00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "object_manipulation_msgs/ReactiveGraspGoal.h"
00020
00021
00022 #include "object_manipulation_msgs/ReactiveGraspResult.h"
00023
00024 namespace object_manipulation_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct ReactiveGraspRequest_ {
00028 typedef ReactiveGraspRequest_<ContainerAllocator> Type;
00029
00030 ReactiveGraspRequest_()
00031 : goal()
00032 {
00033 }
00034
00035 ReactiveGraspRequest_(const ContainerAllocator& _alloc)
00036 : goal(_alloc)
00037 {
00038 }
00039
00040 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> _goal_type;
00041 ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> goal;
00042
00043
00044 private:
00045 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspRequest"; }
00046 public:
00047 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00048
00049 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00050
00051 private:
00052 static const char* __s_getMD5Sum_() { return "cfc8e5ca2e7695fd97bbd17c05dd9ce7"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00055
00056 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00057
00058 private:
00059 static const char* __s_getServerMD5Sum_() { return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "\n\
00067 ReactiveGraspGoal goal\n\
00068 \n\
00069 \n\
00070 ================================================================================\n\
00071 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00072 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00073 # an action for reactive grasping\n\
00074 # a reactive grasp starts from the current pose of the gripper and ends\n\
00075 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00076 \n\
00077 # the name of the arm being used\n\
00078 string arm_name\n\
00079 \n\
00080 # the object to be grasped\n\
00081 GraspableObject target\n\
00082 \n\
00083 # the desired grasp pose for the hand\n\
00084 geometry_msgs/PoseStamped final_grasp_pose\n\
00085 \n\
00086 # the joint trajectory to use for the approach (if available)\n\
00087 # this trajectory is expected to start at the current pose of the gripper\n\
00088 # and end at the desired grasp pose\n\
00089 trajectory_msgs/JointTrajectory trajectory\n\
00090 \n\
00091 # the name of the support surface in the collision environment, if any\n\
00092 string collision_support_surface_name\n\
00093 \n\
00094 # The internal posture of the hand for the pre-grasp\n\
00095 # only positions are used\n\
00096 sensor_msgs/JointState pre_grasp_posture\n\
00097 \n\
00098 # The internal posture of the hand for the grasp\n\
00099 # positions and efforts are used\n\
00100 sensor_msgs/JointState grasp_posture\n\
00101 \n\
00102 # The max contact force to use while grasping (<=0 to disable)\n\
00103 float32 max_contact_force\n\
00104 \n\
00105 \n\
00106 ================================================================================\n\
00107 MSG: object_manipulation_msgs/GraspableObject\n\
00108 # an object that the object_manipulator can work on\n\
00109 \n\
00110 # a graspable object can be represented in multiple ways. This message\n\
00111 # can contain all of them. Which one is actually used is up to the receiver\n\
00112 # of this message. When adding new representations, one must be careful that\n\
00113 # they have reasonable lightweight defaults indicating that that particular\n\
00114 # representation is not available.\n\
00115 \n\
00116 # the tf frame to be used as a reference frame when combining information from\n\
00117 # the different representations below\n\
00118 string reference_frame_id\n\
00119 \n\
00120 # potential recognition results from a database of models\n\
00121 # all poses are relative to the object reference pose\n\
00122 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00123 \n\
00124 # the point cloud itself\n\
00125 sensor_msgs/PointCloud cluster\n\
00126 \n\
00127 # a region of a PointCloud2 of interest\n\
00128 object_manipulation_msgs/SceneRegion region\n\
00129 \n\
00130 # the name that this object has in the collision environment\n\
00131 string collision_name\n\
00132 ================================================================================\n\
00133 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00134 # Informs that a specific model from the Model Database has been \n\
00135 # identified at a certain location\n\
00136 \n\
00137 # the database id of the model\n\
00138 int32 model_id\n\
00139 \n\
00140 # the pose that it can be found in\n\
00141 geometry_msgs/PoseStamped pose\n\
00142 \n\
00143 # a measure of the confidence level in this detection result\n\
00144 float32 confidence\n\
00145 \n\
00146 # the name of the object detector that generated this detection result\n\
00147 string detector_name\n\
00148 \n\
00149 ================================================================================\n\
00150 MSG: geometry_msgs/PoseStamped\n\
00151 # A Pose with reference coordinate frame and timestamp\n\
00152 Header header\n\
00153 Pose pose\n\
00154 \n\
00155 ================================================================================\n\
00156 MSG: std_msgs/Header\n\
00157 # Standard metadata for higher-level stamped data types.\n\
00158 # This is generally used to communicate timestamped data \n\
00159 # in a particular coordinate frame.\n\
00160 # \n\
00161 # sequence ID: consecutively increasing ID \n\
00162 uint32 seq\n\
00163 #Two-integer timestamp that is expressed as:\n\
00164 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00165 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00166 # time-handling sugar is provided by the client library\n\
00167 time stamp\n\
00168 #Frame this data is associated with\n\
00169 # 0: no frame\n\
00170 # 1: global frame\n\
00171 string frame_id\n\
00172 \n\
00173 ================================================================================\n\
00174 MSG: geometry_msgs/Pose\n\
00175 # A representation of pose in free space, composed of postion and orientation. \n\
00176 Point position\n\
00177 Quaternion orientation\n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: geometry_msgs/Point\n\
00181 # This contains the position of a point in free space\n\
00182 float64 x\n\
00183 float64 y\n\
00184 float64 z\n\
00185 \n\
00186 ================================================================================\n\
00187 MSG: geometry_msgs/Quaternion\n\
00188 # This represents an orientation in free space in quaternion form.\n\
