$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-common_msgs/doc_stacks/2013-03-01_14-58-52.505545/common_msgs/sensor_msgs/msg/CameraInfo.msg */ 00002 #ifndef SENSOR_MSGS_MESSAGE_CAMERAINFO_H 00003 #define SENSOR_MSGS_MESSAGE_CAMERAINFO_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "sensor_msgs/RegionOfInterest.h" 00019 00020 namespace sensor_msgs 00021 { 00022 template <class ContainerAllocator> 00023 struct CameraInfo_ { 00024 typedef CameraInfo_<ContainerAllocator> Type; 00025 00026 CameraInfo_() 00027 : header() 00028 , height(0) 00029 , width(0) 00030 , distortion_model() 00031 , D() 00032 , K() 00033 , R() 00034 , P() 00035 , binning_x(0) 00036 , binning_y(0) 00037 , roi() 00038 { 00039 K.assign(0.0); 00040 R.assign(0.0); 00041 P.assign(0.0); 00042 } 00043 00044 CameraInfo_(const ContainerAllocator& _alloc) 00045 : header(_alloc) 00046 , height(0) 00047 , width(0) 00048 , distortion_model(_alloc) 00049 , D(_alloc) 00050 , K() 00051 , R() 00052 , P() 00053 , binning_x(0) 00054 , binning_y(0) 00055 , roi(_alloc) 00056 { 00057 K.assign(0.0); 00058 R.assign(0.0); 00059 P.assign(0.0); 00060 } 00061 00062 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00063 ::std_msgs::Header_<ContainerAllocator> header; 00064 00065 typedef uint32_t _height_type; 00066 uint32_t height; 00067 00068 typedef uint32_t _width_type; 00069 uint32_t width; 00070 00071 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _distortion_model_type; 00072 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > distortion_model; 00073 00074 typedef std::vector<double, typename ContainerAllocator::template rebind<double>::other > _D_type; 00075 std::vector<double, typename ContainerAllocator::template rebind<double>::other > D; 00076 00077 typedef boost::array<double, 9> _K_type; 00078 boost::array<double, 9> K; 00079 00080 typedef boost::array<double, 9> _R_type; 00081 boost::array<double, 9> R; 00082 00083 typedef boost::array<double, 12> _P_type; 00084 boost::array<double, 12> P; 00085 00086 typedef uint32_t _binning_x_type; 00087 uint32_t binning_x; 00088 00089 typedef uint32_t _binning_y_type; 00090 uint32_t binning_y; 00091 00092 typedef ::sensor_msgs::RegionOfInterest_<ContainerAllocator> _roi_type; 00093 ::sensor_msgs::RegionOfInterest_<ContainerAllocator> roi; 00094 00095 00096 ROS_DEPRECATED uint32_t get_D_size() const { return (uint32_t)D.size(); } 00097 ROS_DEPRECATED void set_D_size(uint32_t size) { D.resize((size_t)size); } 00098 ROS_DEPRECATED void get_D_vec(std::vector<double, typename ContainerAllocator::template rebind<double>::other > & vec) const { vec = this->D; } 00099 ROS_DEPRECATED void set_D_vec(const std::vector<double, typename ContainerAllocator::template rebind<double>::other > & vec) { this->D = vec; } 00100 ROS_DEPRECATED uint32_t get_K_size() const { return (uint32_t)K.size(); } 00101 ROS_DEPRECATED uint32_t get_R_size() const { return (uint32_t)R.size(); } 00102 ROS_DEPRECATED uint32_t get_P_size() const { return (uint32_t)P.size(); } 00103 private: 00104 static const char* __s_getDataType_() { return "sensor_msgs/CameraInfo"; } 00105 public: 00106 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00107 00108 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00109 00110 private: 00111 static const char* __s_getMD5Sum_() { return "c9a58c1b0b154e0e6da7578cb991d214"; } 00112 public: 00113 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00114 00115 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00116 00117 private: 00118 static const char* __s_getMessageDefinition_() { return "# This message defines meta information for a camera. It should be in a\n\ 00119 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00120 # image topics named:\n\ 00121 #\n\ 00122 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00123 # image - monochrome, distorted\n\ 00124 # image_color - color, distorted\n\ 00125 # image_rect - monochrome, rectified\n\ 00126 # image_rect_color - color, rectified\n\ 00127 #\n\ 00128 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00129 # for producing the four processed image topics from image_raw and\n\ 00130 # camera_info. The meaning of the camera parameters are described in\n\ 00131 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00132 #\n\ 00133 # The image_geometry package provides a user-friendly interface to\n\ 00134 # common operations using this meta information. If you want to, e.g.,\n\ 00135 # project a 3d point into image coordinates, we strongly recommend\n\ 00136 # using image_geometry.\n\ 00137 #\n\ 00138 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00139 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00140 # indicates an uncalibrated camera.