$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/perception/object_segmentation_gui/msg/ObjectSegmentationGuiGoal.msg */ 00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H 00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "sensor_msgs/Image.h" 00018 #include "sensor_msgs/CameraInfo.h" 00019 #include "sensor_msgs/Image.h" 00020 #include "sensor_msgs/CameraInfo.h" 00021 #include "sensor_msgs/PointCloud2.h" 00022 #include "stereo_msgs/DisparityImage.h" 00023 00024 namespace object_segmentation_gui 00025 { 00026 template <class ContainerAllocator> 00027 struct ObjectSegmentationGuiGoal_ { 00028 typedef ObjectSegmentationGuiGoal_<ContainerAllocator> Type; 00029 00030 ObjectSegmentationGuiGoal_() 00031 : image() 00032 , camera_info() 00033 , wide_field() 00034 , wide_camera_info() 00035 , point_cloud() 00036 , disparity_image() 00037 { 00038 } 00039 00040 ObjectSegmentationGuiGoal_(const ContainerAllocator& _alloc) 00041 : image(_alloc) 00042 , camera_info(_alloc) 00043 , wide_field(_alloc) 00044 , wide_camera_info(_alloc) 00045 , point_cloud(_alloc) 00046 , disparity_image(_alloc) 00047 { 00048 } 00049 00050 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00051 ::sensor_msgs::Image_<ContainerAllocator> image; 00052 00053 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00054 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00055 00056 typedef ::sensor_msgs::Image_<ContainerAllocator> _wide_field_type; 00057 ::sensor_msgs::Image_<ContainerAllocator> wide_field; 00058 00059 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _wide_camera_info_type; 00060 ::sensor_msgs::CameraInfo_<ContainerAllocator> wide_camera_info; 00061 00062 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _point_cloud_type; 00063 ::sensor_msgs::PointCloud2_<ContainerAllocator> point_cloud; 00064 00065 typedef ::stereo_msgs::DisparityImage_<ContainerAllocator> _disparity_image_type; 00066 ::stereo_msgs::DisparityImage_<ContainerAllocator> disparity_image; 00067 00068 00069 private: 00070 static const char* __s_getDataType_() { return "object_segmentation_gui/ObjectSegmentationGuiGoal"; } 00071 public: 00072 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00073 00074 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00075 00076 private: 00077 static const char* __s_getMD5Sum_() { return "e1d5b6113ada0dd63b3fd30b2ac9f913"; } 00078 public: 00079 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00080 00081 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00082 00083 private: 00084 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00085 sensor_msgs/Image image\n\ 00086 sensor_msgs/CameraInfo camera_info\n\ 00087 sensor_msgs/Image wide_field\n\ 00088 sensor_msgs/CameraInfo wide_camera_info\n\ 00089 \n\ 00090 sensor_msgs/PointCloud2 point_cloud\n\ 00091 stereo_msgs/DisparityImage disparity_image\n\ 00092 \n\ 00093 \n\ 00094 ================================================================================\n\ 00095 MSG: sensor_msgs/Image\n\ 00096 # This message contains an uncompressed image\n\ 00097 # (0, 0) is at top-left corner of image\n\ 00098 #\n\ 00099 \n\ 00100 Header header # Header timestamp should be acquisition time of image\n\ 00101 # Header frame_id should be optical frame of camera\n\ 00102 # origin of frame should be optical center of cameara\n\ 00103 # +x should point to the right in the image\n\ 00104 # +y should point down in the image\n\ 00105 # +z should point into to plane of the image\n\ 00106 # If the frame_id here and the frame_id of the CameraInfo\n\ 00107 # message associated with the image conflict\n\ 00108 # the behavior is undefined\n\ 00109 \n\ 00110 uint32 height # image height, that is, number of rows\n\ 00111 uint32 width # image width, that is, number of columns\n\ 00112 \n\ 00113 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00114 # If you want to standardize a new string format, join\n\ 00115 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00116 \n\ 00117 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00118 # taken from the list of strings in src/image_encodings.cpp\n\ 00119 \n\ 00120 uint8 is_bigendian # is this data bigendian?\n\ 00121 uint32 step # Full row length in bytes\n\ 00122 uint8[] data # actual matrix data, size is (step * rows)\n\ 00123 \n\ 00124 ================================================================================\n\ 00125 MSG: std_msgs/Header\n\ 00126 # Standard metadata for higher-level stamped data types.