
00152 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00153 # stereo image plane so that epipolar lines in both stereo images are\n\
00154 # parallel.\n\
00155 float64[9] R # 3x3 row-major matrix\n\
00156 \n\
00157 # Projection/camera matrix\n\
00158 # [fx' 0 cx' Tx]\n\
00159 # P = [ 0 fy' cy' Ty]\n\
00160 # [ 0 0 1 0]\n\
00161 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00162 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00163 # is the normal camera intrinsic matrix for the rectified image.\n\
00164 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00165 # coordinates using the focal lengths (fx', fy') and principal point\n\
00166 # (cx', cy') - these may differ from the values in K.\n\
00167 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00168 # also have R = the identity and P[1:3,1:3] = K.\n\
00169 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00170 # position of the optical center of the second camera in the first\n\
00171 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00172 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00173 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00174 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00175 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00176 # the rectified image is given by:\n\
00177 # [u v w]' = P * [X Y Z 1]'\n\
00178 # x = u / w\n\
00179 # y = v / w\n\
00180 # This holds for both images of a stereo pair.\n\
00181 float64[12] P # 3x4 row-major matrix\n\
00182 \n\
00183 \n\
00184 #######################################################################\n\
00185 # Operational Parameters #\n\
00186 #######################################################################\n\
00187 # These define the image region actually captured by the camera #\n\
00188 # driver. Although they affect the geometry of the output image, they #\n\
00189 # may be changed freely without recalibrating the camera. #\n\
00190 #######################################################################\n\
00191 \n\
00192 # Binning refers here to any camera setting which combines rectangular\n\
00193 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00194 # resolution of the output image to\n\
00195 # (width / binning_x) x (height / binning_y).\n\
00196 # The default values binning_x = binning_y = 0 is considered the same\n\
00197 # as binning_x = binning_y = 1 (no subsampling).\n\
00198 uint32 binning_x\n\
00199 uint32 binning_y\n\
00200 \n\
00201 # Region of interest (subwindow of full camera resolution), given in\n\
00202 # full resolution (unbinned) image coordinates. A particular ROI\n\
00203 # always denotes the same window of pixels on the camera sensor,\n\
00204 # regardless of binning settings.\n\
00205 # The default setting of roi (all values 0) is considered the same as\n\
00206 # full resolution (roi.width = width, roi.height = height).\n\
00207 RegionOfInterest roi\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: std_msgs/Header\n\
00211 # Standard metadata for higher-level stamped data types.\n\
00212 # This is generally used to communicate timestamped data \n\
00213 # in a particular coordinate frame.\n\
00214 # \n\
00215 # sequence ID: consecutively increasing ID \n\
00216 uint32 seq\n\
00217 #Two-integer timestamp that is expressed as:\n\
00218 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00219 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00220 # time-handling sugar is provided by the client library\n\
00221 time stamp\n\
00222 #Frame this data is associated with\n\
00223 # 0: no frame\n\
00224 # 1: global frame\n\
00225 string frame_id\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: sensor_msgs/RegionOfInterest\n\
00229 # This message is used to specify a region of interest within an image.\n\
00230 #\n\
00231 # When used to specify the ROI setting of the camera when the image was\n\
00232 # taken, the height and width fields should either match the height and\n\
00233 # width fields for the associated image; or height = width = 0\n\
00234 # indicates that the full resolution image was captured.\n\
00235 \n\
00236 uint32 x_offset # Leftmost pixel of the ROI\n\
00237 # (0 if the ROI includes the left edge of the image)\n\
00238 uint32 y_offset # Topmost pixel of the ROI\n\
00239 # (0 if the ROI includes the top edge of the image)\n\
00240 uint32 height # Height of ROI\n\
00241 uint32 width # Width of ROI\n\
00242 \n\
00243 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00244 # ROI in this message. Typically this should be False if the full image\n\
00245 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00246 # used).\n\
00247 bool do_rectify\n\
00248 \n\
00249 "; }
00250 public:
