$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-remote_lab/doc_stacks/2013-03-03_11-54-58.406785/remote_lab/pr2_pick_and_place_service/srv/DetectObjects.srv */ 00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H 00003 #define PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 00020 00021 #include "pr2_pick_and_place_service/PickPlaceObject.h" 00022 00023 namespace pr2_pick_and_place_service 00024 { 00025 template <class ContainerAllocator> 00026 struct DetectObjectsRequest_ { 00027 typedef DetectObjectsRequest_<ContainerAllocator> Type; 00028 00029 DetectObjectsRequest_() 00030 : command() 00031 { 00032 } 00033 00034 DetectObjectsRequest_(const ContainerAllocator& _alloc) 00035 : command(_alloc) 00036 { 00037 } 00038 00039 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _command_type; 00040 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > command; 00041 00042 00043 private: 00044 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/DetectObjectsRequest"; } 00045 public: 00046 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00047 00048 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00049 00050 private: 00051 static const char* __s_getMD5Sum_() { return "cba5e21e920a3a2b7b375cb65b64cdea"; } 00052 public: 00053 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00054 00055 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00056 00057 private: 00058 static const char* __s_getServerMD5Sum_() { return "bf02022b441a7c39aeac8629d3839eb0"; } 00059 public: 00060 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00061 00062 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00063 00064 private: 00065 static const char* __s_getMessageDefinition_() { return "string command\n\ 00066 \n\ 00067 "; } 00068 public: 00069 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00070 00071 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00072 00073 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00074 { 00075 ros::serialization::OStream stream(write_ptr, 1000000000); 00076 ros::serialization::serialize(stream, command); 00077 return stream.getData(); 00078 } 00079 00080 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00081 { 00082 ros::serialization::IStream stream(read_ptr, 1000000000); 00083 ros::serialization::deserialize(stream, command); 00084 return stream.getData(); 00085 } 00086 00087 ROS_DEPRECATED virtual uint32_t serializationLength() const 00088 { 00089 uint32_t size = 0; 00090 size += ros::serialization::serializationLength(command); 00091 return size; 00092 } 00093 00094 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > Ptr; 00095 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> const> ConstPtr; 00096 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00097 }; // struct DetectObjectsRequest 00098 typedef ::pr2_pick_and_place_service::DetectObjectsRequest_<std::allocator<void> > DetectObjectsRequest; 00099 00100 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest> DetectObjectsRequestPtr; 00101 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest const> DetectObjectsRequestConstPtr; 00102 00103 00104 template <class ContainerAllocator> 00105 struct DetectObjectsResponse_ { 00106 typedef DetectObjectsResponse_<ContainerAllocator> Type; 00107 00108 DetectObjectsResponse_() 00109 : objects() 00110 { 00111 } 00112 00113 DetectObjectsResponse_(const ContainerAllocator& _alloc) 00114 : objects(_alloc) 00115 { 00116 } 00117 00118 typedef std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > _objects_type; 00119 std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > objects; 00120 00121 00122 ROS_DEPRECATED uint32_t get_objects_size() const { return (uint32_t)objects.size(); } 00123 ROS_DEPRECATED void set_objects_size(uint32_t size) { objects.resize((size_t)size); } 00124 ROS_DEPRECATED void get_objects_vec(std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) const { vec = this->objects; } 00125 ROS_DEPRECATED void set_objects_vec(const std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) { this->objects = vec; } 00126 private: 00127 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/DetectObjectsResponse"; } 00128 public: 00129 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00130 00131 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00132 00133 private: 00134 static const char* __s_getMD5Sum_() { return "449f83591eb66e6fe03617927c047c54"; } 00135 public: 00136 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00137 00138 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00139 00140 private: 00141 static const char* __s_getServerMD5Sum_() { return "bf02022b441a7c39aeac8629d3839eb0"; } 00142 public: 00143 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00144 00145 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00146 00147 private: 00148 static const char* __s_getMessageDefinition_() { return "PickPlaceObject[] objects\n\ 00149 \n\ 00150 \n\ 00151 ================================================================================\n\ 00152 MSG: pr2_pick_and_place_service/PickPlaceObject\n\ 00153 int32 objectid\n\ 00154 object_manipulation_msgs/GraspableObject object\n\ 00155 geometry_msgs/PoseStamped pose\n\ 00156 float64[] boundingbox\n\ 00157 \n\ 00158 ================================================================================\n\ 00159 MSG: object_manipulation_msgs/GraspableObject\n\ 00160 # an object that the object_manipulator can work on\n\ 00161 \n\ 00162 # a graspable object can be represented in multiple ways. This message\n\ 00163 # can contain all of them. Which one is actually used is up to the receiver\n\ 00164 # of this message. When adding new representations, one must be careful that\n\ 00165 # they have reasonable lightweight defaults indicating that that particular\n\ 00166 # representation is not available.