\n\ 00127 # This is generally used to communicate timestamped data \n\ 00128 # in a particular coordinate frame.\n\ 00129 # \n\ 00130 # sequence ID: consecutively increasing ID \n\ 00131 uint32 seq\n\ 00132 #Two-integer timestamp that is expressed as:\n\ 00133 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00134 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00135 # time-handling sugar is provided by the client library\n\ 00136 time stamp\n\ 00137 #Frame this data is associated with\n\ 00138 # 0: no frame\n\ 00139 # 1: global frame\n\ 00140 string frame_id\n\ 00141 \n\ 00142 ================================================================================\n\ 00143 MSG: sensor_msgs/CameraInfo\n\ 00144 # This message defines meta information for a camera. It should be in a\n\ 00145 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00146 # image topics named:\n\ 00147 #\n\ 00148 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00149 # image - monochrome, distorted\n\ 00150 # image_color - color, distorted\n\ 00151 # image_rect - monochrome, rectified\n\ 00152 # image_rect_color - color, rectified\n\ 00153 #\n\ 00154 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00155 # for producing the four processed image topics from image_raw and\n\ 00156 # camera_info. The meaning of the camera parameters are described in\n\ 00157 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00158 #\n\ 00159 # The image_geometry package provides a user-friendly interface to\n\ 00160 # common operations using this meta information. If you want to, e.g.,\n\ 00161 # project a 3d point into image coordinates, we strongly recommend\n\ 00162 # using image_geometry.\n\ 00163 #\n\ 00164 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00165 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00166 # indicates an uncalibrated camera.\n\ 00167 \n\ 00168 #######################################################################\n\ 00169 # Image acquisition info #\n\ 00170 #######################################################################\n\ 00171 \n\ 00172 # Time of image acquisition, camera coordinate frame ID\n\ 00173 Header header # Header timestamp should be acquisition time of image\n\ 00174 # Header frame_id should be optical frame of camera\n\ 00175 # origin of frame should be optical center of camera\n\ 00176 # +x should point to the right in the image\n\ 00177 # +y should point down in the image\n\ 00178 # +z should point into the plane of the image\n\ 00179 \n\ 00180 \n\ 00181 #######################################################################\n\ 00182 # Calibration Parameters #\n\ 00183 #######################################################################\n\ 00184 # These are fixed during camera calibration. Their values will be the #\n\ 00185 # same in all messages until the camera is recalibrated. Note that #\n\ 00186 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00187 # #\n\ 00188 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00189 # to: #\n\ 00190 # 1. An undistorted image (requires D and K) #\n\ 00191 # 2. A rectified image (requires D, K, R) #\n\ 00192 # The projection matrix P projects 3D points into the rectified image.#\n\ 00193 #######################################################################\n\ 00194 \n\ 00195 # The image dimensions with which the camera was calibrated. Normally\n\ 00196 # this will be the full camera resolution in pixels.\n\ 00197 uint32 height\n\ 00198 uint32 width\n\ 00199 \n\ 00200 # The distortion model used. Supported models are listed in\n\ 00201 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00202 # simple model of radial and tangential distortion - is sufficent.\n\ 00203 string distortion_model\n\ 00204 \n\ 00205 # The distortion parameters, size depending on the distortion model.\n\ 00206 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00207 float64[] D\n\ 00208 \n\ 00209 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00210 # [fx 0 cx]\n\ 00211 # K = [ 0 fy cy]\n\ 00212 # [ 0 0 1]\n\ 00213 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00214 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00215 # (cx, cy).\n\ 00216 float64[9] K # 3x3 row-major matrix\n\ 00217 \n\ 00218 # Rectification matrix (stereo cameras only)\n\ 00219 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00220 # stereo image plane so that epipolar lines in both stereo images are\n\ 00221 # parallel.