00251 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00252
00253 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00254
00255 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00256 {
00257 ros::serialization::OStream stream(write_ptr, 1000000000);
00258 ros::serialization::serialize(stream, camera_info);
00259 return stream.getData();
00260 }
00261
00262 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00263 {
00264 ros::serialization::IStream stream(read_ptr, 1000000000);
00265 ros::serialization::deserialize(stream, camera_info);
00266 return stream.getData();
00267 }
00268
00269 ROS_DEPRECATED virtual uint32_t serializationLength() const
00270 {
00271 uint32_t size = 0;
00272 size += ros::serialization::serializationLength(camera_info);
00273 return size;
00274 }
00275
00276 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > Ptr;
00277 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> ConstPtr;
00278 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00279 };
00280 typedef ::sensor_msgs::SetCameraInfoRequest_<std::allocator<void> > SetCameraInfoRequest;
00281
00282 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest> SetCameraInfoRequestPtr;
00283 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest const> SetCameraInfoRequestConstPtr;
00284
00285
00286 template <class ContainerAllocator>
00287 struct SetCameraInfoResponse_ {
00288 typedef SetCameraInfoResponse_<ContainerAllocator> Type;
00289
00290 SetCameraInfoResponse_()
00291 : success(false)
00292 , status_message()
00293 {
00294 }
00295
00296 SetCameraInfoResponse_(const ContainerAllocator& _alloc)
00297 : success(false)
00298 , status_message(_alloc)
00299 {
00300 }
00301
00302 typedef uint8_t _success_type;
00303 uint8_t success;
00304
00305 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _status_message_type;
00306 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > status_message;
00307
00308
00309 private:
00310 static const char* __s_getDataType_() { return "sensor_msgs/SetCameraInfoResponse"; }
00311 public:
00312 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00313
00314 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00315
00316 private:
00317 static const char* __s_getMD5Sum_() { return "2ec6f3eff0161f4257b808b12bc830c2"; }
00318 public:
00319 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00320
00321 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00322
00323 private:
00324 static const char* __s_getServerMD5Sum_() { return "bef1df590ed75ed1f393692395e15482"; }
00325 public:
00326 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00327
00328 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00329
00330 private:
00331 static const char* __s_getMessageDefinition_() { return "bool success\n\
00332 string status_message\n\
00333 \n\
00334 \n\
00335 "; }
00336 public:
00337 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00338
00339 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00340
00341 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00342 {
00343 ros::serialization::OStream stream(write_ptr, 1000000000);
00344 ros::serialization::serialize(stream, success);
00345 ros::serialization::serialize(stream, status_message);
00346 return stream.getData();
00347 }
00348
00349 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00350 {
00351 ros::serialization::IStream stream(read_ptr, 1000000000);
00352 ros::serialization::deserialize(stream, success);
00353 ros::serialization::deserialize(stream, status_message);
00354 return stream.getData();
00355 }
00356
00357 ROS_DEPRECATED virtual uint32_t serializationLength() const
00358 {
00359 uint32_t size = 0;
00360 size += ros::serialization::serializationLength(success);
00361 size += ros::serialization::serializationLength(status_message);
00362 return size;
00363 }
00364
00365 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > Ptr;
00366 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> const> ConstPtr;
00367 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00368 };
00369 typedef ::sensor_msgs::SetCameraInfoResponse_<std::allocator<void> > SetCameraInfoResponse;
00370
00371 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse> SetCameraInfoResponsePtr;
00372 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse const> SetCameraInfoResponseConstPtr;
00373
00374 struct SetCameraInfo
00375 {
00376
00377 typedef SetCameraInfoRequest Request;
00378 typedef SetCameraInfoResponse Response;
00379 Request request;
00380 Response response;
00381
00382 typedef Request RequestType;
00383 typedef Response ResponseType;
00384 };
00385 }
00386
00387 namespace ros
00388 {
00389 namespace message_traits
00390 {