00189 \n\
00190 float64 x\n\
00191 float64 y\n\
00192 float64 z\n\
00193 float64 w\n\
00194 \n\
00195 ================================================================================\n\
00196 MSG: sensor_msgs/PointCloud\n\
00197 # This message holds a collection of 3d points, plus optional additional\n\
00198 # information about each point.\n\
00199 \n\
00200 # Time of sensor data acquisition, coordinate frame ID.\n\
00201 Header header\n\
00202 \n\
00203 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00204 # in the frame given in the header.\n\
00205 geometry_msgs/Point32[] points\n\
00206 \n\
00207 # Each channel should have the same number of elements as points array,\n\
00208 # and the data in each channel should correspond 1:1 with each point.\n\
00209 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00210 ChannelFloat32[] channels\n\
00211 \n\
00212 ================================================================================\n\
00213 MSG: geometry_msgs/Point32\n\
00214 # This contains the position of a point in free space(with 32 bits of precision).\n\
00215 # It is recommeded to use Point wherever possible instead of Point32. \n\
00216 # \n\
00217 # This recommendation is to promote interoperability. \n\
00218 #\n\
00219 # This message is designed to take up less space when sending\n\
00220 # lots of points at once, as in the case of a PointCloud. \n\
00221 \n\
00222 float32 x\n\
00223 float32 y\n\
00224 float32 z\n\
00225 ================================================================================\n\
00226 MSG: sensor_msgs/ChannelFloat32\n\
00227 # This message is used by the PointCloud message to hold optional data\n\
00228 # associated with each point in the cloud. The length of the values\n\
00229 # array should be the same as the length of the points array in the\n\
00230 # PointCloud, and each value should be associated with the corresponding\n\
00231 # point.\n\
00232 \n\
00233 # Channel names in existing practice include:\n\
00234 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00235 # This is opposite to usual conventions but remains for\n\
00236 # historical reasons. The newer PointCloud2 message has no\n\
00237 # such problem.\n\
00238 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00239 # (R,G,B) values packed into the least significant 24 bits,\n\
00240 # in order.\n\
00241 # \"intensity\" - laser or pixel intensity.\n\
00242 # \"distance\"\n\
00243 \n\
00244 # The channel name should give semantics of the channel (e.g.\n\
00245 # \"intensity\" instead of \"value\").\n\
00246 string name\n\
00247 \n\
00248 # The values array should be 1-1 with the elements of the associated\n\
00249 # PointCloud.\n\
00250 float32[] values\n\
00251 \n\
00252 ================================================================================\n\
00253 MSG: object_manipulation_msgs/SceneRegion\n\
00254 # Point cloud\n\
00255 sensor_msgs/PointCloud2 cloud\n\
00256 \n\
00257 # Indices for the region of interest\n\
00258 int32[] mask\n\
00259 \n\
00260 # One of the corresponding 2D images, if applicable\n\
00261 sensor_msgs/Image image\n\
00262 \n\
00263 # The disparity image, if applicable\n\
00264 sensor_msgs/Image disparity_image\n\
00265 \n\
00266 # Camera info for the camera that took the image\n\
00267 sensor_msgs/CameraInfo cam_info\n\
00268 \n\
00269 # a 3D region of interest for grasp planning\n\
00270 geometry_msgs/PoseStamped roi_box_pose\n\
00271 geometry_msgs/Vector3 roi_box_dims\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/PointCloud2\n\
00275 # This message holds a collection of N-dimensional points, which may\n\
00276 # contain additional information such as normals, intensity, etc. The\n\
00277 # point data is stored as a binary blob, its layout described by the\n\
00278 # contents of the \"fields\" array.\n\
00279 \n\
00280 # The point cloud data may be organized 2d (image-like) or 1d\n\
00281 # (unordered). Point clouds organized as 2d images may be produced by\n\
00282 # camera depth sensors such as stereo or time-of-flight.\n\
00283 \n\
00284 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00285 # points).\n\
00286 Header header\n\
00287 \n\
00288 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00289 # 1 and width is the length of the point cloud.\n\
00290 uint32 height\n\
00291 uint32 width\n\
00292 \n\
00293 # Describes the channels and their layout in the binary data blob.\n\
00294 PointField[] fields\n\
00295 \n\
00296 bool is_bigendian # Is this data bigendian?\n\
00297 uint32 point_step # Length of a point in bytes\n\
00298 uint32 row_step # Length of a row in bytes\n\
00299 uint8[] data # Actual point data, size is (row_step*height)\n\
00300 \n\
00301 bool is_dense # True if there are no invalid points\n\
00302 \n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/PointField\n\
00305 # This message holds the description of one point entry in the\n\
00306 # PointCloud2 message format.\n\
00307 uint8 INT8 = 1\n\
00308 uint8 UINT8 = 2\n\
00309 uint8 INT16 = 3\n\
00310 uint8 UINT16 = 4\n\
00311 uint8 INT32 = 5\n\
00312 uint8 UINT32 = 6\n\
00313 uint8 FLOAT32 = 7\n\
00314 uint8 FLOAT64 = 8\n\
00315 \n\
00316 string name # Name of field\n\
00317 uint32 offset # Offset from start of point struct\n\
00318 uint8 datatype # Datatype enumeration, see above\n\
00319 uint32 count # How many elements in the field\n\
00320 \n\
00321 ================================================================================\n\
00322 MSG: sensor_msgs/Image\n\
00323 # This message contains an uncompressed image\n\
00324 # (0, 0) is at top-left corner of image\n\
00325 #\n\
00326 \n\
00327 Header header # Header timestamp should be acquisition time of image\n\
00328 # Header frame_id should be optical frame of camera\n\
00329 # origin of frame should be optical center of cameara\n\
00330 # +x should point to the right in the image\n\
00331 # +y should point down in the image\n\
00332 # +z should point into to plane of the image\n\
00333 # If the frame_id here and the frame_id of the CameraInfo\n\
00334 # message associated with the image conflict\n\
00335 # the behavior is undefined\n\
00336 \n\
00337 uint32 height # image height, that is, number of rows\n\
00338 uint32 width # image width, that is, number of columns\n\
00339 \n\
00340 # The legal values for encoding are in file src/image_encodings.cpp\n\
00341 # If you want to standardize a new string format, join\n\