\n\ 00222 float64[9] R # 3x3 row-major matrix\n\ 00223 \n\ 00224 # Projection/camera matrix\n\ 00225 # [fx' 0 cx' Tx]\n\ 00226 # P = [ 0 fy' cy' Ty]\n\ 00227 # [ 0 0 1 0]\n\ 00228 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00229 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00230 # is the normal camera intrinsic matrix for the rectified image.\n\ 00231 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00232 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00233 # (cx', cy') - these may differ from the values in K.\n\ 00234 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00235 # also have R = the identity and P[1:3,1:3] = K.\n\ 00236 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00237 # position of the optical center of the second camera in the first\n\ 00238 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00239 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00240 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00241 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00242 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00243 # the rectified image is given by:\n\ 00244 # [u v w]' = P * [X Y Z 1]'\n\ 00245 # x = u / w\n\ 00246 # y = v / w\n\ 00247 # This holds for both images of a stereo pair.\n\ 00248 float64[12] P # 3x4 row-major matrix\n\ 00249 \n\ 00250 \n\ 00251 #######################################################################\n\ 00252 # Operational Parameters #\n\ 00253 #######################################################################\n\ 00254 # These define the image region actually captured by the camera #\n\ 00255 # driver. Although they affect the geometry of the output image, they #\n\ 00256 # may be changed freely without recalibrating the camera. #\n\ 00257 #######################################################################\n\ 00258 \n\ 00259 # Binning refers here to any camera setting which combines rectangular\n\ 00260 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00261 # resolution of the output image to\n\ 00262 # (width / binning_x) x (height / binning_y).\n\ 00263 # The default values binning_x = binning_y = 0 is considered the same\n\ 00264 # as binning_x = binning_y = 1 (no subsampling).\n\ 00265 uint32 binning_x\n\ 00266 uint32 binning_y\n\ 00267 \n\ 00268 # Region of interest (subwindow of full camera resolution), given in\n\ 00269 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00270 # always denotes the same window of pixels on the camera sensor,\n\ 00271 # regardless of binning settings.\n\ 00272 # The default setting of roi (all values 0) is considered the same as\n\ 00273 # full resolution (roi.width = width, roi.height = height).\n\ 00274 RegionOfInterest roi\n\ 00275 \n\ 00276 ================================================================================\n\ 00277 MSG: sensor_msgs/RegionOfInterest\n\ 00278 # This message is used to specify a region of interest within an image.\n\ 00279 #\n\ 00280 # When used to specify the ROI setting of the camera when the image was\n\ 00281 # taken, the height and width fields should either match the height and\n\ 00282 # width fields for the associated image; or height = width = 0\n\ 00283 # indicates that the full resolution image was captured.\n\ 00284 \n\ 00285 uint32 x_offset # Leftmost pixel of the ROI\n\ 00286 # (0 if the ROI includes the left edge of the image)\n\ 00287 uint32 y_offset # Topmost pixel of the ROI\n\ 00288 # (0 if the ROI includes the top edge of the image)\n\ 00289 uint32 height # Height of ROI\n\ 00290 uint32 width # Width of ROI\n\ 00291 \n\ 00292 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00293 # ROI in this message. Typically this should be False if the full image\n\ 00294 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00295 # used).\n\ 00296 bool do_rectify\n\ 00297 \n\ 00298 ================================================================================\n\ 00299 MSG: sensor_msgs/PointCloud2\n\ 00300 # This message holds a collection of N-dimensional points, which may\n\ 00301 # contain additional information such as normals, intensity, etc. The\n\ 00302 # point data is stored as a binary blob, its layout described by the\n\ 00303 # contents of the \"fields\" array.\n\ 00304 \n\ 00305 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00306 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00307 # camera depth sensors such as stereo or time-of-flight.