\n\ 00167 \n\ 00168 # the tf frame to be used as a reference frame when combining information from\n\ 00169 # the different representations below\n\ 00170 string reference_frame_id\n\ 00171 \n\ 00172 # potential recognition results from a database of models\n\ 00173 # all poses are relative to the object reference pose\n\ 00174 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00175 \n\ 00176 # the point cloud itself\n\ 00177 sensor_msgs/PointCloud cluster\n\ 00178 \n\ 00179 # a region of a PointCloud2 of interest\n\ 00180 object_manipulation_msgs/SceneRegion region\n\ 00181 \n\ 00182 # the name that this object has in the collision environment\n\ 00183 string collision_name\n\ 00184 ================================================================================\n\ 00185 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00186 # Informs that a specific model from the Model Database has been \n\ 00187 # identified at a certain location\n\ 00188 \n\ 00189 # the database id of the model\n\ 00190 int32 model_id\n\ 00191 \n\ 00192 # the pose that it can be found in\n\ 00193 geometry_msgs/PoseStamped pose\n\ 00194 \n\ 00195 # a measure of the confidence level in this detection result\n\ 00196 float32 confidence\n\ 00197 \n\ 00198 # the name of the object detector that generated this detection result\n\ 00199 string detector_name\n\ 00200 \n\ 00201 ================================================================================\n\ 00202 MSG: geometry_msgs/PoseStamped\n\ 00203 # A Pose with reference coordinate frame and timestamp\n\ 00204 Header header\n\ 00205 Pose pose\n\ 00206 \n\ 00207 ================================================================================\n\ 00208 MSG: std_msgs/Header\n\ 00209 # Standard metadata for higher-level stamped data types.\n\ 00210 # This is generally used to communicate timestamped data \n\ 00211 # in a particular coordinate frame.\n\ 00212 # \n\ 00213 # sequence ID: consecutively increasing ID \n\ 00214 uint32 seq\n\ 00215 #Two-integer timestamp that is expressed as:\n\ 00216 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00217 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00218 # time-handling sugar is provided by the client library\n\ 00219 time stamp\n\ 00220 #Frame this data is associated with\n\ 00221 # 0: no frame\n\ 00222 # 1: global frame\n\ 00223 string frame_id\n\ 00224 \n\ 00225 ================================================================================\n\ 00226 MSG: geometry_msgs/Pose\n\ 00227 # A representation of pose in free space, composed of postion and orientation. \n\ 00228 Point position\n\ 00229 Quaternion orientation\n\ 00230 \n\ 00231 ================================================================================\n\ 00232 MSG: geometry_msgs/Point\n\ 00233 # This contains the position of a point in free space\n\ 00234 float64 x\n\ 00235 float64 y\n\ 00236 float64 z\n\ 00237 \n\ 00238 ================================================================================\n\ 00239 MSG: geometry_msgs/Quaternion\n\ 00240 # This represents an orientation in free space in quaternion form.\n\ 00241 \n\ 00242 float64 x\n\ 00243 float64 y\n\ 00244 float64 z\n\ 00245 float64 w\n\ 00246 \n\ 00247 ================================================================================\n\ 00248 MSG: sensor_msgs/PointCloud\n\ 00249 # This message holds a collection of 3d points, plus optional additional\n\ 00250 # information about each point.\n\ 00251 \n\ 00252 # Time of sensor data acquisition, coordinate frame ID.\n\ 00253 Header header\n\ 00254 \n\ 00255 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00256 # in the frame given in the header.\n\ 00257 geometry_msgs/Point32[] points\n\ 00258 \n\ 00259 # Each channel should have the same number of elements as points array,\n\ 00260 # and the data in each channel should correspond 1:1 with each point.\n\ 00261 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00262 ChannelFloat32[] channels\n\ 00263 \n\ 00264 ================================================================================\n\ 00265 MSG: geometry_msgs/Point32\n\ 00266 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00267 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00268 # \n\ 00269 # This recommendation is to promote interoperability. \n\ 00270 #\n\ 00271 # This message is designed to take up less space when sending\n\ 00272 # lots of points at once, as in the case of a PointCloud. \n\ 00273 \n\ 00274 float32 x\n\ 00275 float32 y\n\ 00276 float32 z\n\ 00277 ================================================================================\n\ 00278 MSG: sensor_msgs/ChannelFloat32\n\ 00279 # This message is used by the PointCloud message to hold optional data\n\ 00280 # associated with each point in the cloud. The length of the values\n\ 00281 # array should be the same as the length of the points array in the\n\ 00282 # PointCloud, and each value should be associated with the corresponding\n\ 00283 # point.\n\ 00284 \n\ 00285 # Channel names in existing practice include:\n\ 00286 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00287 # This is opposite to usual conventions but remains for\n\ 00288 # historical reasons. The newer PointCloud2 message has no\n\ 00289 # such problem.\n\ 00290 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00291 # (R,G,B) values packed into the least significant 24 bits,\n\ 00292 # in order.\n\ 00293 # \"intensity\" - laser or pixel intensity.\n\ 00294 # \"distance\"\n\ 00295 \n\ 00296 # The channel name should give semantics of the channel (e.g.\n\ 00297 # \"intensity\" instead of \"value\").\n\ 00298 string name\n\ 00299 \n\ 00300 # The values array should be 1-1 with the elements of the associated\n\ 00301 # PointCloud.\n\ 00302 float32[] values\n\ 00303 \n\ 00304 ================================================================================\n\ 00305 MSG: object_manipulation_msgs/SceneRegion\n\ 00306 # Point cloud\n\ 00307 sensor_msgs/PointCloud2 cloud\n\ 00308 \n\ 00309 # Indices for the region of interest\n\ 00310 int32[] mask\n\ 00311 \n\ 00312 # One of the corresponding 2D images, if applicable\n\ 00313 sensor_msgs/Image image\n\ 00314 \n\ 00315 # The disparity image, if applicable\n\ 00316 sensor_msgs/Image disparity_image\n\ 00317 \n\ 00318 # Camera info for the camera that took the image\n\ 00319 sensor_msgs/CameraInfo cam_info\n\ 00320 \n\ 00321 # a 3D region of interest for grasp planning\n\ 00322 geometry_msgs/PoseStamped roi_box_pose\n\ 00323 geometry_msgs/Vector3 roi_box_dims\n\ 00324 \n\ 00325 ================================================================================\n\ 00326 MSG: sensor_msgs/PointCloud2\n\ 00327 # This message holds a collection of N-dimensional points, which may\n\ 00328 # contain additional information such as normals, intensity, etc. The\n\ 00329 # point data is stored as a binary blob, its layout described by the\n\ 00330 # contents of the \"fields\" array.