$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-remote_lab/doc_stacks/2013-03-03_11-54-58.406785/remote_lab/pr2_pick_and_place_service/srv/PickPlace.srv */ 00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_SERVICE_PICKPLACE_H 00003 #define PR2_PICK_AND_PLACE_SERVICE_SERVICE_PICKPLACE_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 00020 00021 #include "pr2_pick_and_place_service/PickPlaceObject.h" 00022 00023 namespace pr2_pick_and_place_service 00024 { 00025 template <class ContainerAllocator> 00026 struct PickPlaceRequest_ { 00027 typedef PickPlaceRequest_<ContainerAllocator> Type; 00028 00029 PickPlaceRequest_() 00030 : command() 00031 , arg() 00032 { 00033 } 00034 00035 PickPlaceRequest_(const ContainerAllocator& _alloc) 00036 : command(_alloc) 00037 , arg(_alloc) 00038 { 00039 } 00040 00041 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _command_type; 00042 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > command; 00043 00044 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arg_type; 00045 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arg; 00046 00047 00048 private: 00049 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/PickPlaceRequest"; } 00050 public: 00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00052 00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00054 00055 private: 00056 static const char* __s_getMD5Sum_() { return "a103fd90ae71bfd419fcdfa60a00c804"; } 00057 public: 00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00059 00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00061 00062 private: 00063 static const char* __s_getServerMD5Sum_() { return "ed796eaf203a95fd847bb7dfd92ee619"; } 00064 public: 00065 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00066 00067 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00068 00069 private: 00070 static const char* __s_getMessageDefinition_() { return "string command\n\ 00071 string arg\n\ 00072 \n\ 00073 \n\ 00074 "; } 00075 public: 00076 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00077 00078 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00079 00080 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00081 { 00082 ros::serialization::OStream stream(write_ptr, 1000000000); 00083 ros::serialization::serialize(stream, command); 00084 ros::serialization::serialize(stream, arg); 00085 return stream.getData(); 00086 } 00087 00088 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00089 { 00090 ros::serialization::IStream stream(read_ptr, 1000000000); 00091 ros::serialization::deserialize(stream, command); 00092 ros::serialization::deserialize(stream, arg); 00093 return stream.getData(); 00094 } 00095 00096 ROS_DEPRECATED virtual uint32_t serializationLength() const 00097 { 00098 uint32_t size = 0; 00099 size += ros::serialization::serializationLength(command); 00100 size += ros::serialization::serializationLength(arg); 00101 return size; 00102 } 00103 00104 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > Ptr; 00105 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> const> ConstPtr; 00106 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00107 }; // struct PickPlaceRequest 00108 typedef ::pr2_pick_and_place_service::PickPlaceRequest_<std::allocator<void> > PickPlaceRequest; 00109 00110 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest> PickPlaceRequestPtr; 00111 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest const> PickPlaceRequestConstPtr; 00112 00113 00114 template <class ContainerAllocator> 00115 struct PickPlaceResponse_ { 00116 typedef PickPlaceResponse_<ContainerAllocator> Type; 00117 00118 PickPlaceResponse_() 00119 : response() 00120 , objects() 00121 { 00122 } 00123 00124 PickPlaceResponse_(const ContainerAllocator& _alloc) 00125 : response(_alloc) 00126 , objects(_alloc) 00127 { 00128 } 00129 00130 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _response_type; 00131 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > response; 00132 00133 typedef std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > _objects_type; 00134 std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > objects; 00135 00136 00137 ROS_DEPRECATED uint32_t get_objects_size() const { return (uint32_t)objects.size(); } 00138 ROS_DEPRECATED void set_objects_size(uint32_t size) { objects.resize((size_t)size); } 00139 ROS_DEPRECATED void get_objects_vec(std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) const { vec = this->objects; } 00140 ROS_DEPRECATED void set_objects_vec(const std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) { this->objects = vec; } 00141 private: 00142 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/PickPlaceResponse"; } 00143 public: 00144 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00145 00146 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00147 00148 private: 00149 static const char* __s_getMD5Sum_() { return "a1461d83d374e19cb65866ae1f17bb1c"; } 00150 public: 00151 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00152 00153 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00154 00155 private: 00156 static const char* __s_getServerMD5Sum_() { return "ed796eaf203a95fd847bb7dfd92ee619"; } 00157 public: 00158 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00159 00160 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00161 00162 private: 00163 static const char* __s_getMessageDefinition_() { return "string response\n\ 00164 PickPlaceObject[] objects\n\ 00165 \n\ 00166 \n\ 00167 ================================================================================\n\ 00168 MSG: pr2_pick_and_place_service/PickPlaceObject\n\ 00169 int32 objectid\n\ 00170 object_manipulation_msgs/GraspableObject object\n\ 00171 geometry_msgs/PoseStamped pose\n\ 00172 float64[] boundingbox\n\ 00173 \n\ 00174 ================================================================================\n\ 00175 MSG: object_manipulation_msgs/GraspableObject\n\ 00176 # an object that the object_manipulator can work on\n\ 00177 \n\ 00178 # a graspable object can be represented in multiple ways. This message\n\ 00179 # can contain all of them. Which one is actually used is up to the receiver\n\ 00180 # of this message. When adding new representations, one must be careful that\n\ 00181 # they have reasonable lightweight defaults indicating that that particular\n\ 00182 # representation is not available.