00391 template<class ContainerAllocator> struct IsMessage< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > : public TrueType {};
00392 template<class ContainerAllocator> struct IsMessage< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> : public TrueType {};
00393 template<class ContainerAllocator>
00394 struct MD5Sum< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00395 static const char* value()
00396 {
00397 return "ee34be01fdeee563d0d99cd594d5581d";
00398 }
00399
00400 static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00401 static const uint64_t static_value1 = 0xee34be01fdeee563ULL;
00402 static const uint64_t static_value2 = 0xd0d99cd594d5581dULL;
00403 };
00404
00405 template<class ContainerAllocator>
00406 struct DataType< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00407 static const char* value()
00408 {
00409 return "sensor_msgs/SetCameraInfoRequest";
00410 }
00411
00412 static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00413 };
00414
00415 template<class ContainerAllocator>
00416 struct Definition< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00417 static const char* value()
00418 {
00419 return "\n\
00420 \n\
00421 \n\
00422 \n\
00423 \n\
00424 \n\
00425 \n\
00426 \n\
00427 sensor_msgs/CameraInfo camera_info\n\
00428 \n\
00429 ================================================================================\n\
00430 MSG: sensor_msgs/CameraInfo\n\
00431 # This message defines meta information for a camera. It should be in a\n\
00432 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00433 # image topics named:\n\
00434 #\n\
00435 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00436 # image - monochrome, distorted\n\
00437 # image_color - color, distorted\n\
00438 # image_rect - monochrome, rectified\n\
00439 # image_rect_color - color, rectified\n\
00440 #\n\
00441 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00442 # for producing the four processed image topics from image_raw and\n\
00443 # camera_info. The meaning of the camera parameters are described in\n\
00444 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00445 #\n\
00446 # The image_geometry package provides a user-friendly interface to\n\
00447 # common operations using this meta information. If you want to, e.g.,\n\
00448 # project a 3d point into image coordinates, we strongly recommend\n\
00449 # using image_geometry.\n\
00450 #\n\
00451 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00452 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00453 # indicates an uncalibrated camera.\n\
00454 \n\
00455 #######################################################################\n\
00456 # Image acquisition info #\n\
00457 #######################################################################\n\
00458 \n\
00459 # Time of image acquisition, camera coordinate frame ID\n\
00460 Header header # Header timestamp should be acquisition time of image\n\
00461 # Header frame_id should be optical frame of camera\n\
00462 # origin of frame should be optical center of camera\n\
00463 # +x should point to the right in the image\n\
00464 # +y should point down in the image\n\
00465 # +z should point into the plane of the image\n\
00466 \n\
00467 \n\
00468 #######################################################################\n\
00469 # Calibration Parameters #\n\
00470 #######################################################################\n\
00471 # These are fixed during camera calibration. Their values will be the #\n\
00472 # same in all messages until the camera is recalibrated. Note that #\n\
00473 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00474 # #\n\
00475 # The internal parameters can be used to warp a raw (distorted) image #\n\
00476 # to: #\n\
00477 # 1. An undistorted image (requires D and K) #\n\
00478 # 2. A rectified image (requires D, K, R) #\n\
00479 # The projection matrix P projects 3D points into the rectified image.#\n\
00480 #######################################################################\n\
00481 \n\
00482 # The image dimensions with which the camera was calibrated. Normally\n\
00483 # this will be the full camera resolution in pixels.\n\
00484 uint32 height\n\
00485 uint32 width\n\
00486 \n\
00487 # The distortion model used. Supported models are listed in\n\
00488 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00489 # simple model of radial and tangential distortion - is sufficent.\n\
00490 string distortion_model\n\
00491 \n\
00492 # The distortion parameters, size depending on the distortion model.\n\
00493 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00494 float64[] D\n\
00495 \n\
00496 # Intrinsic camera matrix for the raw (distorted) images.\n\
00497 # [fx 0 cx]\n\
00498 # K = [ 0 fy cy]\n\