00342 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00343 \n\
00344 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00345 # taken from the list of strings in src/image_encodings.cpp\n\
00346 \n\
00347 uint8 is_bigendian # is this data bigendian?\n\
00348 uint32 step # Full row length in bytes\n\
00349 uint8[] data # actual matrix data, size is (step * rows)\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: sensor_msgs/CameraInfo\n\
00353 # This message defines meta information for a camera. It should be in a\n\
00354 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00355 # image topics named:\n\
00356 #\n\
00357 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00358 # image - monochrome, distorted\n\
00359 # image_color - color, distorted\n\
00360 # image_rect - monochrome, rectified\n\
00361 # image_rect_color - color, rectified\n\
00362 #\n\
00363 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00364 # for producing the four processed image topics from image_raw and\n\
00365 # camera_info. The meaning of the camera parameters are described in\n\
00366 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00367 #\n\
00368 # The image_geometry package provides a user-friendly interface to\n\
00369 # common operations using this meta information. If you want to, e.g.,\n\
00370 # project a 3d point into image coordinates, we strongly recommend\n\
00371 # using image_geometry.\n\
00372 #\n\
00373 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00374 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00375 # indicates an uncalibrated camera.\n\
00376 \n\
00377 #######################################################################\n\
00378 # Image acquisition info #\n\
00379 #######################################################################\n\
00380 \n\
00381 # Time of image acquisition, camera coordinate frame ID\n\
00382 Header header # Header timestamp should be acquisition time of image\n\
00383 # Header frame_id should be optical frame of camera\n\
00384 # origin of frame should be optical center of camera\n\
00385 # +x should point to the right in the image\n\
00386 # +y should point down in the image\n\
00387 # +z should point into the plane of the image\n\
00388 \n\
00389 \n\
00390 #######################################################################\n\
00391 # Calibration Parameters #\n\
00392 #######################################################################\n\
00393 # These are fixed during camera calibration. Their values will be the #\n\
00394 # same in all messages until the camera is recalibrated. Note that #\n\
00395 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00396 # #\n\
00397 # The internal parameters can be used to warp a raw (distorted) image #\n\
00398 # to: #\n\
00399 # 1. An undistorted image (requires D and K) #\n\
00400 # 2. A rectified image (requires D, K, R) #\n\
00401 # The projection matrix P projects 3D points into the rectified image.#\n\
00402 #######################################################################\n\
00403 \n\
00404 # The image dimensions with which the camera was calibrated. Normally\n\
00405 # this will be the full camera resolution in pixels.\n\
00406 uint32 height\n\
00407 uint32 width\n\
00408 \n\
00409 # The distortion model used. Supported models are listed in\n\
00410 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00411 # simple model of radial and tangential distortion - is sufficent.\n\
00412 string distortion_model\n\
00413 \n\
00414 # The distortion parameters, size depending on the distortion model.\n\
00415 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00416 float64[] D\n\
00417 \n\
00418 # Intrinsic camera matrix for the raw (distorted) images.\n\
00419 # [fx 0 cx]\n\
00420 # K = [ 0 fy cy]\n\
00421 # [ 0 0 1]\n\
00422 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00423 # coordinates using the focal lengths (fx, fy) and principal point\n\
00424 # (cx, cy).\n\
00425 float64[9] K # 3x3 row-major matrix\n\
00426 \n\
00427 # Rectification matrix (stereo cameras only)\n\
00428 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00429 # stereo image plane so that epipolar lines in both stereo images are\n\
00430 # parallel.\n\
00431 float64[9] R # 3x3 row-major matrix\n\
00432 \n\
00433 # Projection/camera matrix\n\
00434 # [fx' 0 cx' Tx]\n\
00435 # P = [ 0 fy' cy' Ty]\n\
00436 # [ 0 0 1 0]\n\
00437 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00438 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00439 # is the normal camera intrinsic matrix for the rectified image.\n\
00440 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00441 # coordinates using the focal lengths (fx', fy') and principal point\n\
00442 # (cx', cy') - these may differ from the values in K.\n\
00443 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00444 # also have R = the identity and P[1:3,1:3] = K.\n\
00445 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00446 # position of the optical center of the second camera in the first\n\
00447 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00448 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00449 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00450 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00451 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00452 # the rectified image is given by:\n\
00453 # [u v w]' = P * [X Y Z 1]'\n\
00454 # x = u / w\n\
00455 # y = v / w\n\
00456 # This holds for both images of a stereo pair.\n\
00457 float64[12] P # 3x4 row-major matrix\n\
00458 \n\
00459 \n\
00460 #######################################################################\n\
00461 # Operational Parameters #\n\
00462 #######################################################################\n\
00463 # These define the image region actually captured by the camera #\n\
00464 # driver. Although they affect the geometry of the output image, they #\n\
00465 # may be changed freely without recalibrating the camera. #\n\
00466 #######################################################################\n\
00467 \n\
00468 # Binning refers here to any camera setting which combines rectangular\n\
00469 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00470 # resolution of the output image to\n\
00471 # (width / binning_x) x (height / binning_y).\n\
00472 # The default values binning_x = binning_y = 0 is considered the same\n\