\n\ 00183 \n\ 00184 # the tf frame to be used as a reference frame when combining information from\n\ 00185 # the different representations below\n\ 00186 string reference_frame_id\n\ 00187 \n\ 00188 # potential recognition results from a database of models\n\ 00189 # all poses are relative to the object reference pose\n\ 00190 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00191 \n\ 00192 # the point cloud itself\n\ 00193 sensor_msgs/PointCloud cluster\n\ 00194 \n\ 00195 # a region of a PointCloud2 of interest\n\ 00196 object_manipulation_msgs/SceneRegion region\n\ 00197 \n\ 00198 # the name that this object has in the collision environment\n\ 00199 string collision_name\n\ 00200 ================================================================================\n\ 00201 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00202 # Informs that a specific model from the Model Database has been \n\ 00203 # identified at a certain location\n\ 00204 \n\ 00205 # the database id of the model\n\ 00206 int32 model_id\n\ 00207 \n\ 00208 # the pose that it can be found in\n\ 00209 geometry_msgs/PoseStamped pose\n\ 00210 \n\ 00211 # a measure of the confidence level in this detection result\n\ 00212 float32 confidence\n\ 00213 \n\ 00214 # the name of the object detector that generated this detection result\n\ 00215 string detector_name\n\ 00216 \n\ 00217 ================================================================================\n\ 00218 MSG: geometry_msgs/PoseStamped\n\ 00219 # A Pose with reference coordinate frame and timestamp\n\ 00220 Header header\n\ 00221 Pose pose\n\ 00222 \n\ 00223 ================================================================================\n\ 00224 MSG: std_msgs/Header\n\ 00225 # Standard metadata for higher-level stamped data types.\n\ 00226 # This is generally used to communicate timestamped data \n\ 00227 # in a particular coordinate frame.\n\ 00228 # \n\ 00229 # sequence ID: consecutively increasing ID \n\ 00230 uint32 seq\n\ 00231 #Two-integer timestamp that is expressed as:\n\ 00232 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00233 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00234 # time-handling sugar is provided by the client library\n\ 00235 time stamp\n\ 00236 #Frame this data is associated with\n\ 00237 # 0: no frame\n\ 00238 # 1: global frame\n\ 00239 string frame_id\n\ 00240 \n\ 00241 ================================================================================\n\ 00242 MSG: geometry_msgs/Pose\n\ 00243 # A representation of pose in free space, composed of postion and orientation. \n\ 00244 Point position\n\ 00245 Quaternion orientation\n\ 00246 \n\ 00247 ================================================================================\n\ 00248 MSG: geometry_msgs/Point\n\ 00249 # This contains the position of a point in free space\n\ 00250 float64 x\n\ 00251 float64 y\n\ 00252 float64 z\n\ 00253 \n\ 00254 ================================================================================\n\ 00255 MSG: geometry_msgs/Quaternion\n\ 00256 # This represents an orientation in free space in quaternion form.\n\ 00257 \n\ 00258 float64 x\n\ 00259 float64 y\n\ 00260 float64 z\n\ 00261 float64 w\n\ 00262 \n\ 00263 ================================================================================\n\ 00264 MSG: sensor_msgs/PointCloud\n\ 00265 # This message holds a collection of 3d points, plus optional additional\n\ 00266 # information about each point.\n\ 00267 \n\ 00268 # Time of sensor data acquisition, coordinate frame ID.\n\ 00269 Header header\n\ 00270 \n\ 00271 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00272 # in the frame given in the header.\n\ 00273 geometry_msgs/Point32[] points\n\ 00274 \n\ 00275 # Each channel should have the same number of elements as points array,\n\ 00276 # and the data in each channel should correspond 1:1 with each point.\n\ 00277 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00278 ChannelFloat32[] channels\n\ 00279 \n\ 00280 ================================================================================\n\ 00281 MSG: geometry_msgs/Point32\n\ 00282 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00283 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00284 # \n\ 00285 # This recommendation is to promote interoperability. \n\ 00286 #\n\ 00287 # This message is designed to take up less space when sending\n\ 00288 # lots of points at once, as in the case of a PointCloud. \n\ 00289 \n\ 00290 float32 x\n\ 00291 float32 y\n\ 00292 float32 z\n\ 00293 ================================================================================\n\ 00294 MSG: sensor_msgs/ChannelFloat32\n\ 00295 # This message is used by the PointCloud message to hold optional data\n\ 00296 # associated with each point in the cloud. The length of the values\n\ 00297 # array should be the same as the length of the points array in the\n\ 00298 # PointCloud, and each value should be associated with the corresponding\n\ 00299 # point.\n\ 00300 \n\ 00301 # Channel names in existing practice include:\n\ 00302 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00303 # This is opposite to usual conventions but remains for\n\ 00304 # historical reasons. The newer PointCloud2 message has no\n\ 00305 # such problem.\n\ 00306 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00307 # (R,G,B) values packed into the least significant 24 bits,\n\ 00308 # in order.\n\ 00309 # \"intensity\" - laser or pixel intensity.\n\ 00310 # \"distance\"\n\ 00311 \n\ 00312 # The channel name should give semantics of the channel (e.g.\n\ 00313 # \"intensity\" instead of \"value\").\n\ 00314 string name\n\ 00315 \n\ 00316 # The values array should be 1-1 with the elements of the associated\n\ 00317 # PointCloud.