\n\ 00331 \n\ 00332 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00333 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00334 # camera depth sensors such as stereo or time-of-flight.\n\ 00335 \n\ 00336 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00337 # points).\n\ 00338 Header header\n\ 00339 \n\ 00340 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00341 # 1 and width is the length of the point cloud.\n\ 00342 uint32 height\n\ 00343 uint32 width\n\ 00344 \n\ 00345 # Describes the channels and their layout in the binary data blob.\n\ 00346 PointField[] fields\n\ 00347 \n\ 00348 bool is_bigendian # Is this data bigendian?\n\ 00349 uint32 point_step # Length of a point in bytes\n\ 00350 uint32 row_step # Length of a row in bytes\n\ 00351 uint8[] data # Actual point data, size is (row_step*height)\n\ 00352 \n\ 00353 bool is_dense # True if there are no invalid points\n\ 00354 \n\ 00355 ================================================================================\n\ 00356 MSG: sensor_msgs/PointField\n\ 00357 # This message holds the description of one point entry in the\n\ 00358 # PointCloud2 message format.\n\ 00359 uint8 INT8 = 1\n\ 00360 uint8 UINT8 = 2\n\ 00361 uint8 INT16 = 3\n\ 00362 uint8 UINT16 = 4\n\ 00363 uint8 INT32 = 5\n\ 00364 uint8 UINT32 = 6\n\ 00365 uint8 FLOAT32 = 7\n\ 00366 uint8 FLOAT64 = 8\n\ 00367 \n\ 00368 string name # Name of field\n\ 00369 uint32 offset # Offset from start of point struct\n\ 00370 uint8 datatype # Datatype enumeration, see above\n\ 00371 uint32 count # How many elements in the field\n\ 00372 \n\ 00373 ================================================================================\n\ 00374 MSG: sensor_msgs/Image\n\ 00375 # This message contains an uncompressed image\n\ 00376 # (0, 0) is at top-left corner of image\n\ 00377 #\n\ 00378 \n\ 00379 Header header # Header timestamp should be acquisition time of image\n\ 00380 # Header frame_id should be optical frame of camera\n\ 00381 # origin of frame should be optical center of cameara\n\ 00382 # +x should point to the right in the image\n\ 00383 # +y should point down in the image\n\ 00384 # +z should point into to plane of the image\n\ 00385 # If the frame_id here and the frame_id of the CameraInfo\n\ 00386 # message associated with the image conflict\n\ 00387 # the behavior is undefined\n\ 00388 \n\ 00389 uint32 height # image height, that is, number of rows\n\ 00390 uint32 width # image width, that is, number of columns\n\ 00391 \n\ 00392 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00393 # If you want to standardize a new string format, join\n\ 00394 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00395 \n\ 00396 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00397 # taken from the list of strings in src/image_encodings.cpp\n\ 00398 \n\ 00399 uint8 is_bigendian # is this data bigendian?\n\ 00400 uint32 step # Full row length in bytes\n\ 00401 uint8[] data # actual matrix data, size is (step * rows)\n\ 00402 \n\ 00403 ================================================================================\n\ 00404 MSG: sensor_msgs/CameraInfo\n\ 00405 # This message defines meta information for a camera. It should be in a\n\ 00406 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00407 # image topics named:\n\ 00408 #\n\ 00409 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00410 # image - monochrome, distorted\n\ 00411 # image_color - color, distorted\n\ 00412 # image_rect - monochrome, rectified\n\ 00413 # image_rect_color - color, rectified\n\ 00414 #\n\ 00415 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00416 # for producing the four processed image topics from image_raw and\n\ 00417 # camera_info. The meaning of the camera parameters are described in\n\ 00418 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00419 #\n\ 00420 # The image_geometry package provides a user-friendly interface to\n\ 00421 # common operations using this meta information. If you want to, e.g.,\n\ 00422 # project a 3d point into image coordinates, we strongly recommend\n\ 00423 # using image_geometry.\n\ 00424 #\n\ 00425 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00426 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00427 # indicates an uncalibrated camera.\n\ 00428 \n\ 00429 #######################################################################\n\ 00430 # Image acquisition info #\n\ 00431 #######################################################################\n\ 00432 \n\ 00433 # Time of image acquisition, camera coordinate frame ID\n\ 00434 Header header # Header timestamp should be acquisition time of image\n\ 00435 # Header frame_id should be optical frame of camera\n\ 00436 # origin of frame should be optical center of camera\n\ 00437 # +x should point to the right in the image\n\ 00438 # +y should point down in the image\n\ 00439 # +z should point into the plane of the image\n\ 00440 \n\ 00441 \n\ 00442 #######################################################################\n\ 00443 # Calibration Parameters #\n\ 00444 #######################################################################\n\ 00445 # These are fixed during camera calibration. Their values will be the #\n\ 00446 # same in all messages until the camera is recalibrated. Note that #\n\ 00447 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00448 # #\n\ 00449 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00450 # to: #\n\ 00451 # 1. An undistorted image (requires D and K) #\n\ 00452 # 2. A rectified image (requires D, K, R) #\n\ 00453 # The projection matrix P projects 3D points into the rectified image.#\n\ 00454 #######################################################################\n\ 00455 \n\ 00456 # The image dimensions with which the camera was calibrated. Normally\n\ 00457 # this will be the full camera resolution in pixels.