00473 # as binning_x = binning_y = 1 (no subsampling).\n\
00474 uint32 binning_x\n\
00475 uint32 binning_y\n\
00476 \n\
00477 # Region of interest (subwindow of full camera resolution), given in\n\
00478 # full resolution (unbinned) image coordinates. A particular ROI\n\
00479 # always denotes the same window of pixels on the camera sensor,\n\
00480 # regardless of binning settings.\n\
00481 # The default setting of roi (all values 0) is considered the same as\n\
00482 # full resolution (roi.width = width, roi.height = height).\n\
00483 RegionOfInterest roi\n\
00484 \n\
00485 ================================================================================\n\
00486 MSG: sensor_msgs/RegionOfInterest\n\
00487 # This message is used to specify a region of interest within an image.\n\
00488 #\n\
00489 # When used to specify the ROI setting of the camera when the image was\n\
00490 # taken, the height and width fields should either match the height and\n\
00491 # width fields for the associated image; or height = width = 0\n\
00492 # indicates that the full resolution image was captured.\n\
00493 \n\
00494 uint32 x_offset # Leftmost pixel of the ROI\n\
00495 # (0 if the ROI includes the left edge of the image)\n\
00496 uint32 y_offset # Topmost pixel of the ROI\n\
00497 # (0 if the ROI includes the top edge of the image)\n\
00498 uint32 height # Height of ROI\n\
00499 uint32 width # Width of ROI\n\
00500 \n\
00501 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00502 # ROI in this message. Typically this should be False if the full image\n\
00503 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00504 # used).\n\
00505 bool do_rectify\n\
00506 \n\
00507 ================================================================================\n\
00508 MSG: geometry_msgs/Vector3\n\
00509 # This represents a vector in free space. \n\
00510 \n\
00511 float64 x\n\
00512 float64 y\n\
00513 float64 z\n\
00514 ================================================================================\n\
00515 MSG: trajectory_msgs/JointTrajectory\n\
00516 Header header\n\
00517 string[] joint_names\n\
00518 JointTrajectoryPoint[] points\n\
00519 ================================================================================\n\
00520 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00521 float64[] positions\n\
00522 float64[] velocities\n\
00523 float64[] accelerations\n\
00524 duration time_from_start\n\
00525 ================================================================================\n\
00526 MSG: sensor_msgs/JointState\n\
00527 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00528 #\n\
00529 # The state of each joint (revolute or prismatic) is defined by:\n\
00530 # * the position of the joint (rad or m),\n\
00531 # * the velocity of the joint (rad/s or m/s) and \n\
00532 # * the effort that is applied in the joint (Nm or N).\n\
00533 #\n\
00534 # Each joint is uniquely identified by its name\n\
00535 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00536 # in one message have to be recorded at the same time.\n\
00537 #\n\
00538 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00539 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00540 # effort associated with them, you can leave the effort array empty. \n\
00541 #\n\
00542 # All arrays in this message should have the same size, or be empty.\n\
00543 # This is the only way to uniquely associate the joint name with the correct\n\
00544 # states.\n\
00545 \n\
00546 \n\
00547 Header header\n\
00548 \n\
00549 string[] name\n\
00550 float64[] position\n\
00551 float64[] velocity\n\
00552 float64[] effort\n\
00553 \n\
00554 "; }
00555 public:
00556 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00557
00558 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00559
00560 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00561 {
00562 ros::serialization::OStream stream(write_ptr, 1000000000);
00563 ros::serialization::serialize(stream, goal);
00564 return stream.getData();
00565 }
00566
00567 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00568 {
00569 ros::serialization::IStream stream(read_ptr, 1000000000);
00570 ros::serialization::deserialize(stream, goal);
00571 return stream.getData();
00572 }
00573
00574 ROS_DEPRECATED virtual uint32_t serializationLength() const
00575 {
00576 uint32_t size = 0;
00577 size += ros::serialization::serializationLength(goal);
00578 return size;
00579 }
00580
00581 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > Ptr;
00582 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> const> ConstPtr;
00583 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00584 };
00585 typedef ::object_manipulation_msgs::ReactiveGraspRequest_<std::allocator<void> > ReactiveGraspRequest;
00586
00587 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest> ReactiveGraspRequestPtr;
00588 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest const> ReactiveGraspRequestConstPtr;
00589
00590
00591 template <class ContainerAllocator>
00592 struct ReactiveGraspResponse_ {
00593 typedef ReactiveGraspResponse_<ContainerAllocator> Type;
00594
00595 ReactiveGraspResponse_()
00596 : result()
00597 {
00598 }
00599
00600 ReactiveGraspResponse_(const ContainerAllocator& _alloc)
00601 : result(_alloc)
00602 {
00603 }
00604
00605 typedef ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator> _result_type;
00606 ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator> result;
00607
00608
00609 private:
00610 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspResponse"; }
00611 public:
00612 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00613
00614 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00615
00616 private:
00617 static const char* __s_getMD5Sum_() { return "eb66ddf1bad009330070ddb3ebea8f76"; }
00618 public:
00619 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00620
00621 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00622
00623 private:
00624 static const char* __s_getServerMD5Sum_() { return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; }
00625 public:
00626 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00627
00628 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00629
00630 private:
00631 static const char* __s_getMessageDefinition_() { return "\n\
00632 \n\
00633 ReactiveGraspResult result\n\
00634 \n\
00635 ================================================================================\n\
00636 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