\n\ 00318 float32[] values\n\ 00319 \n\ 00320 ================================================================================\n\ 00321 MSG: object_manipulation_msgs/SceneRegion\n\ 00322 # Point cloud\n\ 00323 sensor_msgs/PointCloud2 cloud\n\ 00324 \n\ 00325 # Indices for the region of interest\n\ 00326 int32[] mask\n\ 00327 \n\ 00328 # One of the corresponding 2D images, if applicable\n\ 00329 sensor_msgs/Image image\n\ 00330 \n\ 00331 # The disparity image, if applicable\n\ 00332 sensor_msgs/Image disparity_image\n\ 00333 \n\ 00334 # Camera info for the camera that took the image\n\ 00335 sensor_msgs/CameraInfo cam_info\n\ 00336 \n\ 00337 # a 3D region of interest for grasp planning\n\ 00338 geometry_msgs/PoseStamped roi_box_pose\n\ 00339 geometry_msgs/Vector3 roi_box_dims\n\ 00340 \n\ 00341 ================================================================================\n\ 00342 MSG: sensor_msgs/PointCloud2\n\ 00343 # This message holds a collection of N-dimensional points, which may\n\ 00344 # contain additional information such as normals, intensity, etc. The\n\ 00345 # point data is stored as a binary blob, its layout described by the\n\ 00346 # contents of the \"fields\" array.\n\ 00347 \n\ 00348 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00349 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00350 # camera depth sensors such as stereo or time-of-flight.\n\ 00351 \n\ 00352 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00353 # points).\n\ 00354 Header header\n\ 00355 \n\ 00356 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00357 # 1 and width is the length of the point cloud.\n\ 00358 uint32 height\n\ 00359 uint32 width\n\ 00360 \n\ 00361 # Describes the channels and their layout in the binary data blob.\n\ 00362 PointField[] fields\n\ 00363 \n\ 00364 bool is_bigendian # Is this data bigendian?\n\ 00365 uint32 point_step # Length of a point in bytes\n\ 00366 uint32 row_step # Length of a row in bytes\n\ 00367 uint8[] data # Actual point data, size is (row_step*height)\n\ 00368 \n\ 00369 bool is_dense # True if there are no invalid points\n\ 00370 \n\ 00371 ================================================================================\n\ 00372 MSG: sensor_msgs/PointField\n\ 00373 # This message holds the description of one point entry in the\n\ 00374 # PointCloud2 message format.\n\ 00375 uint8 INT8 = 1\n\ 00376 uint8 UINT8 = 2\n\ 00377 uint8 INT16 = 3\n\ 00378 uint8 UINT16 = 4\n\ 00379 uint8 INT32 = 5\n\ 00380 uint8 UINT32 = 6\n\ 00381 uint8 FLOAT32 = 7\n\ 00382 uint8 FLOAT64 = 8\n\ 00383 \n\ 00384 string name # Name of field\n\ 00385 uint32 offset # Offset from start of point struct\n\ 00386 uint8 datatype # Datatype enumeration, see above\n\ 00387 uint32 count # How many elements in the field\n\ 00388 \n\ 00389 ================================================================================\n\ 00390 MSG: sensor_msgs/Image\n\ 00391 # This message contains an uncompressed image\n\ 00392 # (0, 0) is at top-left corner of image\n\ 00393 #\n\ 00394 \n\ 00395 Header header # Header timestamp should be acquisition time of image\n\ 00396 # Header frame_id should be optical frame of camera\n\ 00397 # origin of frame should be optical center of cameara\n\ 00398 # +x should point to the right in the image\n\ 00399 # +y should point down in the image\n\ 00400 # +z should point into to plane of the image\n\ 00401 # If the frame_id here and the frame_id of the CameraInfo\n\ 00402 # message associated with the image conflict\n\ 00403 # the behavior is undefined\n\ 00404 \n\ 00405 uint32 height # image height, that is, number of rows\n\ 00406 uint32 width # image width, that is, number of columns\n\ 00407 \n\ 00408 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00409 # If you want to standardize a new string format, join\n\ 00410 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00411 \n\ 00412 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00413 # taken from the list of strings in src/image_encodings.cpp\n\ 00414 \n\ 00415 uint8 is_bigendian # is this data bigendian?\n\ 00416 uint32 step # Full row length in bytes\n\ 00417 uint8[] data # actual matrix data, size is (step * rows)\n\ 00418 \n\ 00419 ================================================================================\n\ 00420 MSG: sensor_msgs/CameraInfo\n\ 00421 # This message defines meta information for a camera. It should be in a\n\ 00422 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00423 # image topics named:\n\ 00424 #\n\ 00425 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00426 # image - monochrome, distorted\n\ 00427 # image_color - color, distorted\n\ 00428 # image_rect - monochrome, rectified\n\ 00429 # image_rect_color - color, rectified\n\ 00430 #\n\ 00431 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00432 # for producing the four processed image topics from image_raw and\n\ 00433 # camera_info. The meaning of the camera parameters are described in\n\ 00434 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00435 #\n\ 00436 # The image_geometry package provides a user-friendly interface to\n\ 00437 # common operations using this meta information. If you want to, e.g.,\n\ 00438 # project a 3d point into image coordinates, we strongly recommend\n\ 00439 # using image_geometry.\n\ 00440 #\n\ 00441 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00442 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00443 # indicates an uncalibrated camera.\n\ 00444 \n\ 00445 #######################################################################\n\ 00446 # Image acquisition info #\n\ 00447 #######################################################################\n\ 00448 \n\ 00449 # Time of image acquisition, camera coordinate frame ID\n\ 00450 Header header # Header timestamp should be acquisition time of image\n\ 00451 # Header frame_id should be optical frame of camera\n\ 00452 # origin of frame should be optical center of camera\n\ 00453 # +x should point to the right in the image\n\ 00454 # +y should point down in the image\n\ 00455 # +z should point into the plane of the image\n\ 00456 \n\ 00457 \n\ 00458 #######################################################################\n\ 00459 # Calibration Parameters #\n\ 00460 #######################################################################\n\ 00461 # These are fixed during camera calibration. Their values will be the #\n\ 00462 # same in all messages until the camera is recalibrated. Note that #\n\ 00463 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00464 # #\n\ 00465 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00466 # to: #\n\ 00467 # 1. An undistorted image (requires D and K) #\n\ 00468 # 2. A rectified image (requires D, K, R) #\n\ 00469 # The projection matrix P projects 3D points into the rectified image.