\n\ 00458 uint32 height\n\ 00459 uint32 width\n\ 00460 \n\ 00461 # The distortion model used. Supported models are listed in\n\ 00462 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00463 # simple model of radial and tangential distortion - is sufficent.\n\ 00464 string distortion_model\n\ 00465 \n\ 00466 # The distortion parameters, size depending on the distortion model.\n\ 00467 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00468 float64[] D\n\ 00469 \n\ 00470 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00471 # [fx 0 cx]\n\ 00472 # K = [ 0 fy cy]\n\ 00473 # [ 0 0 1]\n\ 00474 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00475 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00476 # (cx, cy).\n\ 00477 float64[9] K # 3x3 row-major matrix\n\ 00478 \n\ 00479 # Rectification matrix (stereo cameras only)\n\ 00480 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00481 # stereo image plane so that epipolar lines in both stereo images are\n\ 00482 # parallel.\n\ 00483 float64[9] R # 3x3 row-major matrix\n\ 00484 \n\ 00485 # Projection/camera matrix\n\ 00486 # [fx' 0 cx' Tx]\n\ 00487 # P = [ 0 fy' cy' Ty]\n\ 00488 # [ 0 0 1 0]\n\ 00489 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00490 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00491 # is the normal camera intrinsic matrix for the rectified image.\n\ 00492 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00493 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00494 # (cx', cy') - these may differ from the values in K.\n\ 00495 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00496 # also have R = the identity and P[1:3,1:3] = K.\n\ 00497 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00498 # position of the optical center of the second camera in the first\n\ 00499 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00500 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00501 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00502 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00503 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00504 # the rectified image is given by:\n\ 00505 # [u v w]' = P * [X Y Z 1]'\n\ 00506 # x = u / w\n\ 00507 # y = v / w\n\ 00508 # This holds for both images of a stereo pair.\n\ 00509 float64[12] P # 3x4 row-major matrix\n\ 00510 \n\ 00511 \n\ 00512 #######################################################################\n\ 00513 # Operational Parameters #\n\ 00514 #######################################################################\n\ 00515 # These define the image region actually captured by the camera #\n\ 00516 # driver. Although they affect the geometry of the output image, they #\n\ 00517 # may be changed freely without recalibrating the camera. #\n\ 00518 #######################################################################\n\ 00519 \n\ 00520 # Binning refers here to any camera setting which combines rectangular\n\ 00521 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00522 # resolution of the output image to\n\ 00523 # (width / binning_x) x (height / binning_y).\n\ 00524 # The default values binning_x = binning_y = 0 is considered the same\n\ 00525 # as binning_x = binning_y = 1 (no subsampling).\n\ 00526 uint32 binning_x\n\ 00527 uint32 binning_y\n\ 00528 \n\ 00529 # Region of interest (subwindow of full camera resolution), given in\n\ 00530 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00531 # always denotes the same window of pixels on the camera sensor,\n\ 00532 # regardless of binning settings.\n\ 00533 # The default setting of roi (all values 0) is considered the same as\n\ 00534 # full resolution (roi.width = width, roi.height = height).\n\ 00535 RegionOfInterest roi\n\ 00536 \n\ 00537 ================================================================================\n\ 00538 MSG: sensor_msgs/RegionOfInterest\n\ 00539 # This message is used to specify a region of interest within an image.\n\ 00540 #\n\ 00541 # When used to specify the ROI setting of the camera when the image was\n\ 00542 # taken, the height and width fields should either match the height and\n\ 00543 # width fields for the associated image; or height = width = 0\n\ 00544 # indicates that the full resolution image was captured.\n\ 00545 \n\ 00546 uint32 x_offset # Leftmost pixel of the ROI\n\ 00547 # (0 if the ROI includes the left edge of the image)\n\ 00548 uint32 y_offset # Topmost pixel of the ROI\n\ 00549 # (0 if the ROI includes the top edge of the image)\n\ 00550 uint32 height # Height of ROI\n\ 00551 uint32 width # Width of ROI\n\ 00552 \n\ 00553 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00554 # ROI in this message. Typically this should be False if the full image\n\ 00555 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00556 # used).\n\ 00557 bool do_rectify\n\ 00558 \n\ 00559 ================================================================================\n\ 00560 MSG: geometry_msgs/Vector3\n\ 00561 # This represents a vector in free space. \n\ 00562 \n\ 00563 float64 x\n\ 00564 float64 y\n\ 00565 float64 z\n\ 00566 "; } 00567 public: 00568 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00569 00570 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00571 00572 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00573 { 00574 ros::serialization::OStream stream(write_ptr, 1000000000); 00575 ros::serialization::serialize(stream, objects); 00576 return stream.getData(); 00577 } 00578 00579 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00580 { 00581 ros::serialization::IStream stream(read_ptr, 1000000000); 00582 ros::serialization::deserialize(stream, objects); 00583 return stream.getData(); 00584 } 00585 00586 ROS_DEPRECATED virtual uint32_t serializationLength() const 00587 { 00588 uint32_t size = 0; 00589 size += ros::serialization::serializationLength(objects); 00590 return size; 00591 } 00592 00593 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > Ptr; 00594 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> const> ConstPtr; 00595 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00596 }; // struct DetectObjectsResponse 00597 typedef ::pr2_pick_and_place_service::DetectObjectsResponse_<std::allocator<void> > DetectObjectsResponse; 00598 00599 