00637 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00638 \n\
00639 # the result of the reactive grasp attempt\n\
00640 \n\
00641 ManipulationResult manipulation_result\n\
00642 \n\
00643 \n\
00644 ================================================================================\n\
00645 MSG: object_manipulation_msgs/ManipulationResult\n\
00646 # Result codes for manipulation tasks\n\
00647 \n\
00648 # task completed as expected\n\
00649 # generally means you can proceed as planned\n\
00650 int32 SUCCESS = 1\n\
00651 \n\
00652 # task not possible (e.g. out of reach or obstacles in the way)\n\
00653 # generally means that the world was not disturbed, so you can try another task\n\
00654 int32 UNFEASIBLE = -1\n\
00655 \n\
00656 # task was thought possible, but failed due to unexpected events during execution\n\
00657 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00658 # your sensed world model before proceeding to another task\n\
00659 int32 FAILED = -2\n\
00660 \n\
00661 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00662 # generally requires human attention\n\
00663 int32 ERROR = -3\n\
00664 \n\
00665 # means that at some point during execution we ended up in a state that the collision-aware\n\
00666 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00667 # probably need a new collision map to move the arm out of the stuck position\n\
00668 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00669 \n\
00670 # specific to grasp actions\n\
00671 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00672 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00673 int32 LIFT_FAILED = -5\n\
00674 \n\
00675 # specific to place actions\n\
00676 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00677 # it is likely that the collision environment will see collisions between the hand and the object\n\
00678 int32 RETREAT_FAILED = -6\n\
00679 \n\
00680 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00681 int32 CANCELLED = -7\n\
00682 \n\
00683 # the actual value of this error code\n\
00684 int32 value\n\
00685 \n\
00686 "; }
00687 public:
00688 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00689
00690 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00691
00692 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00693 {
00694 ros::serialization::OStream stream(write_ptr, 1000000000);
00695 ros::serialization::serialize(stream, result);
00696 return stream.getData();
00697 }
00698
00699 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00700 {
00701 ros::serialization::IStream stream(read_ptr, 1000000000);
00702 ros::serialization::deserialize(stream, result);
00703 return stream.getData();
00704 }
00705
00706 ROS_DEPRECATED virtual uint32_t serializationLength() const
00707 {
00708 uint32_t size = 0;
00709 size += ros::serialization::serializationLength(result);
00710 return size;
00711 }
00712
00713 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > Ptr;
00714 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> const> ConstPtr;
00715 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00716 };
00717 typedef ::object_manipulation_msgs::ReactiveGraspResponse_<std::allocator<void> > ReactiveGraspResponse;
00718
00719 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse> ReactiveGraspResponsePtr;
00720 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse const> ReactiveGraspResponseConstPtr;
00721
00722 struct ReactiveGrasp
00723 {
00724
00725 typedef ReactiveGraspRequest Request;
00726 typedef ReactiveGraspResponse Response;
00727 Request request;
00728 Response response;
00729
00730 typedef Request RequestType;
00731 typedef Response ResponseType;
00732 };
00733 }
00734
00735 namespace ros
00736 {
00737 namespace message_traits
00738 {
00739 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > : public TrueType {};
00740 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> const> : public TrueType {};
00741 template<class ContainerAllocator>
00742 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00743 static const char* value()
00744 {
00745 return "cfc8e5ca2e7695fd97bbd17c05dd9ce7";
00746 }
00747
00748 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
00749 static const uint64_t static_value1 = 0xcfc8e5ca2e7695fdULL;
00750 static const uint64_t static_value2 = 0x97bbd17c05dd9ce7ULL;
00751 };
00752
00753 template<class ContainerAllocator>
00754 struct DataType< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00755 static const char* value()
00756 {
00757 return "object_manipulation_msgs/ReactiveGraspRequest";
00758 }
00759
00760 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
00761 };
00762
00763 template<class ContainerAllocator>
00764 struct Definition< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00765 static const char* value()
00766 {
00767 return "\n\
00768 ReactiveGraspGoal goal\n\
00769 \n\
00770 \n\
00771 ================================================================================\n\
00772 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00773 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00774 # an action for reactive grasping\n\
00775 # a reactive grasp starts from the current pose of the gripper and ends\n\
00776 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00777 \n\
00778 # the name of the arm being used\n\
00779 string arm_name\n\
00780 \n\
00781 # the object to be grasped\n\
00782 GraspableObject target\n\
00783 \n\
00784 # the desired grasp pose for the hand\n\
00785 geometry_msgs/PoseStamped final_grasp_pose\n\
00786 \n\
00787 # the joint trajectory to use for the approach (if available)\n\
00788 # this trajectory is expected to start at the current pose of the gripper\n\
00789 # and end at the desired grasp pose\n\
00790 trajectory_msgs/JointTrajectory trajectory\n\
00791 \n\
00792 # the name of the support surface in the collision environment, if any\n\
00793 string collision_support_surface_name\n\
00794 \n\
00795 # The internal posture of the hand for the pre-grasp\n\
00796 # only positions are used\n\
00797 sensor_msgs/JointState pre_grasp_posture\n\
00798 \n\
00799 # The internal posture of the hand for the grasp\n\
00800 # positions and efforts are used\n\
00801 sensor_msgs/JointState grasp_posture\n\
00802 \n\
00803 # The max contact force to use while grasping (<=0 to disable)\n\
00804 float32 max_contact_force\n\
00805 \n\
00806 \n\
00807 ================================================================================\n\