\n\ 00141 \n\ 00142 #######################################################################\n\ 00143 # Image acquisition info #\n\ 00144 #######################################################################\n\ 00145 \n\ 00146 # Time of image acquisition, camera coordinate frame ID\n\ 00147 Header header # Header timestamp should be acquisition time of image\n\ 00148 # Header frame_id should be optical frame of camera\n\ 00149 # origin of frame should be optical center of camera\n\ 00150 # +x should point to the right in the image\n\ 00151 # +y should point down in the image\n\ 00152 # +z should point into the plane of the image\n\ 00153 \n\ 00154 \n\ 00155 #######################################################################\n\ 00156 # Calibration Parameters #\n\ 00157 #######################################################################\n\ 00158 # These are fixed during camera calibration. Their values will be the #\n\ 00159 # same in all messages until the camera is recalibrated. Note that #\n\ 00160 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00161 # #\n\ 00162 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00163 # to: #\n\ 00164 # 1. An undistorted image (requires D and K) #\n\ 00165 # 2. A rectified image (requires D, K, R) #\n\ 00166 # The projection matrix P projects 3D points into the rectified image.#\n\ 00167 #######################################################################\n\ 00168 \n\ 00169 # The image dimensions with which the camera was calibrated. Normally\n\ 00170 # this will be the full camera resolution in pixels.\n\ 00171 uint32 height\n\ 00172 uint32 width\n\ 00173 \n\ 00174 # The distortion model used. Supported models are listed in\n\ 00175 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00176 # simple model of radial and tangential distortion - is sufficent.\n\ 00177 string distortion_model\n\ 00178 \n\ 00179 # The distortion parameters, size depending on the distortion model.\n\ 00180 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00181 float64[] D\n\ 00182 \n\ 00183 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00184 # [fx 0 cx]\n\ 00185 # K = [ 0 fy cy]\n\ 00186 # [ 0 0 1]\n\ 00187 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00188 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00189 # (cx, cy).\n\ 00190 float64[9] K # 3x3 row-major matrix\n\ 00191 \n\ 00192 # Rectification matrix (stereo cameras only)\n\ 00193 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00194 # stereo image plane so that epipolar lines in both stereo images are\n\ 00195 # parallel.\n\ 00196 float64[9] R # 3x3 row-major matrix\n\ 00197 \n\ 00198 # Projection/camera matrix\n\ 00199 # [fx' 0 cx' Tx]\n\ 00200 # P = [ 0 fy' cy' Ty]\n\ 00201 # [ 0 0 1 0]\n\ 00202 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00203 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00204 # is the normal camera intrinsic matrix for the rectified image.\n\ 00205 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00206 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00207 # (cx', cy') - these may differ from the values in K.\n\ 00208 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00209 # also have R = the identity and P[1:3,1:3] = K.\n\ 00210 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00211 # position of the optical center of the second camera in the first\n\ 00212 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00213 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00214 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00215 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00216 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00217 # the rectified image is given by:\n\ 00218 # [u v w]' = P * [X Y Z 1]'\n\ 00219 # x = u / w\n\ 00220 # y = v / w\n\ 00221 # This holds for both images of a stereo pair.\n\ 00222 float64[12] P # 3x4 row-major matrix\n\ 00223 \n\ 00224 \n\ 00225 #######################################################################\n\ 00226 # Operational Parameters #\n\ 00227 #######################################################################\n\ 00228 # These define the image region actually captured by the camera #\n\ 00229 # driver. Although they affect the geometry of the output image, they #\n\ 00230 # may be changed freely without recalibrating the camera. #\n\ 00231 #######################################################################\n\ 00232 \n\ 00233 # Binning refers here to any camera setting which combines rectangular\n\ 00234 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00235 # resolution of the output image to\n\ 00236 # (width / binning_x) x (height / binning_y).