\n\ 00308 \n\ 00309 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00310 # points).\n\ 00311 Header header\n\ 00312 \n\ 00313 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00314 # 1 and width is the length of the point cloud.\n\ 00315 uint32 height\n\ 00316 uint32 width\n\ 00317 \n\ 00318 # Describes the channels and their layout in the binary data blob.\n\ 00319 PointField[] fields\n\ 00320 \n\ 00321 bool is_bigendian # Is this data bigendian?\n\ 00322 uint32 point_step # Length of a point in bytes\n\ 00323 uint32 row_step # Length of a row in bytes\n\ 00324 uint8[] data # Actual point data, size is (row_step*height)\n\ 00325 \n\ 00326 bool is_dense # True if there are no invalid points\n\ 00327 \n\ 00328 ================================================================================\n\ 00329 MSG: sensor_msgs/PointField\n\ 00330 # This message holds the description of one point entry in the\n\ 00331 # PointCloud2 message format.\n\ 00332 uint8 INT8 = 1\n\ 00333 uint8 UINT8 = 2\n\ 00334 uint8 INT16 = 3\n\ 00335 uint8 UINT16 = 4\n\ 00336 uint8 INT32 = 5\n\ 00337 uint8 UINT32 = 6\n\ 00338 uint8 FLOAT32 = 7\n\ 00339 uint8 FLOAT64 = 8\n\ 00340 \n\ 00341 string name # Name of field\n\ 00342 uint32 offset # Offset from start of point struct\n\ 00343 uint8 datatype # Datatype enumeration, see above\n\ 00344 uint32 count # How many elements in the field\n\ 00345 \n\ 00346 ================================================================================\n\ 00347 MSG: stereo_msgs/DisparityImage\n\ 00348 # Separate header for compatibility with current TimeSynchronizer.\n\ 00349 # Likely to be removed in a later release, use image.header instead.\n\ 00350 Header header\n\ 00351 \n\ 00352 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00353 # x-offset between the principal points of the two cameras (in the case\n\ 00354 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00355 sensor_msgs/Image image\n\ 00356 \n\ 00357 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00358 float32 f # Focal length, pixels\n\ 00359 float32 T # Baseline, world units\n\ 00360 \n\ 00361 # Subwindow of (potentially) valid disparity values.\n\ 00362 sensor_msgs/RegionOfInterest valid_window\n\ 00363 \n\ 00364 # The range of disparities searched.\n\ 00365 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00366 # The disparity search range defines the horopter, or 3D volume that the\n\ 00367 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00368 # Z_min = fT / max_disparity\n\ 00369 # Z_max = fT / min_disparity\n\ 00370 # could not be found.\n\ 00371 float32 min_disparity\n\ 00372 float32 max_disparity\n\ 00373 \n\ 00374 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00375 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00376 float32 delta_d\n\ 00377 \n\ 00378 "; } 00379 public: 00380 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00381 00382 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00383 00384 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00385 { 00386 ros::serialization::OStream stream(write_ptr, 1000000000); 00387 ros::serialization::serialize(stream, image); 00388 ros::serialization::serialize(stream, camera_info); 00389 ros::serialization::serialize(stream, wide_field); 00390 ros::serialization::serialize(stream, wide_camera_info); 00391 ros::serialization::serialize(stream, point_cloud); 00392 ros::serialization::serialize(stream, disparity_image); 00393 return stream.getData(); 00394 } 00395 00396 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00397 { 00398 ros::serialization::IStream stream(read_ptr, 1000000000); 00399 ros::serialization::deserialize(stream, image); 00400 ros::serialization::deserialize(stream, camera_info); 00401 ros::serialization::deserialize(stream, wide_field); 00402 ros::serialization::deserialize(stream, wide_camera_info); 00403 ros::serialization::deserialize(stream, point_cloud); 00404 ros::serialization::deserialize(stream, disparity_image); 00405 return stream.getData(); 00406 } 00407 00408 ROS_DEPRECATED virtual uint32_t serializationLength() const 00409 { 00410 uint32_t size = 0; 00411 size += ros::serialization::serializationLength(image); 00412 size += ros::serialization::serializationLength(camera_info); 00413 size += ros::serialization::serializationLength(wide_field); 00414 size += ros::serialization::serializationLength(wide_camera_info); 00415 