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse> DetectObjectsResponsePtr; 00600 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse const> DetectObjectsResponseConstPtr; 00601 00602 struct DetectObjects 00603 { 00604 00605 typedef DetectObjectsRequest Request; 00606 typedef DetectObjectsResponse Response; 00607 Request request; 00608 Response response; 00609 00610 typedef Request RequestType; 00611 typedef Response ResponseType; 00612 }; // struct DetectObjects 00613 } // namespace pr2_pick_and_place_service 00614 00615 namespace ros 00616 { 00617 namespace message_traits 00618 { 00619 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > : public TrueType {}; 00620 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> const> : public TrueType {}; 00621 template<class ContainerAllocator> 00622 struct MD5Sum< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > { 00623 static const char* value() 00624 { 00625 return "cba5e21e920a3a2b7b375cb65b64cdea"; 00626 } 00627 00628 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); } 00629 static const uint64_t static_value1 = 0xcba5e21e920a3a2bULL; 00630 static const uint64_t static_value2 = 0x7b375cb65b64cdeaULL; 00631 }; 00632 00633 template<class ContainerAllocator> 00634 struct DataType< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > { 00635 static const char* value() 00636 { 00637 return "pr2_pick_and_place_service/DetectObjectsRequest"; 00638 } 00639 00640 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); } 00641 }; 00642 00643 template<class ContainerAllocator> 00644 struct Definition< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > { 00645 static const char* value() 00646 { 00647 return "string command\n\ 00648 \n\ 00649 "; 00650 } 00651 00652 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); } 00653 }; 00654 00655 } // namespace message_traits 00656 } // namespace ros 00657 00658 00659 namespace ros 00660 { 00661 namespace message_traits 00662 { 00663 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > : public TrueType {}; 00664 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> const> : public TrueType {}; 00665 template<class ContainerAllocator> 00666 struct MD5Sum< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > { 00667 static const char* value() 00668 { 00669 return "449f83591eb66e6fe03617927c047c54"; 00670 } 00671 00672 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); } 00673 static const uint64_t static_value1 = 0x449f83591eb66e6fULL; 00674 static const uint64_t static_value2 = 0xe03617927c047c54ULL; 00675 }; 00676 00677 template<class ContainerAllocator> 00678 struct DataType< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > { 00679 static const char* value() 00680 { 00681 return "pr2_pick_and_place_service/DetectObjectsResponse"; 00682 } 00683 00684 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); } 00685 }; 00686 00687 template<class ContainerAllocator> 00688 struct Definition< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > { 00689 static const char* value() 00690 { 00691 return "PickPlaceObject[] objects\n\ 00692 \n\ 00693 \n\ 00694 ================================================================================\n\ 00695 MSG: pr2_pick_and_place_service/PickPlaceObject\n\ 00696 int32 objectid\n\ 00697 object_manipulation_msgs/GraspableObject object\n\ 00698 geometry_msgs/PoseStamped pose\n\ 00699 float64[] boundingbox\n\ 00700 \n\ 00701 ================================================================================\n\ 00702 MSG: object_manipulation_msgs/GraspableObject\n\ 00703 # an object that the object_manipulator can work on\n\ 00704 \n\ 00705 # a graspable object can be represented in multiple ways. This message\n\ 00706 # can contain all of them. Which one is actually used is up to the receiver\n\ 00707 # of this message. When adding new representations, one must be careful that\n\ 00708 # they have reasonable lightweight defaults indicating that that particular\n\ 00709 # representation is not available.\n\ 00710 \n\ 00711 # the tf frame to be used as a reference frame when combining information from\n\ 00712 # the different representations below\n\ 00713 string reference_frame_id\n\ 00714 \n\ 00715 # potential recognition results from a database of models\n\ 00716 # all poses are relative to the object reference pose\n\ 00717 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00718 \n\ 00719 # the point cloud itself\n\ 00720 sensor_msgs/PointCloud cluster\n\ 00721 \n\ 00722 # a region of a PointCloud2 of interest\n\ 00723 object_manipulation_msgs/SceneRegion region\n\ 00724 \n\ 00725 # the name that this object has in the collision environment\n\ 00726 string collision_name\n\ 00727 ================================================================================\n\ 00728 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00729 # Informs that a specific model from the Model Database has been \n\ 00730 # identified at a certain location\n\ 00731 \n\ 00732 # the database id of the model\n\ 00733 int32 model_id\n\ 00734 \n\ 00735 # the pose that it can be found in\n\ 00736 geometry_msgs/PoseStamped pose\n\ 00737 \n\ 00738 # a measure of the confidence level in this detection result\n\ 00739 float32 confidence\n\ 00740 \n\ 00741 # the name of the object detector that generated this detection result\n\ 00742 string detector_name\n\ 00743 \n\ 00744 ================================================================================\n\ 00745 MSG: geometry_msgs/PoseStamped\n\ 00746 # A Pose with reference coordinate frame and timestamp\n\ 00747 Header header\n\ 00748 Pose pose\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: std_msgs/Header\n\ 00752 # Standard metadata for higher-level stamped data types.\n\ 00753 # This is generally used to communicate timestamped data \n\ 00754 # in a particular coordinate frame.