00808 MSG: object_manipulation_msgs/GraspableObject\n\
00809 # an object that the object_manipulator can work on\n\
00810 \n\
00811 # a graspable object can be represented in multiple ways. This message\n\
00812 # can contain all of them. Which one is actually used is up to the receiver\n\
00813 # of this message. When adding new representations, one must be careful that\n\
00814 # they have reasonable lightweight defaults indicating that that particular\n\
00815 # representation is not available.\n\
00816 \n\
00817 # the tf frame to be used as a reference frame when combining information from\n\
00818 # the different representations below\n\
00819 string reference_frame_id\n\
00820 \n\
00821 # potential recognition results from a database of models\n\
00822 # all poses are relative to the object reference pose\n\
00823 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00824 \n\
00825 # the point cloud itself\n\
00826 sensor_msgs/PointCloud cluster\n\
00827 \n\
00828 # a region of a PointCloud2 of interest\n\
00829 object_manipulation_msgs/SceneRegion region\n\
00830 \n\
00831 # the name that this object has in the collision environment\n\
00832 string collision_name\n\
00833 ================================================================================\n\
00834 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00835 # Informs that a specific model from the Model Database has been \n\
00836 # identified at a certain location\n\
00837 \n\
00838 # the database id of the model\n\
00839 int32 model_id\n\
00840 \n\
00841 # the pose that it can be found in\n\
00842 geometry_msgs/PoseStamped pose\n\
00843 \n\
00844 # a measure of the confidence level in this detection result\n\
00845 float32 confidence\n\
00846 \n\
00847 # the name of the object detector that generated this detection result\n\
00848 string detector_name\n\
00849 \n\
00850 ================================================================================\n\
00851 MSG: geometry_msgs/PoseStamped\n\
00852 # A Pose with reference coordinate frame and timestamp\n\
00853 Header header\n\
00854 Pose pose\n\
00855 \n\
00856 ================================================================================\n\
00857 MSG: std_msgs/Header\n\
00858 # Standard metadata for higher-level stamped data types.\n\
00859 # This is generally used to communicate timestamped data \n\
00860 # in a particular coordinate frame.\n\
00861 # \n\
00862 # sequence ID: consecutively increasing ID \n\
00863 uint32 seq\n\
00864 #Two-integer timestamp that is expressed as:\n\
00865 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00866 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00867 # time-handling sugar is provided by the client library\n\
00868 time stamp\n\
00869 #Frame this data is associated with\n\
00870 # 0: no frame\n\
00871 # 1: global frame\n\
00872 string frame_id\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: geometry_msgs/Pose\n\
00876 # A representation of pose in free space, composed of postion and orientation. \n\
00877 Point position\n\
00878 Quaternion orientation\n\
00879 \n\
00880 ================================================================================\n\
00881 MSG: geometry_msgs/Point\n\
00882 # This contains the position of a point in free space\n\
00883 float64 x\n\
00884 float64 y\n\
00885 float64 z\n\
00886 \n\
00887 ================================================================================\n\
00888 MSG: geometry_msgs/Quaternion\n\
00889 # This represents an orientation in free space in quaternion form.\n\
00890 \n\
00891 float64 x\n\
00892 float64 y\n\
00893 float64 z\n\
00894 float64 w\n\
00895 \n\
00896 ================================================================================\n\
00897 MSG: sensor_msgs/PointCloud\n\
00898 # This message holds a collection of 3d points, plus optional additional\n\
00899 # information about each point.\n\
00900 \n\
00901 # Time of sensor data acquisition, coordinate frame ID.\n\
00902 Header header\n\
00903 \n\
00904 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00905 # in the frame given in the header.\n\
00906 geometry_msgs/Point32[] points\n\
00907 \n\
00908 # Each channel should have the same number of elements as points array,\n\
00909 # and the data in each channel should correspond 1:1 with each point.\n\
00910 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00911 ChannelFloat32[] channels\n\
00912 \n\
00913 ================================================================================\n\
00914 MSG: geometry_msgs/Point32\n\
00915 # This contains the position of a point in free space(with 32 bits of precision).\n\
00916 # It is recommeded to use Point wherever possible instead of Point32. \n\
00917 # \n\
00918 # This recommendation is to promote interoperability. \n\
00919 #\n\
00920 # This message is designed to take up less space when sending\n\
00921 # lots of points at once, as in the case of a PointCloud. \n\
00922 \n\
00923 float32 x\n\
00924 float32 y\n\
00925 float32 z\n\
00926 ================================================================================\n\
00927 MSG: sensor_msgs/ChannelFloat32\n\
00928 # This message is used by the PointCloud message to hold optional data\n\
00929 # associated with each point in the cloud. The length of the values\n\
00930 # array should be the same as the length of the points array in the\n\
00931 # PointCloud, and each value should be associated with the corresponding\n\
00932 # point.\n\
00933 \n\
00934 # Channel names in existing practice include:\n\
00935 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00936 # This is opposite to usual conventions but remains for\n\
00937 # historical reasons. The newer PointCloud2 message has no\n\
00938 # such problem.\n\
00939 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00940 # (R,G,B) values packed into the least significant 24 bits,\n\
00941 # in order.\n\
00942 # \"intensity\" - laser or pixel intensity.\n\
00943 # \"distance\"\n\
00944 \n\
00945 # The channel name should give semantics of the channel (e.g.\n\
00946 # \"intensity\" instead of \"value\").\n\
00947 string name\n\
00948 \n\
00949 # The values array should be 1-1 with the elements of the associated\n\
00950 # PointCloud.\n\
00951 float32[] values\n\
00952 \n\
00953 ================================================================================\n\
00954 MSG: object_manipulation_msgs/SceneRegion\n\