size += ros::serialization::serializationLength(point_cloud); 00416 size += ros::serialization::serializationLength(disparity_image); 00417 return size; 00418 } 00419 00420 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > Ptr; 00421 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> const> ConstPtr; 00422 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00423 }; // struct ObjectSegmentationGuiGoal 00424 typedef ::object_segmentation_gui::ObjectSegmentationGuiGoal_<std::allocator<void> > ObjectSegmentationGuiGoal; 00425 00426 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal> ObjectSegmentationGuiGoalPtr; 00427 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal const> ObjectSegmentationGuiGoalConstPtr; 00428 00429 00430 template<typename ContainerAllocator> 00431 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> & v) 00432 { 00433 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, "", v); 00434 return s;} 00435 00436 } // namespace object_segmentation_gui 00437 00438 namespace ros 00439 { 00440 namespace message_traits 00441 { 00442 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > : public TrueType {}; 00443 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> const> : public TrueType {}; 00444 template<class ContainerAllocator> 00445 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > { 00446 static const char* value() 00447 { 00448 return "e1d5b6113ada0dd63b3fd30b2ac9f913"; 00449 } 00450 00451 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); } 00452 static const uint64_t static_value1 = 0xe1d5b6113ada0dd6ULL; 00453 static const uint64_t static_value2 = 0x3b3fd30b2ac9f913ULL; 00454 }; 00455 00456 template<class ContainerAllocator> 00457 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > { 00458 static const char* value() 00459 { 00460 return "object_segmentation_gui/ObjectSegmentationGuiGoal"; 00461 } 00462 00463 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); } 00464 }; 00465 00466 template<class ContainerAllocator> 00467 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > { 00468 static const char* value() 00469 { 00470 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00471 sensor_msgs/Image image\n\ 00472 sensor_msgs/CameraInfo camera_info\n\ 00473 sensor_msgs/Image wide_field\n\ 00474 sensor_msgs/CameraInfo wide_camera_info\n\ 00475 \n\ 00476 sensor_msgs/PointCloud2 point_cloud\n\ 00477 stereo_msgs/DisparityImage disparity_image\n\ 00478 \n\ 00479 \n\ 00480 ================================================================================\n\ 00481 MSG: sensor_msgs/Image\n\ 00482 # This message contains an uncompressed image\n\ 00483 # (0, 0) is at top-left corner of image\n\ 00484 #\n\ 00485 \n\ 00486 Header header # Header timestamp should be acquisition time of image\n\ 00487 # Header frame_id should be optical frame of camera\n\ 00488 # origin of frame should be optical center of cameara\n\ 00489 # +x should point to the right in the image\n\ 00490 # +y should point down in the image\n\ 00491 # +z should point into to plane of the image\n\ 00492 # If the frame_id here and the frame_id of the CameraInfo\n\ 00493 # message associated with the image conflict\n\ 00494 # the behavior is undefined\n\ 00495 \n\ 00496 uint32 height # image height, that is, number of rows\n\ 00497 uint32 width # image width, that is, number of columns\n\ 00498 \n\ 00499 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00500 # If you want to standardize a new string format, join\n\ 00501 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00502 \n\ 00503 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00504 # taken from the list of strings in src/image_encodings.cpp\n\ 00505 \n\ 00506 uint8 is_bigendian # is this data bigendian?\n\ 00507 uint32 step # Full row length in bytes\n\ 00508 uint8[] data # actual matrix data, size is (step * rows)\n\ 00509 \n\ 00510 ================================================================================\n\ 00511 MSG: std_msgs/Header\n\ 00512 # Standard metadata for higher-level stamped data types.\n\ 00513 # This is generally used to communicate timestamped data \n\ 00514 # in a particular coordinate frame.