#\n\ 00470 #######################################################################\n\ 00471 \n\ 00472 # The image dimensions with which the camera was calibrated. Normally\n\ 00473 # this will be the full camera resolution in pixels.\n\ 00474 uint32 height\n\ 00475 uint32 width\n\ 00476 \n\ 00477 # The distortion model used. Supported models are listed in\n\ 00478 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00479 # simple model of radial and tangential distortion - is sufficent.\n\ 00480 string distortion_model\n\ 00481 \n\ 00482 # The distortion parameters, size depending on the distortion model.\n\ 00483 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00484 float64[] D\n\ 00485 \n\ 00486 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00487 # [fx 0 cx]\n\ 00488 # K = [ 0 fy cy]\n\ 00489 # [ 0 0 1]\n\ 00490 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00491 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00492 # (cx, cy).\n\ 00493 float64[9] K # 3x3 row-major matrix\n\ 00494 \n\ 00495 # Rectification matrix (stereo cameras only)\n\ 00496 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00497 # stereo image plane so that epipolar lines in both stereo images are\n\ 00498 # parallel.\n\ 00499 float64[9] R # 3x3 row-major matrix\n\ 00500 \n\ 00501 # Projection/camera matrix\n\ 00502 # [fx' 0 cx' Tx]\n\ 00503 # P = [ 0 fy' cy' Ty]\n\ 00504 # [ 0 0 1 0]\n\ 00505 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00506 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00507 # is the normal camera intrinsic matrix for the rectified image.\n\ 00508 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00509 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00510 # (cx', cy') - these may differ from the values in K.\n\ 00511 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00512 # also have R = the identity and P[1:3,1:3] = K.\n\ 00513 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00514 # position of the optical center of the second camera in the first\n\ 00515 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00516 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00517 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00518 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00519 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00520 # the rectified image is given by:\n\ 00521 # [u v w]' = P * [X Y Z 1]'\n\ 00522 # x = u / w\n\ 00523 # y = v / w\n\ 00524 # This holds for both images of a stereo pair.\n\ 00525 float64[12] P # 3x4 row-major matrix\n\ 00526 \n\ 00527 \n\ 00528 #######################################################################\n\ 00529 # Operational Parameters #\n\ 00530 #######################################################################\n\ 00531 # These define the image region actually captured by the camera #\n\ 00532 # driver. Although they affect the geometry of the output image, they #\n\ 00533 # may be changed freely without recalibrating the camera. #\n\ 00534 #######################################################################\n\ 00535 \n\ 00536 # Binning refers here to any camera setting which combines rectangular\n\ 00537 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00538 # resolution of the output image to\n\ 00539 # (width / binning_x) x (height / binning_y).\n\ 00540 # The default values binning_x = binning_y = 0 is considered the same\n\ 00541 # as binning_x = binning_y = 1 (no subsampling).\n\ 00542 uint32 binning_x\n\ 00543 uint32 binning_y\n\ 00544 \n\ 00545 # Region of interest (subwindow of full camera resolution), given in\n\ 00546 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00547 # always denotes the same window of pixels on the camera sensor,\n\ 00548 # regardless of binning settings.\n\ 00549 # The default setting of roi (all values 0) is considered the same as\n\ 00550 # full resolution (roi.width = width, roi.height = height).\n\ 00551 RegionOfInterest roi\n\ 00552 \n\ 00553 ================================================================================\n\ 00554 MSG: sensor_msgs/RegionOfInterest\n\ 00555 # This message is used to specify a region of interest within an image.\n\ 00556 #\n\ 00557 # When used to specify the ROI setting of the camera when the image was\n\ 00558 # taken, the height and width fields should either match the height and\n\ 00559 # width fields for the associated image; or height = width = 0\n\ 00560 # indicates that the full resolution image was captured.\n\ 00561 \n\ 00562 uint32 x_offset # Leftmost pixel of the ROI\n\ 00563 # (0 if the ROI includes the left edge of the image)\n\ 00564 uint32 y_offset # Topmost pixel of the ROI\n\ 00565 # (0 if the ROI includes the top edge of the image)\n\ 00566 uint32 height # Height of ROI\n\ 00567 uint32 width # Width of ROI\n\ 00568 \n\ 00569 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00570 # ROI in this message. Typically this should be False if the full image\n\ 00571 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00572 # used).\n\ 00573 bool do_rectify\n\ 00574 \n\ 00575 ================================================================================\n\ 00576 MSG: geometry_msgs/Vector3\n\ 00577 # This represents a vector in free space. \n\ 00578 \n\ 00579 float64 x\n\ 00580 float64 y\n\ 00581 float64 z\n\ 00582 "; } 00583 public: 00584 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00585 00586 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00587 00588 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00589 { 00590 ros::serialization::OStream stream(write_ptr, 1000000000); 00591 ros::serialization::serialize(stream, response); 00592 ros::serialization::serialize(stream, objects); 00593 return stream.getData(); 00594 } 00595 00596 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00597 { 00598 ros::serialization::IStream stream(read_ptr, 1000000000); 00599 ros::serialization::deserialize(stream, response); 00600 ros::serialization::deserialize(stream, objects); 00601 return stream.getData(); 00602 } 00603 00604 ROS_DEPRECATED virtual uint32_t serializationLength() const 00605 { 00606 uint32_t size = 0; 00607 size += ros::serialization::serializationLength(response); 00608 size += ros::serialization::serializationLength(objects); 00609 return size; 00610 } 00611 00612 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > Ptr; 00613 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> const> ConstPtr; 00614 