\n\ 00755 # \n\ 00756 # sequence ID: consecutively increasing ID \n\ 00757 uint32 seq\n\ 00758 #Two-integer timestamp that is expressed as:\n\ 00759 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00760 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00761 # time-handling sugar is provided by the client library\n\ 00762 time stamp\n\ 00763 #Frame this data is associated with\n\ 00764 # 0: no frame\n\ 00765 # 1: global frame\n\ 00766 string frame_id\n\ 00767 \n\ 00768 ================================================================================\n\ 00769 MSG: geometry_msgs/Pose\n\ 00770 # A representation of pose in free space, composed of postion and orientation. \n\ 00771 Point position\n\ 00772 Quaternion orientation\n\ 00773 \n\ 00774 ================================================================================\n\ 00775 MSG: geometry_msgs/Point\n\ 00776 # This contains the position of a point in free space\n\ 00777 float64 x\n\ 00778 float64 y\n\ 00779 float64 z\n\ 00780 \n\ 00781 ================================================================================\n\ 00782 MSG: geometry_msgs/Quaternion\n\ 00783 # This represents an orientation in free space in quaternion form.\n\ 00784 \n\ 00785 float64 x\n\ 00786 float64 y\n\ 00787 float64 z\n\ 00788 float64 w\n\ 00789 \n\ 00790 ================================================================================\n\ 00791 MSG: sensor_msgs/PointCloud\n\ 00792 # This message holds a collection of 3d points, plus optional additional\n\ 00793 # information about each point.\n\ 00794 \n\ 00795 # Time of sensor data acquisition, coordinate frame ID.\n\ 00796 Header header\n\ 00797 \n\ 00798 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00799 # in the frame given in the header.\n\ 00800 geometry_msgs/Point32[] points\n\ 00801 \n\ 00802 # Each channel should have the same number of elements as points array,\n\ 00803 # and the data in each channel should correspond 1:1 with each point.\n\ 00804 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00805 ChannelFloat32[] channels\n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: geometry_msgs/Point32\n\ 00809 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00810 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00811 # \n\ 00812 # This recommendation is to promote interoperability. \n\ 00813 #\n\ 00814 # This message is designed to take up less space when sending\n\ 00815 # lots of points at once, as in the case of a PointCloud. \n\ 00816 \n\ 00817 float32 x\n\ 00818 float32 y\n\ 00819 float32 z\n\ 00820 ================================================================================\n\ 00821 MSG: sensor_msgs/ChannelFloat32\n\ 00822 # This message is used by the PointCloud message to hold optional data\n\ 00823 # associated with each point in the cloud. The length of the values\n\ 00824 # array should be the same as the length of the points array in the\n\ 00825 # PointCloud, and each value should be associated with the corresponding\n\ 00826 # point.\n\ 00827 \n\ 00828 # Channel names in existing practice include:\n\ 00829 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00830 # This is opposite to usual conventions but remains for\n\ 00831 # historical reasons. The newer PointCloud2 message has no\n\ 00832 # such problem.\n\ 00833 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00834 # (R,G,B) values packed into the least significant 24 bits,\n\ 00835 # in order.\n\ 00836 # \"intensity\" - laser or pixel intensity.\n\ 00837 # \"distance\"\n\ 00838 \n\ 00839 # The channel name should give semantics of the channel (e.g.\n\ 00840 # \"intensity\" instead of \"value\").\n\ 00841 string name\n\ 00842 \n\ 00843 # The values array should be 1-1 with the elements of the associated\n\ 00844 # PointCloud.\n\ 00845 float32[] values\n\ 00846 \n\ 00847 ================================================================================\n\ 00848 MSG: object_manipulation_msgs/SceneRegion\n\ 00849 # Point cloud\n\ 00850 sensor_msgs/PointCloud2 cloud\n\ 00851 \n\ 00852 # Indices for the region of interest\n\ 00853 int32[] mask\n\ 00854 \n\ 00855 # One of the corresponding 2D images, if applicable\n\ 00856 sensor_msgs/Image image\n\ 00857 \n\ 00858 # The disparity image, if applicable\n\ 00859 sensor_msgs/Image disparity_image\n\ 00860 \n\ 00861 # Camera info for the camera that took the image\n\ 00862 sensor_msgs/CameraInfo cam_info\n\ 00863 \n\ 00864 # a 3D region of interest for grasp planning\n\ 00865 geometry_msgs/PoseStamped roi_box_pose\n\ 00866 geometry_msgs/Vector3 roi_box_dims\n\ 00867 \n\ 00868 ================================================================================\n\ 00869 MSG: sensor_msgs/PointCloud2\n\ 00870 # This message holds a collection of N-dimensional points, which may\n\ 00871 # contain additional information such as normals, intensity, etc. The\n\ 00872 # point data is stored as a binary blob, its layout described by the\n\ 00873 # contents of the \"fields\" array.\n\ 00874 \n\ 00875 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00876 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00877 # camera depth sensors such as stereo or time-of-flight.\n\ 00878 \n\ 00879 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00880 # points).\n\ 00881 Header header\n\ 00882 \n\ 00883 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00884 # 1 and width is the length of the point cloud.\n\ 00885 uint32 height\n\ 00886 uint32 width\n\ 00887 \n\ 00888 # Describes the channels and their layout in the binary data blob.\n\ 00889 PointField[] fields\n\ 00890 \n\ 00891 bool is_bigendian # Is this data bigendian?\n\ 00892 uint32 point_step # Length of a point in bytes\n\ 00893 uint32 row_step # Length of a row in bytes\n\ 00894 uint8[] data # Actual point data, size is (row_step*height)\n\ 00895 \n\ 00896 bool is_dense # True if there are no invalid points\n\ 00897 \n\ 00898 ================================================================================\n\ 00899 MSG: sensor_msgs/PointField\n\ 00900 # This message holds the description of one point entry in the\n\ 00901 # PointCloud2 message format.