\n\ 00515 # \n\ 00516 # sequence ID: consecutively increasing ID \n\ 00517 uint32 seq\n\ 00518 #Two-integer timestamp that is expressed as:\n\ 00519 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00520 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00521 # time-handling sugar is provided by the client library\n\ 00522 time stamp\n\ 00523 #Frame this data is associated with\n\ 00524 # 0: no frame\n\ 00525 # 1: global frame\n\ 00526 string frame_id\n\ 00527 \n\ 00528 ================================================================================\n\ 00529 MSG: sensor_msgs/CameraInfo\n\ 00530 # This message defines meta information for a camera. It should be in a\n\ 00531 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00532 # image topics named:\n\ 00533 #\n\ 00534 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00535 # image - monochrome, distorted\n\ 00536 # image_color - color, distorted\n\ 00537 # image_rect - monochrome, rectified\n\ 00538 # image_rect_color - color, rectified\n\ 00539 #\n\ 00540 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00541 # for producing the four processed image topics from image_raw and\n\ 00542 # camera_info. The meaning of the camera parameters are described in\n\ 00543 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00544 #\n\ 00545 # The image_geometry package provides a user-friendly interface to\n\ 00546 # common operations using this meta information. If you want to, e.g.,\n\ 00547 # project a 3d point into image coordinates, we strongly recommend\n\ 00548 # using image_geometry.\n\ 00549 #\n\ 00550 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00551 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00552 # indicates an uncalibrated camera.\n\ 00553 \n\ 00554 #######################################################################\n\ 00555 # Image acquisition info #\n\ 00556 #######################################################################\n\ 00557 \n\ 00558 # Time of image acquisition, camera coordinate frame ID\n\ 00559 Header header # Header timestamp should be acquisition time of image\n\ 00560 # Header frame_id should be optical frame of camera\n\ 00561 # origin of frame should be optical center of camera\n\ 00562 # +x should point to the right in the image\n\ 00563 # +y should point down in the image\n\ 00564 # +z should point into the plane of the image\n\ 00565 \n\ 00566 \n\ 00567 #######################################################################\n\ 00568 # Calibration Parameters #\n\ 00569 #######################################################################\n\ 00570 # These are fixed during camera calibration. Their values will be the #\n\ 00571 # same in all messages until the camera is recalibrated. Note that #\n\ 00572 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00573 # #\n\ 00574 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00575 # to: #\n\ 00576 # 1. An undistorted image (requires D and K) #\n\ 00577 # 2. A rectified image (requires D, K, R) #\n\ 00578 # The projection matrix P projects 3D points into the rectified image.#\n\ 00579 #######################################################################\n\ 00580 \n\ 00581 # The image dimensions with which the camera was calibrated. Normally\n\ 00582 # this will be the full camera resolution in pixels.\n\ 00583 uint32 height\n\ 00584 uint32 width\n\ 00585 \n\ 00586 # The distortion model used. Supported models are listed in\n\ 00587 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00588 # simple model of radial and tangential distortion - is sufficent.\n\ 00589 string distortion_model\n\ 00590 \n\ 00591 # The distortion parameters, size depending on the distortion model.\n\ 00592 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00593 float64[] D\n\ 00594 \n\ 00595 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00596 # [fx 0 cx]\n\ 00597 # K = [ 0 fy cy]\n\ 00598 # [ 0 0 1]\n\ 00599 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00600 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00601 # (cx, cy).\n\ 00602 float64[9] K # 3x3 row-major matrix\n\ 00603 \n\ 00604 # Rectification matrix (stereo cameras only)\n\ 00605 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00606 # stereo image plane so that epipolar lines in both stereo images are\n\ 00607 # parallel.\n\ 00608 float64[9] R # 3x3 row-major matrix\n\ 00609 \n\ 00610 # Projection/camera matrix\n\ 00611 # [fx' 0 cx' Tx]\n\ 00612 # P = [ 0 fy' cy' Ty]\n\ 00613 # [ 0 0 1 0]\n\ 00614 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00615 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00616 # is the normal camera intrinsic matrix for the rectified image.