\n\ 00237 # The default values binning_x = binning_y = 0 is considered the same\n\ 00238 # as binning_x = binning_y = 1 (no subsampling).\n\ 00239 uint32 binning_x\n\ 00240 uint32 binning_y\n\ 00241 \n\ 00242 # Region of interest (subwindow of full camera resolution), given in\n\ 00243 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00244 # always denotes the same window of pixels on the camera sensor,\n\ 00245 # regardless of binning settings.\n\ 00246 # The default setting of roi (all values 0) is considered the same as\n\ 00247 # full resolution (roi.width = width, roi.height = height).\n\ 00248 RegionOfInterest roi\n\ 00249 \n\ 00250 ================================================================================\n\ 00251 MSG: std_msgs/Header\n\ 00252 # Standard metadata for higher-level stamped data types.\n\ 00253 # This is generally used to communicate timestamped data \n\ 00254 # in a particular coordinate frame.\n\ 00255 # \n\ 00256 # sequence ID: consecutively increasing ID \n\ 00257 uint32 seq\n\ 00258 #Two-integer timestamp that is expressed as:\n\ 00259 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00260 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00261 # time-handling sugar is provided by the client library\n\ 00262 time stamp\n\ 00263 #Frame this data is associated with\n\ 00264 # 0: no frame\n\ 00265 # 1: global frame\n\ 00266 string frame_id\n\ 00267 \n\ 00268 ================================================================================\n\ 00269 MSG: sensor_msgs/RegionOfInterest\n\ 00270 # This message is used to specify a region of interest within an image.\n\ 00271 #\n\ 00272 # When used to specify the ROI setting of the camera when the image was\n\ 00273 # taken, the height and width fields should either match the height and\n\ 00274 # width fields for the associated image; or height = width = 0\n\ 00275 # indicates that the full resolution image was captured.\n\ 00276 \n\ 00277 uint32 x_offset # Leftmost pixel of the ROI\n\ 00278 # (0 if the ROI includes the left edge of the image)\n\ 00279 uint32 y_offset # Topmost pixel of the ROI\n\ 00280 # (0 if the ROI includes the top edge of the image)\n\ 00281 uint32 height # Height of ROI\n\ 00282 uint32 width # Width of ROI\n\ 00283 \n\ 00284 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00285 # ROI in this message. Typically this should be False if the full image\n\ 00286 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00287 # used).\n\ 00288 bool do_rectify\n\ 00289 \n\ 00290 "; } 00291 public: 00292 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00293 00294 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00295 00296 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00297 { 00298 ros::serialization::OStream stream(write_ptr, 1000000000); 00299 ros::serialization::serialize(stream, header); 00300 ros::serialization::serialize(stream, height); 00301 ros::serialization::serialize(stream, width); 00302 ros::serialization::serialize(stream, distortion_model); 00303 ros::serialization::serialize(stream, D); 00304 ros::serialization::serialize(stream, K); 00305 ros::serialization::serialize(stream, R); 00306 ros::serialization::serialize(stream, P); 00307 ros::serialization::serialize(stream, binning_x); 00308 ros::serialization::serialize(stream, binning_y); 00309 ros::serialization::serialize(stream, roi); 00310 return stream.getData(); 00311 } 00312 00313 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00314 { 00315 ros::serialization::IStream stream(read_ptr, 1000000000); 00316 ros::serialization::deserialize(stream, header); 00317 ros::serialization::deserialize(stream, height); 00318 ros::serialization::deserialize(stream, width); 00319 ros::serialization::deserialize(stream, distortion_model); 00320 ros::serialization::deserialize(stream, D); 00321 ros::serialization::deserialize(stream, K); 00322 ros::serialization::deserialize(stream, R); 00323 ros::serialization::deserialize(stream, P); 00324 ros::serialization::deserialize(stream, binning_x); 00325 ros::serialization::deserialize(stream, binning_y); 00326 ros::serialization::deserialize(stream, roi); 00327 return stream.getData(); 00328 } 00329 00330 ROS_DEPRECATED virtual uint32_t serializationLength() const 00331 { 00332 uint32_t size = 0; 00333 size += ros::serialization::serializationLength(header); 00334 size += ros::serialization::serializationLength(height); 00335 size += ros::serialization::serializationLength(width); 00336 size += ros::serialization::serializationLength(distortion_model); 00337 size += ros::serialization::serializationLength(D); 00338 size += ros::serialization::serializationLength(K); 