\n\ 00902 uint8 INT8 = 1\n\ 00903 uint8 UINT8 = 2\n\ 00904 uint8 INT16 = 3\n\ 00905 uint8 UINT16 = 4\n\ 00906 uint8 INT32 = 5\n\ 00907 uint8 UINT32 = 6\n\ 00908 uint8 FLOAT32 = 7\n\ 00909 uint8 FLOAT64 = 8\n\ 00910 \n\ 00911 string name # Name of field\n\ 00912 uint32 offset # Offset from start of point struct\n\ 00913 uint8 datatype # Datatype enumeration, see above\n\ 00914 uint32 count # How many elements in the field\n\ 00915 \n\ 00916 ================================================================================\n\ 00917 MSG: sensor_msgs/Image\n\ 00918 # This message contains an uncompressed image\n\ 00919 # (0, 0) is at top-left corner of image\n\ 00920 #\n\ 00921 \n\ 00922 Header header # Header timestamp should be acquisition time of image\n\ 00923 # Header frame_id should be optical frame of camera\n\ 00924 # origin of frame should be optical center of cameara\n\ 00925 # +x should point to the right in the image\n\ 00926 # +y should point down in the image\n\ 00927 # +z should point into to plane of the image\n\ 00928 # If the frame_id here and the frame_id of the CameraInfo\n\ 00929 # message associated with the image conflict\n\ 00930 # the behavior is undefined\n\ 00931 \n\ 00932 uint32 height # image height, that is, number of rows\n\ 00933 uint32 width # image width, that is, number of columns\n\ 00934 \n\ 00935 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00936 # If you want to standardize a new string format, join\n\ 00937 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00938 \n\ 00939 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00940 # taken from the list of strings in src/image_encodings.cpp\n\ 00941 \n\ 00942 uint8 is_bigendian # is this data bigendian?\n\ 00943 uint32 step # Full row length in bytes\n\ 00944 uint8[] data # actual matrix data, size is (step * rows)\n\ 00945 \n\ 00946 ================================================================================\n\ 00947 MSG: sensor_msgs/CameraInfo\n\ 00948 # This message defines meta information for a camera. It should be in a\n\ 00949 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00950 # image topics named:\n\ 00951 #\n\ 00952 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00953 # image - monochrome, distorted\n\ 00954 # image_color - color, distorted\n\ 00955 # image_rect - monochrome, rectified\n\ 00956 # image_rect_color - color, rectified\n\ 00957 #\n\ 00958 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00959 # for producing the four processed image topics from image_raw and\n\ 00960 # camera_info. The meaning of the camera parameters are described in\n\ 00961 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00962 #\n\ 00963 # The image_geometry package provides a user-friendly interface to\n\ 00964 # common operations using this meta information. If you want to, e.g.,\n\ 00965 # project a 3d point into image coordinates, we strongly recommend\n\ 00966 # using image_geometry.\n\ 00967 #\n\ 00968 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00969 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00970 # indicates an uncalibrated camera.\n\ 00971 \n\ 00972 #######################################################################\n\ 00973 # Image acquisition info #\n\ 00974 #######################################################################\n\ 00975 \n\ 00976 # Time of image acquisition, camera coordinate frame ID\n\ 00977 Header header # Header timestamp should be acquisition time of image\n\ 00978 # Header frame_id should be optical frame of camera\n\ 00979 # origin of frame should be optical center of camera\n\ 00980 # +x should point to the right in the image\n\ 00981 # +y should point down in the image\n\ 00982 # +z should point into the plane of the image\n\ 00983 \n\ 00984 \n\ 00985 #######################################################################\n\ 00986 # Calibration Parameters #\n\ 00987 #######################################################################\n\ 00988 # These are fixed during camera calibration. Their values will be the #\n\ 00989 # same in all messages until the camera is recalibrated. Note that #\n\ 00990 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00991 # #\n\ 00992 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00993 # to: #\n\ 00994 # 1. An undistorted image (requires D and K) #\n\ 00995 # 2. A rectified image (requires D, K, R) #\n\ 00996 # The projection matrix P projects 3D points into the rectified image.#\n\ 00997 #######################################################################\n\ 00998 \n\ 00999 # The image dimensions with which the camera was calibrated. Normally\n\ 01000 # this will be the full camera resolution in pixels.\n\ 01001 uint32 height\n\ 01002 uint32 width\n\ 01003 \n\ 01004 # The distortion model used. Supported models are listed in\n\ 01005 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01006 # simple model of radial and tangential distortion - is sufficent.\n\ 01007 string distortion_model\n\ 01008 \n\ 01009 # The distortion parameters, size depending on the distortion model.\n\ 01010 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01011 float64[] D\n\ 01012 \n\ 01013 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01014 # [fx 0 cx]\n\ 01015 # K = [ 0 fy cy]\n\ 01016 # [ 0 0 1]\n\ 01017 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01018 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01019 # (cx, cy).\n\ 01020 float64[9] K # 3x3 row-major matrix\n\ 01021 \n\ 01022 # Rectification matrix (stereo cameras only)\n\ 01023 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01024 # stereo image plane so that epipolar lines in both stereo images are\n\ 01025 # parallel.\n\ 01026 float64[9] R # 3x3 row-major matrix\n\ 01027 \n\ 01028 # Projection/camera matrix\n\ 01029 # [fx' 0 cx' Tx]\n\ 01030 # P = [ 0 fy' cy' Ty]\n\ 01031 # [ 0 0 1 0]\n\ 01032 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01033 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01034 # is the normal camera intrinsic matrix for the rectified image.\n\ 01035 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01036 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01037 # (cx', cy') - these may differ from the values in K.\n\ 01038 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01039 # also have R = the identity and P[1:3,1:3] = K.\n\ 01040 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01041 # position of the optical center of the second camera in the first\n\ 01042 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01043 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01044 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01045 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01046 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01047 # the rectified image is given by:\n\ 01048 # [u v w]' = P * [X Y Z 1]'\n\ 01049 # x = u / w\n\ 01050 # y = v / w\n\ 01051 # This holds for both images of a stereo pair.