00499 # [ 0 0 1]\n\
00500 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00501 # coordinates using the focal lengths (fx, fy) and principal point\n\
00502 # (cx, cy).\n\
00503 float64[9] K # 3x3 row-major matrix\n\
00504 \n\
00505 # Rectification matrix (stereo cameras only)\n\
00506 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00507 # stereo image plane so that epipolar lines in both stereo images are\n\
00508 # parallel.\n\
00509 float64[9] R # 3x3 row-major matrix\n\
00510 \n\
00511 # Projection/camera matrix\n\
00512 # [fx' 0 cx' Tx]\n\
00513 # P = [ 0 fy' cy' Ty]\n\
00514 # [ 0 0 1 0]\n\
00515 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00516 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00517 # is the normal camera intrinsic matrix for the rectified image.\n\
00518 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00519 # coordinates using the focal lengths (fx', fy') and principal point\n\
00520 # (cx', cy') - these may differ from the values in K.\n\
00521 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00522 # also have R = the identity and P[1:3,1:3] = K.\n\
00523 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00524 # position of the optical center of the second camera in the first\n\
00525 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00526 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00527 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00528 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00529 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00530 # the rectified image is given by:\n\
00531 # [u v w]' = P * [X Y Z 1]'\n\
00532 # x = u / w\n\
00533 # y = v / w\n\
00534 # This holds for both images of a stereo pair.\n\
00535 float64[12] P # 3x4 row-major matrix\n\
00536 \n\
00537 \n\
00538 #######################################################################\n\
00539 # Operational Parameters #\n\
00540 #######################################################################\n\
00541 # These define the image region actually captured by the camera #\n\
00542 # driver. Although they affect the geometry of the output image, they #\n\
00543 # may be changed freely without recalibrating the camera. #\n\
00544 #######################################################################\n\
00545 \n\
00546 # Binning refers here to any camera setting which combines rectangular\n\
00547 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00548 # resolution of the output image to\n\
00549 # (width / binning_x) x (height / binning_y).\n\
00550 # The default values binning_x = binning_y = 0 is considered the same\n\
00551 # as binning_x = binning_y = 1 (no subsampling).\n\
00552 uint32 binning_x\n\
00553 uint32 binning_y\n\
00554 \n\
00555 # Region of interest (subwindow of full camera resolution), given in\n\
00556 # full resolution (unbinned) image coordinates. A particular ROI\n\
00557 # always denotes the same window of pixels on the camera sensor,\n\
00558 # regardless of binning settings.\n\
00559 # The default setting of roi (all values 0) is considered the same as\n\
00560 # full resolution (roi.width = width, roi.height = height).\n\
00561 RegionOfInterest roi\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: std_msgs/Header\n\
00565 # Standard metadata for higher-level stamped data types.\n\
00566 # This is generally used to communicate timestamped data \n\
00567 # in a particular coordinate frame.\n\
00568 # \n\
00569 # sequence ID: consecutively increasing ID \n\
00570 uint32 seq\n\
00571 #Two-integer timestamp that is expressed as:\n\
00572 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00573 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00574 # time-handling sugar is provided by the client library\n\
00575 time stamp\n\
00576 #Frame this data is associated with\n\
00577 # 0: no frame\n\
00578 # 1: global frame\n\
00579 string frame_id\n\
00580 \n\
00581 ================================================================================\n\
00582 MSG: sensor_msgs/RegionOfInterest\n\
00583 # This message is used to specify a region of interest within an image.\n\
00584 #\n\
00585 # When used to specify the ROI setting of the camera when the image was\n\
00586 # taken, the height and width fields should either match the height and\n\
00587 # width fields for the associated image; or height = width = 0\n\
00588 # indicates that the full resolution image was captured.\n\
00589 \n\
00590 uint32 x_offset # Leftmost pixel of the ROI\n\
00591 # (0 if the ROI includes the left edge of the image)\n\
00592 uint32 y_offset # Topmost pixel of the ROI\n\
00593 # (0 if the ROI includes the top edge of the image)\n\
00594 uint32 height # Height of ROI\n\