00339 size += ros::serialization::serializationLength(R); 00340 size += ros::serialization::serializationLength(P); 00341 size += ros::serialization::serializationLength(binning_x); 00342 size += ros::serialization::serializationLength(binning_y); 00343 size += ros::serialization::serializationLength(roi); 00344 return size; 00345 } 00346 00347 typedef boost::shared_ptr< ::sensor_msgs::CameraInfo_<ContainerAllocator> > Ptr; 00348 typedef boost::shared_ptr< ::sensor_msgs::CameraInfo_<ContainerAllocator> const> ConstPtr; 00349 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00350 }; // struct CameraInfo 00351 typedef ::sensor_msgs::CameraInfo_<std::allocator<void> > CameraInfo; 00352 00353 typedef boost::shared_ptr< ::sensor_msgs::CameraInfo> CameraInfoPtr; 00354 typedef boost::shared_ptr< ::sensor_msgs::CameraInfo const> CameraInfoConstPtr; 00355 00356 00357 template<typename ContainerAllocator> 00358 std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::CameraInfo_<ContainerAllocator> & v) 00359 { 00360 ros::message_operations::Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, "", v); 00361 return s;} 00362 00363 } // namespace sensor_msgs 00364 00365 namespace ros 00366 { 00367 namespace message_traits 00368 { 00369 template<class ContainerAllocator> struct IsMessage< ::sensor_msgs::CameraInfo_<ContainerAllocator> > : public TrueType {}; 00370 template<class ContainerAllocator> struct IsMessage< ::sensor_msgs::CameraInfo_<ContainerAllocator> const> : public TrueType {}; 00371 template<class ContainerAllocator> 00372 struct MD5Sum< ::sensor_msgs::CameraInfo_<ContainerAllocator> > { 00373 static const char* value() 00374 { 00375 return "c9a58c1b0b154e0e6da7578cb991d214"; 00376 } 00377 00378 static const char* value(const ::sensor_msgs::CameraInfo_<ContainerAllocator> &) { return value(); } 00379 static const uint64_t static_value1 = 0xc9a58c1b0b154e0eULL; 00380 static const uint64_t static_value2 = 0x6da7578cb991d214ULL; 00381 }; 00382 00383 template<class ContainerAllocator> 00384 struct DataType< ::sensor_msgs::CameraInfo_<ContainerAllocator> > { 00385 static const char* value() 00386 { 00387 return "sensor_msgs/CameraInfo"; 00388 } 00389 00390 static const char* value(const ::sensor_msgs::CameraInfo_<ContainerAllocator> &) { return value(); } 00391 }; 00392 00393 template<class ContainerAllocator> 00394 struct Definition< ::sensor_msgs::CameraInfo_<ContainerAllocator> > { 00395 static const char* value() 00396 { 00397 return "# This message defines meta information for a camera. It should be in a\n\ 00398 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00399 # image topics named:\n\ 00400 #\n\ 00401 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00402 # image - monochrome, distorted\n\ 00403 # image_color - color, distorted\n\ 00404 # image_rect - monochrome, rectified\n\ 00405 # image_rect_color - color, rectified\n\ 00406 #\n\ 00407 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00408 # for producing the four processed image topics from image_raw and\n\ 00409 # camera_info. The meaning of the camera parameters are described in\n\ 00410 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00411 #\n\ 00412 # The image_geometry package provides a user-friendly interface to\n\ 00413 # common operations using this meta information. If you want to, e.g.,\n\ 00414 # project a 3d point into image coordinates, we strongly recommend\n\ 00415 # using image_geometry.\n\ 00416 #\n\ 00417 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00418 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00419 # indicates an uncalibrated camera.\n\ 00420 \n\ 00421 #######################################################################\n\ 00422 # Image acquisition info #\n\ 00423 #######################################################################\n\ 00424 \n\ 00425 # Time of image acquisition, camera coordinate frame ID\n\ 00426 Header header # Header timestamp should be acquisition time of image\n\ 00427 # Header frame_id should be optical frame of camera\n\ 00428 # origin of frame should be optical center of camera\n\ 00429 # +x should point to the right in the image\n\ 00430 # +y should point down in the image\n\ 00431 # +z should point into the plane of the image\n\ 00432 \n\ 00433 \n\ 00434 #######################################################################\n\ 00435 # Calibration Parameters #\n\ 00436 #######################################################################\n\ 00437 # These are fixed during camera calibration. Their values will be the #\n\ 00438 # same in all messages until the camera is recalibrated. Note that #\n\ 00439 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00440 # #\n\ 00441 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00442 # to: #\n\ 00443 # 1. An undistorted image (requires D and K) #\n\ 00444 # 2. A rectified image (requires D, K, R) #\n\ 00445 # The projection matrix P projects 3D points into the rectified image.