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00615 }; // struct PickPlaceResponse 00616 typedef ::pr2_pick_and_place_service::PickPlaceResponse_<std::allocator<void> > PickPlaceResponse; 00617 00618 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse> PickPlaceResponsePtr; 00619 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse const> PickPlaceResponseConstPtr; 00620 00621 struct PickPlace 00622 { 00623 00624 typedef PickPlaceRequest Request; 00625 typedef PickPlaceResponse Response; 00626 Request request; 00627 Response response; 00628 00629 typedef Request RequestType; 00630 typedef Response ResponseType; 00631 }; // struct PickPlace 00632 } // namespace pr2_pick_and_place_service 00633 00634 namespace ros 00635 { 00636 namespace message_traits 00637 { 00638 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > : public TrueType {}; 00639 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> const> : public TrueType {}; 00640 template<class ContainerAllocator> 00641 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > { 00642 static const char* value() 00643 { 00644 return "a103fd90ae71bfd419fcdfa60a00c804"; 00645 } 00646 00647 static const char* value(const ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); } 00648 static const uint64_t static_value1 = 0xa103fd90ae71bfd4ULL; 00649 static const uint64_t static_value2 = 0x19fcdfa60a00c804ULL; 00650 }; 00651 00652 template<class ContainerAllocator> 00653 struct DataType< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > { 00654 static const char* value() 00655 { 00656 return "pr2_pick_and_place_service/PickPlaceRequest"; 00657 } 00658 00659 static const char* value(const ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); } 00660 }; 00661 00662 template<class ContainerAllocator> 00663 struct Definition< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > { 00664 static const char* value() 00665 { 00666 return "string command\n\ 00667 string arg\n\ 00668 \n\ 00669 \n\ 00670 "; 00671 } 00672 00673 static const char* value(const ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); } 00674 }; 00675 00676 } // namespace message_traits 00677 } // namespace ros 00678 00679 00680 namespace ros 00681 { 00682 namespace message_traits 00683 { 00684 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > : public TrueType {}; 00685 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> const> : public TrueType {}; 00686 template<class ContainerAllocator> 00687 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > { 00688 static const char* value() 00689 { 00690 return "a1461d83d374e19cb65866ae1f17bb1c"; 00691 } 00692 00693 static const char* value(const ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); } 00694 static const uint64_t static_value1 = 0xa1461d83d374e19cULL; 00695 static const uint64_t static_value2 = 0xb65866ae1f17bb1cULL; 00696 }; 00697 00698 template<class ContainerAllocator> 00699 struct DataType< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > { 00700 static const char* value() 00701 { 00702 return "pr2_pick_and_place_service/PickPlaceResponse"; 00703 } 00704 00705 static const char* value(const ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); } 00706 }; 00707 00708 template<class ContainerAllocator> 00709 struct Definition< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > { 00710 static const char* value() 00711 { 00712 return "string response\n\ 00713 PickPlaceObject[] objects\n\ 00714 \n\ 00715 \n\ 00716 ================================================================================\n\ 00717 MSG: pr2_pick_and_place_service/PickPlaceObject\n\ 00718 int32 objectid\n\ 00719 object_manipulation_msgs/GraspableObject object\n\ 00720 geometry_msgs/PoseStamped pose\n\ 00721 float64[] boundingbox\n\ 00722 \n\ 00723 ================================================================================\n\ 00724 MSG: object_manipulation_msgs/GraspableObject\n\ 00725 # an object that the object_manipulator can work on\n\ 00726 \n\ 00727 # a graspable object can be represented in multiple ways. This message\n\ 00728 # can contain all of them. Which one is actually used is up to the receiver\n\ 00729 # of this message. When adding new representations, one must be careful that\n\ 00730 # they have reasonable lightweight defaults indicating that that particular\n\ 00731 # representation is not available.\n\ 00732 \n\ 00733 # the tf frame to be used as a reference frame when combining information from\n\ 00734 # the different representations below\n\ 00735 string reference_frame_id\n\ 00736 \n\ 00737 # potential recognition results from a database of models\n\ 00738 # all poses are relative to the object reference pose\n\ 00739 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00740 \n\ 00741 # the point cloud itself\n\ 00742 sensor_msgs/PointCloud cluster\n\ 00743 \n\ 00744 # a region of a PointCloud2 of interest\n\ 00745 object_manipulation_msgs/SceneRegion region\n\ 00746 \n\ 00747 # the name that this object has in the collision environment\n\ 00748 string collision_name\n\ 00749 ================================================================================\n\ 00750 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00751 # Informs that a specific model from the Model Database has been \n\ 00752 # identified at a certain location\n\ 00753 \n\ 00754 # the database id of the model\n\ 00755 int32 model_id\n\ 00756 \n\ 00757 # the pose that it can be found in\n\ 00758 geometry_msgs/PoseStamped pose\n\ 00759 \n\ 00760 # a measure of the confidence level in this detection result\n\ 00761 float32 confidence\n\ 00762 \n\ 00763 # the name of the object detector that generated this detection result\n\ 00764 string detector_name\n\ 00765 \n\ 00766 ================================================================================\n\ 00767 MSG: geometry_msgs/PoseStamped\n\ 00768 # A Pose with reference coordinate frame and timestamp\n\ 00769 Header header\n\ 00770 Pose pose\n\ 00771 \n\ 00772 ================================================================================\n\ 00773 MSG: std_msgs/Header\n\ 00774 # Standard metadata for higher-level stamped data types.\n\ 00775 # This is generally used to communicate timestamped data \n\ 00776 # in a particular coordinate frame.