00955 # Point cloud\n\
00956 sensor_msgs/PointCloud2 cloud\n\
00957 \n\
00958 # Indices for the region of interest\n\
00959 int32[] mask\n\
00960 \n\
00961 # One of the corresponding 2D images, if applicable\n\
00962 sensor_msgs/Image image\n\
00963 \n\
00964 # The disparity image, if applicable\n\
00965 sensor_msgs/Image disparity_image\n\
00966 \n\
00967 # Camera info for the camera that took the image\n\
00968 sensor_msgs/CameraInfo cam_info\n\
00969 \n\
00970 # a 3D region of interest for grasp planning\n\
00971 geometry_msgs/PoseStamped roi_box_pose\n\
00972 geometry_msgs/Vector3 roi_box_dims\n\
00973 \n\
00974 ================================================================================\n\
00975 MSG: sensor_msgs/PointCloud2\n\
00976 # This message holds a collection of N-dimensional points, which may\n\
00977 # contain additional information such as normals, intensity, etc. The\n\
00978 # point data is stored as a binary blob, its layout described by the\n\
00979 # contents of the \"fields\" array.\n\
00980 \n\
00981 # The point cloud data may be organized 2d (image-like) or 1d\n\
00982 # (unordered). Point clouds organized as 2d images may be produced by\n\
00983 # camera depth sensors such as stereo or time-of-flight.\n\
00984 \n\
00985 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00986 # points).\n\
00987 Header header\n\
00988 \n\
00989 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00990 # 1 and width is the length of the point cloud.\n\
00991 uint32 height\n\
00992 uint32 width\n\
00993 \n\
00994 # Describes the channels and their layout in the binary data blob.\n\
00995 PointField[] fields\n\
00996 \n\
00997 bool is_bigendian # Is this data bigendian?\n\
00998 uint32 point_step # Length of a point in bytes\n\
00999 uint32 row_step # Length of a row in bytes\n\
01000 uint8[] data # Actual point data, size is (row_step*height)\n\
01001 \n\
01002 bool is_dense # True if there are no invalid points\n\
01003 \n\
01004 ================================================================================\n\
01005 MSG: sensor_msgs/PointField\n\
01006 # This message holds the description of one point entry in the\n\
01007 # PointCloud2 message format.\n\
01008 uint8 INT8 = 1\n\
01009 uint8 UINT8 = 2\n\
01010 uint8 INT16 = 3\n\
01011 uint8 UINT16 = 4\n\
01012 uint8 INT32 = 5\n\
01013 uint8 UINT32 = 6\n\
01014 uint8 FLOAT32 = 7\n\
01015 uint8 FLOAT64 = 8\n\
01016 \n\
01017 string name # Name of field\n\
01018 uint32 offset # Offset from start of point struct\n\
01019 uint8 datatype # Datatype enumeration, see above\n\
01020 uint32 count # How many elements in the field\n\
01021 \n\
01022 ================================================================================\n\
01023 MSG: sensor_msgs/Image\n\
01024 # This message contains an uncompressed image\n\
01025 # (0, 0) is at top-left corner of image\n\
01026 #\n\
01027 \n\
01028 Header header # Header timestamp should be acquisition time of image\n\
01029 # Header frame_id should be optical frame of camera\n\
01030 # origin of frame should be optical center of cameara\n\
01031 # +x should point to the right in the image\n\
01032 # +y should point down in the image\n\
01033 # +z should point into to plane of the image\n\
01034 # If the frame_id here and the frame_id of the CameraInfo\n\
01035 # message associated with the image conflict\n\
01036 # the behavior is undefined\n\
01037 \n\
01038 uint32 height # image height, that is, number of rows\n\
01039 uint32 width # image width, that is, number of columns\n\
01040 \n\
01041 # The legal values for encoding are in file src/image_encodings.cpp\n\
01042 # If you want to standardize a new string format, join\n\
01043 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01044 \n\
01045 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01046 # taken from the list of strings in src/image_encodings.cpp\n\
01047 \n\
01048 uint8 is_bigendian # is this data bigendian?\n\
01049 uint32 step # Full row length in bytes\n\
01050 uint8[] data # actual matrix data, size is (step * rows)\n\
01051 \n\
01052 ================================================================================\n\
01053 MSG: sensor_msgs/CameraInfo\n\
01054 # This message defines meta information for a camera. It should be in a\n\
01055 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01056 # image topics named:\n\
01057 #\n\
01058 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01059 # image - monochrome, distorted\n\
01060 # image_color - color, distorted\n\
01061 # image_rect - monochrome, rectified\n\
01062 # image_rect_color - color, rectified\n\
01063 #\n\
01064 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01065 # for producing the four processed image topics from image_raw and\n\
01066 # camera_info. The meaning of the camera parameters are described in\n\
01067 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01068 #\n\
01069 # The image_geometry package provides a user-friendly interface to\n\
01070 # common operations using this meta information. If you want to, e.g.,\n\
01071 # project a 3d point into image coordinates, we strongly recommend\n\
01072 # using image_geometry.\n\
01073 #\n\
01074 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01075 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01076 # indicates an uncalibrated camera.\n\
01077 \n\
01078 #######################################################################\n\
01079 # Image acquisition info #\n\
01080 #######################################################################\n\
01081 \n\
01082 # Time of image acquisition, camera coordinate frame ID\n\
01083 Header header # Header timestamp should be acquisition time of image\n\
01084 # Header frame_id should be optical frame of camera\n\
01085 # origin of frame should be optical center of camera\n\
01086 # +x should point to the right in the image\n\
01087 # +y should point down in the image\n\
01088 # +z should point into the plane of the image\n\
01089 \n\
01090 \n\
01091 #######################################################################\n\
01092 # Calibration Parameters #\n\
01093 #######################################################################\n\
01094 # These are fixed during camera calibration. Their values will be the #\n\
01095 # same in all messages until the camera is recalibrated. Note that #\n\
01096 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01097 # #\n\