#\n\ 00446 #######################################################################\n\ 00447 \n\ 00448 # The image dimensions with which the camera was calibrated. Normally\n\ 00449 # this will be the full camera resolution in pixels.\n\ 00450 uint32 height\n\ 00451 uint32 width\n\ 00452 \n\ 00453 # The distortion model used. Supported models are listed in\n\ 00454 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00455 # simple model of radial and tangential distortion - is sufficent.\n\ 00456 string distortion_model\n\ 00457 \n\ 00458 # The distortion parameters, size depending on the distortion model.\n\ 00459 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00460 float64[] D\n\ 00461 \n\ 00462 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00463 # [fx 0 cx]\n\ 00464 # K = [ 0 fy cy]\n\ 00465 # [ 0 0 1]\n\ 00466 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00467 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00468 # (cx, cy).\n\ 00469 float64[9] K # 3x3 row-major matrix\n\ 00470 \n\ 00471 # Rectification matrix (stereo cameras only)\n\ 00472 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00473 # stereo image plane so that epipolar lines in both stereo images are\n\ 00474 # parallel.\n\ 00475 float64[9] R # 3x3 row-major matrix\n\ 00476 \n\ 00477 # Projection/camera matrix\n\ 00478 # [fx' 0 cx' Tx]\n\ 00479 # P = [ 0 fy' cy' Ty]\n\ 00480 # [ 0 0 1 0]\n\ 00481 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00482 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00483 # is the normal camera intrinsic matrix for the rectified image.\n\ 00484 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00485 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00486 # (cx', cy') - these may differ from the values in K.\n\ 00487 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00488 # also have R = the identity and P[1:3,1:3] = K.\n\ 00489 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00490 # position of the optical center of the second camera in the first\n\ 00491 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00492 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00493 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00494 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00495 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00496 # the rectified image is given by:\n\ 00497 # [u v w]' = P * [X Y Z 1]'\n\ 00498 # x = u / w\n\ 00499 # y = v / w\n\ 00500 # This holds for both images of a stereo pair.\n\ 00501 float64[12] P # 3x4 row-major matrix\n\ 00502 \n\ 00503 \n\ 00504 #######################################################################\n\ 00505 # Operational Parameters #\n\ 00506 #######################################################################\n\ 00507 # These define the image region actually captured by the camera #\n\ 00508 # driver. Although they affect the geometry of the output image, they #\n\ 00509 # may be changed freely without recalibrating the camera. #\n\ 00510 #######################################################################\n\ 00511 \n\ 00512 # Binning refers here to any camera setting which combines rectangular\n\ 00513 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00514 # resolution of the output image to\n\ 00515 # (width / binning_x) x (height / binning_y).\n\ 00516 # The default values binning_x = binning_y = 0 is considered the same\n\ 00517 # as binning_x = binning_y = 1 (no subsampling).\n\ 00518 uint32 binning_x\n\ 00519 uint32 binning_y\n\ 00520 \n\ 00521 # Region of interest (subwindow of full camera resolution), given in\n\ 00522 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00523 # always denotes the same window of pixels on the camera sensor,\n\ 00524 # regardless of binning settings.\n\ 00525 # The default setting of roi (all values 0) is considered the same as\n\ 00526 # full resolution (roi.width = width, roi.height = height).\n\ 00527 RegionOfInterest roi\n\ 00528 \n\ 00529 ================================================================================\n\ 00530 MSG: std_msgs/Header\n\ 00531 # Standard metadata for higher-level stamped data types.\n\ 00532 # This is generally used to communicate timestamped data \n\ 00533 # in a particular coordinate frame.