\n\ 00777 # \n\ 00778 # sequence ID: consecutively increasing ID \n\ 00779 uint32 seq\n\ 00780 #Two-integer timestamp that is expressed as:\n\ 00781 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00782 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00783 # time-handling sugar is provided by the client library\n\ 00784 time stamp\n\ 00785 #Frame this data is associated with\n\ 00786 # 0: no frame\n\ 00787 # 1: global frame\n\ 00788 string frame_id\n\ 00789 \n\ 00790 ================================================================================\n\ 00791 MSG: geometry_msgs/Pose\n\ 00792 # A representation of pose in free space, composed of postion and orientation. \n\ 00793 Point position\n\ 00794 Quaternion orientation\n\ 00795 \n\ 00796 ================================================================================\n\ 00797 MSG: geometry_msgs/Point\n\ 00798 # This contains the position of a point in free space\n\ 00799 float64 x\n\ 00800 float64 y\n\ 00801 float64 z\n\ 00802 \n\ 00803 ================================================================================\n\ 00804 MSG: geometry_msgs/Quaternion\n\ 00805 # This represents an orientation in free space in quaternion form.\n\ 00806 \n\ 00807 float64 x\n\ 00808 float64 y\n\ 00809 float64 z\n\ 00810 float64 w\n\ 00811 \n\ 00812 ================================================================================\n\ 00813 MSG: sensor_msgs/PointCloud\n\ 00814 # This message holds a collection of 3d points, plus optional additional\n\ 00815 # information about each point.\n\ 00816 \n\ 00817 # Time of sensor data acquisition, coordinate frame ID.\n\ 00818 Header header\n\ 00819 \n\ 00820 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00821 # in the frame given in the header.\n\ 00822 geometry_msgs/Point32[] points\n\ 00823 \n\ 00824 # Each channel should have the same number of elements as points array,\n\ 00825 # and the data in each channel should correspond 1:1 with each point.\n\ 00826 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00827 ChannelFloat32[] channels\n\ 00828 \n\ 00829 ================================================================================\n\ 00830 MSG: geometry_msgs/Point32\n\ 00831 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00832 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00833 # \n\ 00834 # This recommendation is to promote interoperability. \n\ 00835 #\n\ 00836 # This message is designed to take up less space when sending\n\ 00837 # lots of points at once, as in the case of a PointCloud. \n\ 00838 \n\ 00839 float32 x\n\ 00840 float32 y\n\ 00841 float32 z\n\ 00842 ================================================================================\n\ 00843 MSG: sensor_msgs/ChannelFloat32\n\ 00844 # This message is used by the PointCloud message to hold optional data\n\ 00845 # associated with each point in the cloud. The length of the values\n\ 00846 # array should be the same as the length of the points array in the\n\ 00847 # PointCloud, and each value should be associated with the corresponding\n\ 00848 # point.\n\ 00849 \n\ 00850 # Channel names in existing practice include:\n\ 00851 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00852 # This is opposite to usual conventions but remains for\n\ 00853 # historical reasons. The newer PointCloud2 message has no\n\ 00854 # such problem.\n\ 00855 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00856 # (R,G,B) values packed into the least significant 24 bits,\n\ 00857 # in order.\n\ 00858 # \"intensity\" - laser or pixel intensity.\n\ 00859 # \"distance\"\n\ 00860 \n\ 00861 # The channel name should give semantics of the channel (e.g.\n\ 00862 # \"intensity\" instead of \"value\").\n\ 00863 string name\n\ 00864 \n\ 00865 # The values array should be 1-1 with the elements of the associated\n\ 00866 # PointCloud.\n\ 00867 float32[] values\n\ 00868 \n\ 00869 ================================================================================\n\ 00870 MSG: object_manipulation_msgs/SceneRegion\n\ 00871 # Point cloud\n\ 00872 sensor_msgs/PointCloud2 cloud\n\ 00873 \n\ 00874 # Indices for the region of interest\n\ 00875 int32[] mask\n\ 00876 \n\ 00877 # One of the corresponding 2D images, if applicable\n\ 00878 sensor_msgs/Image image\n\ 00879 \n\ 00880 # The disparity image, if applicable\n\ 00881 sensor_msgs/Image disparity_image\n\ 00882 \n\ 00883 # Camera info for the camera that took the image\n\ 00884 sensor_msgs/CameraInfo cam_info\n\ 00885 \n\ 00886 # a 3D region of interest for grasp planning\n\ 00887 geometry_msgs/PoseStamped roi_box_pose\n\ 00888 geometry_msgs/Vector3 roi_box_dims\n\ 00889 \n\ 00890 ================================================================================\n\ 00891 MSG: sensor_msgs/PointCloud2\n\ 00892 # This message holds a collection of N-dimensional points, which may\n\ 00893 # contain additional information such as normals, intensity, etc. The\n\ 00894 # point data is stored as a binary blob, its layout described by the\n\ 00895 # contents of the \"fields\" array.\n\ 00896 \n\ 00897 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00898 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00899 # camera depth sensors such as stereo or time-of-flight.\n\ 00900 \n\ 00901 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00902 # points).\n\ 00903 Header header\n\ 00904 \n\ 00905 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00906 # 1 and width is the length of the point cloud.\n\ 00907 uint32 height\n\ 00908 uint32 width\n\ 00909 \n\ 00910 # Describes the channels and their layout in the binary data blob.\n\ 00911 PointField[] fields\n\ 00912 \n\ 00913 bool is_bigendian # Is this data bigendian?\n\ 00914 uint32 point_step # Length of a point in bytes\n\ 00915 uint32 row_step # Length of a row in bytes\n\ 00916 uint8[] data # Actual point data, size is (row_step*height)\n\ 00917 \n\ 00918 bool is_dense # True if there are no invalid points\n\ 00919 \n\ 00920 ================================================================================\n\ 00921 MSG: sensor_msgs/PointField\n\ 00922 # This message holds the description of one point entry in the\n\ 00923 # PointCloud2 message format.