00595 uint32 width # Width of ROI\n\
00596 \n\
00597 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00598 # ROI in this message. Typically this should be False if the full image\n\
00599 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00600 # used).\n\
00601 bool do_rectify\n\
00602 \n\
00603 ";
00604 }
00605
00606 static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00607 };
00608
00609 }
00610 }
00611
00612
00613 namespace ros
00614 {
00615 namespace message_traits
00616 {
00617 template<class ContainerAllocator> struct IsMessage< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > : public TrueType {};
00618 template<class ContainerAllocator> struct IsMessage< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> const> : public TrueType {};
00619 template<class ContainerAllocator>
00620 struct MD5Sum< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00621 static const char* value()
00622 {
00623 return "2ec6f3eff0161f4257b808b12bc830c2";
00624 }
00625
00626 static const char* value(const ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00627 static const uint64_t static_value1 = 0x2ec6f3eff0161f42ULL;
00628 static const uint64_t static_value2 = 0x57b808b12bc830c2ULL;
00629 };
00630
00631 template<class ContainerAllocator>
00632 struct DataType< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00633 static const char* value()
00634 {
00635 return "sensor_msgs/SetCameraInfoResponse";
00636 }
00637
00638 static const char* value(const ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00639 };
00640
00641 template<class ContainerAllocator>
00642 struct Definition< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00643 static const char* value()
00644 {
00645 return "bool success\n\
00646 string status_message\n\
00647 \n\
00648 \n\
00649 ";
00650 }
00651
00652 static const char* value(const ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00653 };
00654
00655 }
00656 }
00657
00658 namespace ros
00659 {
00660 namespace serialization
00661 {
00662
00663 template<class ContainerAllocator> struct Serializer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
00664 {
00665 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00666 {
00667 stream.next(m.camera_info);
00668 }
00669
00670 ROS_DECLARE_ALLINONE_SERIALIZER;
00671 };
00672 }
00673 }
00674
00675
00676 namespace ros
00677 {
00678 namespace serialization
00679 {
00680
00681 template<class ContainerAllocator> struct Serializer< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> >
00682 {
00683 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00684 {
00685 stream.next(m.success);
00686 stream.next(m.status_message);
00687 }
00688
00689 ROS_DECLARE_ALLINONE_SERIALIZER;
00690 };
00691 }
00692 }
00693
00694 namespace ros
00695 {
00696 namespace service_traits
00697 {
00698 template<>
00699 struct MD5Sum<sensor_msgs::SetCameraInfo> {
00700 static const char* value()
00701 {
00702 return "bef1df590ed75ed1f393692395e15482";
00703 }
00704
00705 static const char* value(const sensor_msgs::SetCameraInfo&) { return value(); }
00706 };
00707
00708 template<>
00709 struct DataType<sensor_msgs::SetCameraInfo> {
00710 static const char* value()
00711 {
00712 return "sensor_msgs/SetCameraInfo";
00713 }
00714
00715 static const char* value(const sensor_msgs::SetCameraInfo&) { return value(); }
00716 };
00717
00718 template<class ContainerAllocator>
00719 struct MD5Sum<sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00720 static const char* value()
00721 {
00722 return "bef1df590ed75ed1f393692395e15482";
00723 }
00724
00725 static const char* value(const sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00726 };
00727
00728 template<class ContainerAllocator>
00729 struct DataType<sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00730 static const char* value()
00731 {
00732 return "sensor_msgs/SetCameraInfo";
00733 }
00734
00735 static const char* value(const sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00736 };
00737
00738 template<class ContainerAllocator>
00739 struct MD5Sum<sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00740 static const char* value()
00741 {
00742 return "bef1df590ed75ed1f393692395e15482";
00743 }
00744
00745 static const char* value(const sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00746 };
00747
00748 template<class ContainerAllocator>
00749 struct DataType<sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00750 static const char* value()
00751 {
00752 return "sensor_msgs/SetCameraInfo";
00753 }
00754
00755 static const char* value(const sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00756 };
00757
00758 }
00759 }
00760
00761 #endif // SENSOR_MSGS_SERVICE_SETCAMERAINFO_H
00762