\n\ 00534 # \n\ 00535 # sequence ID: consecutively increasing ID \n\ 00536 uint32 seq\n\ 00537 #Two-integer timestamp that is expressed as:\n\ 00538 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00539 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00540 # time-handling sugar is provided by the client library\n\ 00541 time stamp\n\ 00542 #Frame this data is associated with\n\ 00543 # 0: no frame\n\ 00544 # 1: global frame\n\ 00545 string frame_id\n\ 00546 \n\ 00547 ================================================================================\n\ 00548 MSG: sensor_msgs/RegionOfInterest\n\ 00549 # This message is used to specify a region of interest within an image.\n\ 00550 #\n\ 00551 # When used to specify the ROI setting of the camera when the image was\n\ 00552 # taken, the height and width fields should either match the height and\n\ 00553 # width fields for the associated image; or height = width = 0\n\ 00554 # indicates that the full resolution image was captured.\n\ 00555 \n\ 00556 uint32 x_offset # Leftmost pixel of the ROI\n\ 00557 # (0 if the ROI includes the left edge of the image)\n\ 00558 uint32 y_offset # Topmost pixel of the ROI\n\ 00559 # (0 if the ROI includes the top edge of the image)\n\ 00560 uint32 height # Height of ROI\n\ 00561 uint32 width # Width of ROI\n\ 00562 \n\ 00563 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00564 # ROI in this message. Typically this should be False if the full image\n\ 00565 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00566 # used).\n\ 00567 bool do_rectify\n\ 00568 \n\ 00569 "; 00570 } 00571 00572 static const char* value(const ::sensor_msgs::CameraInfo_<ContainerAllocator> &) { return value(); } 00573 }; 00574 00575 template<class ContainerAllocator> struct HasHeader< ::sensor_msgs::CameraInfo_<ContainerAllocator> > : public TrueType {}; 00576 template<class ContainerAllocator> struct HasHeader< const ::sensor_msgs::CameraInfo_<ContainerAllocator> > : public TrueType {}; 00577 } // namespace message_traits 00578 } // namespace ros 00579 00580 namespace ros 00581 { 00582 namespace serialization 00583 { 00584 00585 template<class ContainerAllocator> struct Serializer< ::sensor_msgs::CameraInfo_<ContainerAllocator> > 00586 { 00587 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00588 { 00589 stream.next(m.header); 00590 stream.next(m.height); 00591 stream.next(m.width); 00592 stream.next(m.distortion_model); 00593 stream.next(m.D); 00594 stream.next(m.K); 00595 stream.next(m.R); 00596 stream.next(m.P); 00597 stream.next(m.binning_x); 00598 stream.next(m.binning_y); 00599 stream.next(m.roi); 00600 } 00601 00602 ROS_DECLARE_ALLINONE_SERIALIZER; 00603 }; // struct CameraInfo_ 00604 } // namespace serialization 00605 } // namespace ros 00606 00607 namespace ros 00608 { 00609 namespace message_operations 00610 { 00611 00612 template<class ContainerAllocator> 00613 struct Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> > 00614 { 00615 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::sensor_msgs::CameraInfo_<ContainerAllocator> & v) 00616 { 00617 s << indent << "header: "; 00618 s << std::endl; 00619 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00620 s << indent << "height: "; 00621 Printer<uint32_t>::stream(s, indent + " ", v.height); 00622 s << indent << "width: "; 00623 Printer<uint32_t>::stream(s, indent + " ", v.width); 00624 s << indent << "distortion_model: "; 00625 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.distortion_model); 00626 s << indent << "D[]" << std::endl; 00627 for (size_t i = 0; i < v.D.size(); ++i) 00628 { 00629 s << indent << " D[" << i << "]: "; 00630 Printer<double>::stream(s, indent + " ", v.D[i]); 00631 } 00632 s << indent << "K[]" << std::endl; 00633 for (size_t i = 0; i < v.K.size(); ++i) 00634 { 00635 s << indent << " K[" << i << "]: "; 00636 Printer<double>::stream(s, indent + " ", v.K[i]); 00637 } 00638 s << indent << "R[]" << std::endl; 00639 for (size_t i = 0; i < v.R.size(); ++i) 00640 { 00641 s << indent << " R[" << i << "]: "; 00642 Printer<double>::stream(s, indent + " ", v.R[i]); 00643 } 00644 s << indent << "P[]" << std::endl; 00645 for (size_t i = 0; i < v.P.size(); ++i) 00646 { 00647 s << indent << " P[" << i << "]: "; 00648 Printer<double>::stream(s, indent + " ", v.P[i]); 00649 } 00650 s << indent << "binning_x: "; 00651 Printer<uint32_t>::stream(s, indent + " ", v.binning_x); 00652 s << indent << "binning_y: "; 00653 Printer<uint32_t>::stream(s, indent + " ", v.binning_y); 00654 s << indent << "roi: "; 00655 s << std::endl; 00656 Printer< ::sensor_msgs::RegionOfInterest_<ContainerAllocator> >::stream(s, indent + " ", v.roi); 00657 } 00658 }; 00659 00660 00661 } // namespace message_operations 00662 } // namespace ros 00663 00664 #endif // SENSOR_MSGS_MESSAGE_CAMERAINFO_H 00665