\n\ 00617 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00618 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00619 # (cx', cy') - these may differ from the values in K.\n\ 00620 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00621 # also have R = the identity and P[1:3,1:3] = K.\n\ 00622 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00623 # position of the optical center of the second camera in the first\n\ 00624 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00625 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00626 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00627 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00628 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00629 # the rectified image is given by:\n\ 00630 # [u v w]' = P * [X Y Z 1]'\n\ 00631 # x = u / w\n\ 00632 # y = v / w\n\ 00633 # This holds for both images of a stereo pair.\n\ 00634 float64[12] P # 3x4 row-major matrix\n\ 00635 \n\ 00636 \n\ 00637 #######################################################################\n\ 00638 # Operational Parameters #\n\ 00639 #######################################################################\n\ 00640 # These define the image region actually captured by the camera #\n\ 00641 # driver. Although they affect the geometry of the output image, they #\n\ 00642 # may be changed freely without recalibrating the camera. #\n\ 00643 #######################################################################\n\ 00644 \n\ 00645 # Binning refers here to any camera setting which combines rectangular\n\ 00646 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00647 # resolution of the output image to\n\ 00648 # (width / binning_x) x (height / binning_y).\n\ 00649 # The default values binning_x = binning_y = 0 is considered the same\n\ 00650 # as binning_x = binning_y = 1 (no subsampling).\n\ 00651 uint32 binning_x\n\ 00652 uint32 binning_y\n\ 00653 \n\ 00654 # Region of interest (subwindow of full camera resolution), given in\n\ 00655 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00656 # always denotes the same window of pixels on the camera sensor,\n\ 00657 # regardless of binning settings.\n\ 00658 # The default setting of roi (all values 0) is considered the same as\n\ 00659 # full resolution (roi.width = width, roi.height = height).\n\ 00660 RegionOfInterest roi\n\ 00661 \n\ 00662 ================================================================================\n\ 00663 MSG: sensor_msgs/RegionOfInterest\n\ 00664 # This message is used to specify a region of interest within an image.\n\ 00665 #\n\ 00666 # When used to specify the ROI setting of the camera when the image was\n\ 00667 # taken, the height and width fields should either match the height and\n\ 00668 # width fields for the associated image; or height = width = 0\n\ 00669 # indicates that the full resolution image was captured.\n\ 00670 \n\ 00671 uint32 x_offset # Leftmost pixel of the ROI\n\ 00672 # (0 if the ROI includes the left edge of the image)\n\ 00673 uint32 y_offset # Topmost pixel of the ROI\n\ 00674 # (0 if the ROI includes the top edge of the image)\n\ 00675 uint32 height # Height of ROI\n\ 00676 uint32 width # Width of ROI\n\ 00677 \n\ 00678 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00679 # ROI in this message. Typically this should be False if the full image\n\ 00680 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00681 # used).\n\ 00682 bool do_rectify\n\ 00683 \n\ 00684 ================================================================================\n\ 00685 MSG: sensor_msgs/PointCloud2\n\ 00686 # This message holds a collection of N-dimensional points, which may\n\ 00687 # contain additional information such as normals, intensity, etc. The\n\ 00688 # point data is stored as a binary blob, its layout described by the\n\ 00689 # contents of the \"fields\" array.\n\ 00690 \n\ 00691 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00692 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00693 # camera depth sensors such as stereo or time-of-flight.\n\ 00694 \n\ 00695 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00696 # points).\n\ 00697 Header header\n\ 00698 \n\ 00699 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00700 # 1 and width is the length of the point cloud.\n\ 00701 uint32 height\n\ 00702 uint32 width\n\ 00703 \n\ 00704 # Describes the channels and their layout in the binary data blob.