\n\ 00924 uint8 INT8 = 1\n\ 00925 uint8 UINT8 = 2\n\ 00926 uint8 INT16 = 3\n\ 00927 uint8 UINT16 = 4\n\ 00928 uint8 INT32 = 5\n\ 00929 uint8 UINT32 = 6\n\ 00930 uint8 FLOAT32 = 7\n\ 00931 uint8 FLOAT64 = 8\n\ 00932 \n\ 00933 string name # Name of field\n\ 00934 uint32 offset # Offset from start of point struct\n\ 00935 uint8 datatype # Datatype enumeration, see above\n\ 00936 uint32 count # How many elements in the field\n\ 00937 \n\ 00938 ================================================================================\n\ 00939 MSG: sensor_msgs/Image\n\ 00940 # This message contains an uncompressed image\n\ 00941 # (0, 0) is at top-left corner of image\n\ 00942 #\n\ 00943 \n\ 00944 Header header # Header timestamp should be acquisition time of image\n\ 00945 # Header frame_id should be optical frame of camera\n\ 00946 # origin of frame should be optical center of cameara\n\ 00947 # +x should point to the right in the image\n\ 00948 # +y should point down in the image\n\ 00949 # +z should point into to plane of the image\n\ 00950 # If the frame_id here and the frame_id of the CameraInfo\n\ 00951 # message associated with the image conflict\n\ 00952 # the behavior is undefined\n\ 00953 \n\ 00954 uint32 height # image height, that is, number of rows\n\ 00955 uint32 width # image width, that is, number of columns\n\ 00956 \n\ 00957 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00958 # If you want to standardize a new string format, join\n\ 00959 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00960 \n\ 00961 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00962 # taken from the list of strings in src/image_encodings.cpp\n\ 00963 \n\ 00964 uint8 is_bigendian # is this data bigendian?\n\ 00965 uint32 step # Full row length in bytes\n\ 00966 uint8[] data # actual matrix data, size is (step * rows)\n\ 00967 \n\ 00968 ================================================================================\n\ 00969 MSG: sensor_msgs/CameraInfo\n\ 00970 # This message defines meta information for a camera. It should be in a\n\ 00971 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00972 # image topics named:\n\ 00973 #\n\ 00974 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00975 # image - monochrome, distorted\n\ 00976 # image_color - color, distorted\n\ 00977 # image_rect - monochrome, rectified\n\ 00978 # image_rect_color - color, rectified\n\ 00979 #\n\ 00980 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00981 # for producing the four processed image topics from image_raw and\n\ 00982 # camera_info. The meaning of the camera parameters are described in\n\ 00983 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00984 #\n\ 00985 # The image_geometry package provides a user-friendly interface to\n\ 00986 # common operations using this meta information. If you want to, e.g.,\n\ 00987 # project a 3d point into image coordinates, we strongly recommend\n\ 00988 # using image_geometry.\n\ 00989 #\n\ 00990 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00991 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00992 # indicates an uncalibrated camera.\n\ 00993 \n\ 00994 #######################################################################\n\ 00995 # Image acquisition info #\n\ 00996 #######################################################################\n\ 00997 \n\ 00998 # Time of image acquisition, camera coordinate frame ID\n\ 00999 Header header # Header timestamp should be acquisition time of image\n\ 01000 # Header frame_id should be optical frame of camera\n\ 01001 # origin of frame should be optical center of camera\n\ 01002 # +x should point to the right in the image\n\ 01003 # +y should point down in the image\n\ 01004 # +z should point into the plane of the image\n\ 01005 \n\ 01006 \n\ 01007 #######################################################################\n\ 01008 # Calibration Parameters #\n\ 01009 #######################################################################\n\ 01010 # These are fixed during camera calibration. Their values will be the #\n\ 01011 # same in all messages until the camera is recalibrated. Note that #\n\ 01012 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01013 # #\n\ 01014 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01015 # to: #\n\ 01016 # 1. An undistorted image (requires D and K) #\n\ 01017 # 2. A rectified image (requires D, K, R) #\n\ 01018 # The projection matrix P projects 3D points into the rectified image.#\n\ 01019 #######################################################################\n\ 01020 \n\ 01021 # The image dimensions with which the camera was calibrated. Normally\n\ 01022 # this will be the full camera resolution in pixels.\n\ 01023 uint32 height\n\ 01024 uint32 width\n\ 01025 \n\ 01026 # The distortion model used. Supported models are listed in\n\ 01027 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01028 # simple model of radial and tangential distortion - is sufficent.\n\ 01029 string distortion_model\n\ 01030 \n\ 01031 # The distortion parameters, size depending on the distortion model.\n\ 01032 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01033 float64[] D\n\ 01034 \n\ 01035 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01036 # [fx 0 cx]\n\ 01037 # K = [ 0 fy cy]\n\ 01038 # [ 0 0 1]\n\ 01039 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01040 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01041 # (cx, cy).\n\ 01042 float64[9] K # 3x3 row-major matrix\n\ 01043 \n\ 01044 # Rectification matrix (stereo cameras only)\n\ 01045 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01046 # stereo image plane so that epipolar lines in both stereo images are\n\ 01047 # parallel.\n\ 01048 float64[9] R # 3x3 row-major matrix\n\ 01049 \n\ 01050 # Projection/camera matrix\n\ 01051 # [fx' 0 cx' Tx]\n\ 01052 # P = [ 0 fy' cy' Ty]\n\ 01053 # [ 0 0 1 0]\n\ 01054 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01055 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01056 # is the normal camera intrinsic matrix for the rectified image.\n\ 01057 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01058 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01059 # (cx', cy') - these may differ from the values in K.\n\ 01060 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01061 # also have R = the identity and P[1:3,1:3] = K.