\n\ 01052 float64[12] P # 3x4 row-major matrix\n\ 01053 \n\ 01054 \n\ 01055 #######################################################################\n\ 01056 # Operational Parameters #\n\ 01057 #######################################################################\n\ 01058 # These define the image region actually captured by the camera #\n\ 01059 # driver. Although they affect the geometry of the output image, they #\n\ 01060 # may be changed freely without recalibrating the camera. #\n\ 01061 #######################################################################\n\ 01062 \n\ 01063 # Binning refers here to any camera setting which combines rectangular\n\ 01064 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01065 # resolution of the output image to\n\ 01066 # (width / binning_x) x (height / binning_y).\n\ 01067 # The default values binning_x = binning_y = 0 is considered the same\n\ 01068 # as binning_x = binning_y = 1 (no subsampling).\n\ 01069 uint32 binning_x\n\ 01070 uint32 binning_y\n\ 01071 \n\ 01072 # Region of interest (subwindow of full camera resolution), given in\n\ 01073 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01074 # always denotes the same window of pixels on the camera sensor,\n\ 01075 # regardless of binning settings.\n\ 01076 # The default setting of roi (all values 0) is considered the same as\n\ 01077 # full resolution (roi.width = width, roi.height = height).\n\ 01078 RegionOfInterest roi\n\ 01079 \n\ 01080 ================================================================================\n\ 01081 MSG: sensor_msgs/RegionOfInterest\n\ 01082 # This message is used to specify a region of interest within an image.\n\ 01083 #\n\ 01084 # When used to specify the ROI setting of the camera when the image was\n\ 01085 # taken, the height and width fields should either match the height and\n\ 01086 # width fields for the associated image; or height = width = 0\n\ 01087 # indicates that the full resolution image was captured.\n\ 01088 \n\ 01089 uint32 x_offset # Leftmost pixel of the ROI\n\ 01090 # (0 if the ROI includes the left edge of the image)\n\ 01091 uint32 y_offset # Topmost pixel of the ROI\n\ 01092 # (0 if the ROI includes the top edge of the image)\n\ 01093 uint32 height # Height of ROI\n\ 01094 uint32 width # Width of ROI\n\ 01095 \n\ 01096 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01097 # ROI in this message. Typically this should be False if the full image\n\ 01098 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01099 # used).\n\ 01100 bool do_rectify\n\ 01101 \n\ 01102 ================================================================================\n\ 01103 MSG: geometry_msgs/Vector3\n\ 01104 # This represents a vector in free space. \n\ 01105 \n\ 01106 float64 x\n\ 01107 float64 y\n\ 01108 float64 z\n\ 01109 "; 01110 } 01111 01112 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); } 01113 }; 01114 01115 } // namespace message_traits 01116 } // namespace ros 01117 01118 namespace ros 01119 { 01120 namespace serialization 01121 { 01122 01123 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > 01124 { 01125 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01126 { 01127 stream.next(m.command); 01128 } 01129 01130 ROS_DECLARE_ALLINONE_SERIALIZER; 01131 }; // struct DetectObjectsRequest_ 01132 } // namespace serialization 01133 } // namespace ros 01134 01135 01136 namespace ros 01137 { 01138 namespace serialization 01139 { 01140 01141 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > 01142 { 01143 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01144 { 01145 stream.next(m.objects); 01146 } 01147 01148 ROS_DECLARE_ALLINONE_SERIALIZER; 01149 }; // struct DetectObjectsResponse_ 01150 } // namespace serialization 01151 } // namespace ros 01152 01153 namespace ros 01154 { 01155 namespace service_traits 01156 { 01157 template<> 01158 struct MD5Sum<pr2_pick_and_place_service::DetectObjects> { 01159 static const char* value() 01160 { 01161 return "bf02022b441a7c39aeac8629d3839eb0"; 01162 } 01163 01164 static const char* value(const pr2_pick_and_place_service::DetectObjects&) { return value(); } 01165 }; 01166 01167 template<> 01168 struct DataType<pr2_pick_and_place_service::DetectObjects> { 01169 static const char* value() 01170 { 01171 return "pr2_pick_and_place_service/DetectObjects"; 01172 } 01173 01174 static const char* value(const pr2_pick_and_place_service::DetectObjects&) { return value(); } 01175 }; 01176 01177 template<class ContainerAllocator> 01178 struct MD5Sum<pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > { 01179 static const char* value() 01180 { 01181 return "bf02022b441a7c39aeac8629d3839eb0"; 01182 } 01183 01184 static const char* value(const pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); } 01185 }; 01186 01187 template<class ContainerAllocator> 01188 struct DataType<pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > { 01189 static const char* value() 01190 { 01191 return "pr2_pick_and_place_service/DetectObjects"; 01192 } 01193 01194 static const char* value(const pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); } 01195 }; 01196 01197 template<class ContainerAllocator> 01198 struct MD5Sum<pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > { 01199 static const char* value() 01200 { 01201 return "bf02022b441a7c39aeac8629d3839eb0"; 01202 } 01203 01204 static const char* value(const pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); } 01205 }; 01206 01207 template<class ContainerAllocator> 01208 struct DataType<pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > { 01209 static const char* value() 01210 { 01211 return "pr2_pick_and_place_service/DetectObjects"; 01212 } 01213 01214 static const char* value(const pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); } 01215 }; 01216 01217 } // namespace service_traits 01218 } // namespace ros 01219 01220 #endif // PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H 01221