\n\ 00705 PointField[] fields\n\ 00706 \n\ 00707 bool is_bigendian # Is this data bigendian?\n\ 00708 uint32 point_step # Length of a point in bytes\n\ 00709 uint32 row_step # Length of a row in bytes\n\ 00710 uint8[] data # Actual point data, size is (row_step*height)\n\ 00711 \n\ 00712 bool is_dense # True if there are no invalid points\n\ 00713 \n\ 00714 ================================================================================\n\ 00715 MSG: sensor_msgs/PointField\n\ 00716 # This message holds the description of one point entry in the\n\ 00717 # PointCloud2 message format.\n\ 00718 uint8 INT8 = 1\n\ 00719 uint8 UINT8 = 2\n\ 00720 uint8 INT16 = 3\n\ 00721 uint8 UINT16 = 4\n\ 00722 uint8 INT32 = 5\n\ 00723 uint8 UINT32 = 6\n\ 00724 uint8 FLOAT32 = 7\n\ 00725 uint8 FLOAT64 = 8\n\ 00726 \n\ 00727 string name # Name of field\n\ 00728 uint32 offset # Offset from start of point struct\n\ 00729 uint8 datatype # Datatype enumeration, see above\n\ 00730 uint32 count # How many elements in the field\n\ 00731 \n\ 00732 ================================================================================\n\ 00733 MSG: stereo_msgs/DisparityImage\n\ 00734 # Separate header for compatibility with current TimeSynchronizer.\n\ 00735 # Likely to be removed in a later release, use image.header instead.\n\ 00736 Header header\n\ 00737 \n\ 00738 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00739 # x-offset between the principal points of the two cameras (in the case\n\ 00740 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00741 sensor_msgs/Image image\n\ 00742 \n\ 00743 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00744 float32 f # Focal length, pixels\n\ 00745 float32 T # Baseline, world units\n\ 00746 \n\ 00747 # Subwindow of (potentially) valid disparity values.\n\ 00748 sensor_msgs/RegionOfInterest valid_window\n\ 00749 \n\ 00750 # The range of disparities searched.\n\ 00751 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00752 # The disparity search range defines the horopter, or 3D volume that the\n\ 00753 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00754 # Z_min = fT / max_disparity\n\ 00755 # Z_max = fT / min_disparity\n\ 00756 # could not be found.\n\ 00757 float32 min_disparity\n\ 00758 float32 max_disparity\n\ 00759 \n\ 00760 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00761 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00762 float32 delta_d\n\ 00763 \n\ 00764 "; 00765 } 00766 00767 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); } 00768 }; 00769 00770 } // namespace message_traits 00771 } // namespace ros 00772 00773 namespace ros 00774 { 00775 namespace serialization 00776 { 00777 00778 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > 00779 { 00780 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00781 { 00782 stream.next(m.image); 00783 stream.next(m.camera_info); 00784 stream.next(m.wide_field); 00785 stream.next(m.wide_camera_info); 00786 stream.next(m.point_cloud); 00787 stream.next(m.disparity_image); 00788 } 00789 00790 ROS_DECLARE_ALLINONE_SERIALIZER; 00791 }; // struct ObjectSegmentationGuiGoal_ 00792 } // namespace serialization 00793 } // namespace ros 00794 00795 namespace ros 00796 { 00797 namespace message_operations 00798 { 00799 00800 template<class ContainerAllocator> 00801 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > 00802 { 00803 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> & v) 00804 { 00805 s << indent << "image: "; 00806 s << std::endl; 00807 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image); 00808 s << indent << "camera_info: "; 00809 s << std::endl; 00810 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info); 00811 s << indent << "wide_field: "; 00812 s << std::endl; 00813 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.wide_field); 00814 s << indent << "wide_camera_info: "; 00815 s << std::endl; 00816 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.wide_camera_info); 00817 s << indent << "point_cloud: "; 00818 s << std::endl; 00819 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.point_cloud); 00820 s << indent << "disparity_image: "; 00821 s << std::endl; 00822 Printer< ::stereo_msgs::DisparityImage_<ContainerAllocator> >::stream(s, indent + " ", v.disparity_image); 00823 } 00824 }; 00825 00826 00827 } // namespace message_operations 00828 } // namespace ros 00829 00830 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H 00831