\n\ 01062 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01063 # position of the optical center of the second camera in the first\n\ 01064 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01065 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01066 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01067 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01068 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01069 # the rectified image is given by:\n\ 01070 # [u v w]' = P * [X Y Z 1]'\n\ 01071 # x = u / w\n\ 01072 # y = v / w\n\ 01073 # This holds for both images of a stereo pair.\n\ 01074 float64[12] P # 3x4 row-major matrix\n\ 01075 \n\ 01076 \n\ 01077 #######################################################################\n\ 01078 # Operational Parameters #\n\ 01079 #######################################################################\n\ 01080 # These define the image region actually captured by the camera #\n\ 01081 # driver. Although they affect the geometry of the output image, they #\n\ 01082 # may be changed freely without recalibrating the camera. #\n\ 01083 #######################################################################\n\ 01084 \n\ 01085 # Binning refers here to any camera setting which combines rectangular\n\ 01086 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01087 # resolution of the output image to\n\ 01088 # (width / binning_x) x (height / binning_y).\n\ 01089 # The default values binning_x = binning_y = 0 is considered the same\n\ 01090 # as binning_x = binning_y = 1 (no subsampling).\n\ 01091 uint32 binning_x\n\ 01092 uint32 binning_y\n\ 01093 \n\ 01094 # Region of interest (subwindow of full camera resolution), given in\n\ 01095 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01096 # always denotes the same window of pixels on the camera sensor,\n\ 01097 # regardless of binning settings.\n\ 01098 # The default setting of roi (all values 0) is considered the same as\n\ 01099 # full resolution (roi.width = width, roi.height = height).\n\ 01100 RegionOfInterest roi\n\ 01101 \n\ 01102 ================================================================================\n\ 01103 MSG: sensor_msgs/RegionOfInterest\n\ 01104 # This message is used to specify a region of interest within an image.\n\ 01105 #\n\ 01106 # When used to specify the ROI setting of the camera when the image was\n\ 01107 # taken, the height and width fields should either match the height and\n\ 01108 # width fields for the associated image; or height = width = 0\n\ 01109 # indicates that the full resolution image was captured.\n\ 01110 \n\ 01111 uint32 x_offset # Leftmost pixel of the ROI\n\ 01112 # (0 if the ROI includes the left edge of the image)\n\ 01113 uint32 y_offset # Topmost pixel of the ROI\n\ 01114 # (0 if the ROI includes the top edge of the image)\n\ 01115 uint32 height # Height of ROI\n\ 01116 uint32 width # Width of ROI\n\ 01117 \n\ 01118 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01119 # ROI in this message. Typically this should be False if the full image\n\ 01120 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01121 # used).\n\ 01122 bool do_rectify\n\ 01123 \n\ 01124 ================================================================================\n\ 01125 MSG: geometry_msgs/Vector3\n\ 01126 # This represents a vector in free space. \n\ 01127 \n\ 01128 float64 x\n\ 01129 float64 y\n\ 01130 float64 z\n\ 01131 "; 01132 } 01133 01134 static const char* value(const ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); } 01135 }; 01136 01137 } // namespace message_traits 01138 } // namespace ros 01139 01140 namespace ros 01141 { 01142 namespace serialization 01143 { 01144 01145 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > 01146 { 01147 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01148 { 01149 stream.next(m.command); 01150 stream.next(m.arg); 01151 } 01152 01153 ROS_DECLARE_ALLINONE_SERIALIZER; 01154 }; // struct PickPlaceRequest_ 01155 } // namespace serialization 01156 } // namespace ros 01157 01158 01159 namespace ros 01160 { 01161 namespace serialization 01162 { 01163 01164 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > 01165 { 01166 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01167 { 01168 stream.next(m.response); 01169 stream.next(m.objects); 01170 } 01171 01172 ROS_DECLARE_ALLINONE_SERIALIZER; 01173 }; // struct PickPlaceResponse_ 01174 } // namespace serialization 01175 } // namespace ros 01176 01177 namespace ros 01178 { 01179 namespace service_traits 01180 { 01181 template<> 01182 struct MD5Sum<pr2_pick_and_place_service::PickPlace> { 01183 static const char* value() 01184 { 01185 return "ed796eaf203a95fd847bb7dfd92ee619"; 01186 } 01187 01188 static const char* value(const pr2_pick_and_place_service::PickPlace&) { return value(); } 01189 }; 01190 01191 template<> 01192 struct DataType<pr2_pick_and_place_service::PickPlace> { 01193 static const char* value() 01194 { 01195 return "pr2_pick_and_place_service/PickPlace"; 01196 } 01197 01198 static const char* value(const pr2_pick_and_place_service::PickPlace&) { return value(); } 01199 }; 01200 01201 template<class ContainerAllocator> 01202 struct MD5Sum<pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > { 01203 static const char* value() 01204 { 01205 return "ed796eaf203a95fd847bb7dfd92ee619"; 01206 } 01207 01208 static const char* value(const pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); } 01209 }; 01210 01211 template<class ContainerAllocator> 01212 struct DataType<pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > { 01213 static const char* value() 01214 { 01215 return "pr2_pick_and_place_service/PickPlace"; 01216 } 01217 01218 static const char* value(const pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); } 01219 }; 01220 01221 template<class ContainerAllocator> 01222 struct MD5Sum<pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > { 01223 static const char* value() 01224 { 01225 return "ed796eaf203a95fd847bb7dfd92ee619"; 01226 } 01227 01228 static const char* value(const pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); } 01229 }; 01230 01231 template<class ContainerAllocator> 01232 struct DataType<pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > { 01233 static const char* value() 01234 { 01235 return "pr2_pick_and_place_service/PickPlace"; 01236 } 01237 01238 static const char* value(const pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); } 01239 }; 01240 01241 } // namespace service_traits 01242 } // namespace ros 01243 01244 #endif // PR2_PICK_AND_PLACE_SERVICE_SERVICE_PICKPLACE_H 01245