01098 # The internal parameters can be used to warp a raw (distorted) image #\n\
01099 # to: #\n\
01100 # 1. An undistorted image (requires D and K) #\n\
01101 # 2. A rectified image (requires D, K, R) #\n\
01102 # The projection matrix P projects 3D points into the rectified image.#\n\
01103 #######################################################################\n\
01104 \n\
01105 # The image dimensions with which the camera was calibrated. Normally\n\
01106 # this will be the full camera resolution in pixels.\n\
01107 uint32 height\n\
01108 uint32 width\n\
01109 \n\
01110 # The distortion model used. Supported models are listed in\n\
01111 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01112 # simple model of radial and tangential distortion - is sufficent.\n\
01113 string distortion_model\n\
01114 \n\
01115 # The distortion parameters, size depending on the distortion model.\n\
01116 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01117 float64[] D\n\
01118 \n\
01119 # Intrinsic camera matrix for the raw (distorted) images.\n\
01120 # [fx 0 cx]\n\
01121 # K = [ 0 fy cy]\n\
01122 # [ 0 0 1]\n\
01123 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01124 # coordinates using the focal lengths (fx, fy) and principal point\n\
01125 # (cx, cy).\n\
01126 float64[9] K # 3x3 row-major matrix\n\
01127 \n\
01128 # Rectification matrix (stereo cameras only)\n\
01129 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01130 # stereo image plane so that epipolar lines in both stereo images are\n\
01131 # parallel.\n\
01132 float64[9] R # 3x3 row-major matrix\n\
01133 \n\
01134 # Projection/camera matrix\n\
01135 # [fx' 0 cx' Tx]\n\
01136 # P = [ 0 fy' cy' Ty]\n\
01137 # [ 0 0 1 0]\n\
01138 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01139 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01140 # is the normal camera intrinsic matrix for the rectified image.\n\
01141 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01142 # coordinates using the focal lengths (fx', fy') and principal point\n\
01143 # (cx', cy') - these may differ from the values in K.\n\
01144 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01145 # also have R = the identity and P[1:3,1:3] = K.\n\
01146 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01147 # position of the optical center of the second camera in the first\n\
01148 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01149 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01150 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01151 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01152 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01153 # the rectified image is given by:\n\
01154 # [u v w]' = P * [X Y Z 1]'\n\
01155 # x = u / w\n\
01156 # y = v / w\n\
01157 # This holds for both images of a stereo pair.\n\
01158 float64[12] P # 3x4 row-major matrix\n\
01159 \n\
01160 \n\
01161 #######################################################################\n\
01162 # Operational Parameters #\n\
01163 #######################################################################\n\
01164 # These define the image region actually captured by the camera #\n\
01165 # driver. Although they affect the geometry of the output image, they #\n\
01166 # may be changed freely without recalibrating the camera. #\n\
01167 #######################################################################\n\
01168 \n\
01169 # Binning refers here to any camera setting which combines rectangular\n\
01170 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01171 # resolution of the output image to\n\
01172 # (width / binning_x) x (height / binning_y).\n\
01173 # The default values binning_x = binning_y = 0 is considered the same\n\
01174 # as binning_x = binning_y = 1 (no subsampling).\n\
01175 uint32 binning_x\n\
01176 uint32 binning_y\n\
01177 \n\
01178 # Region of interest (subwindow of full camera resolution), given in\n\
01179 # full resolution (unbinned) image coordinates. A particular ROI\n\
01180 # always denotes the same window of pixels on the camera sensor,\n\
01181 # regardless of binning settings.\n\
01182 # The default setting of roi (all values 0) is considered the same as\n\
01183 # full resolution (roi.width = width, roi.height = height).\n\
01184 RegionOfInterest roi\n\
01185 \n\
01186 ================================================================================\n\
01187 MSG: sensor_msgs/RegionOfInterest\n\
01188 # This message is used to specify a region of interest within an image.\n\
01189 #\n\
01190 # When used to specify the ROI setting of the camera when the image was\n\
01191 # taken, the height and width fields should either match the height and\n\
01192 # width fields for the associated image; or height = width = 0\n\
01193 # indicates that the full resolution image was captured.\n\
01194 \n\
01195 uint32 x_offset # Leftmost pixel of the ROI\n\
01196 # (0 if the ROI includes the left edge of the image)\n\
01197 uint32 y_offset # Topmost pixel of the ROI\n\
01198 # (0 if the ROI includes the top edge of the image)\n\
01199 uint32 height # Height of ROI\n\
01200 uint32 width # Width of ROI\n\
01201 \n\
01202 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01203 # ROI in this message. Typically this should be False if the full image\n\
01204 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01205 # used).\n\
01206 bool do_rectify\n\
01207 \n\
01208 ================================================================================\n\
01209 MSG: geometry_msgs/Vector3\n\
01210 # This represents a vector in free space. \n\
01211 \n\
01212 float64 x\n\
01213 float64 y\n\
01214 float64 z\n\
01215 ================================================================================\n\
01216 MSG: trajectory_msgs/JointTrajectory\n\
01217 Header header\n\
01218 string[] joint_names\n\
01219 JointTrajectoryPoint[] points\n\
01220 ================================================================================\n\
01221 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01222 float64[] positions\n\
01223 float64[] velocities\n\
01224 float64[] accelerations\n\
01225 duration time_from_start\n\
01226 ================================================================================\n\
01227 MSG: sensor_msgs/JointState\n\
01228 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01229 #\n\
01230 # The state of each joint (revolute or prismatic) is defined by:\n\
01231 # * the position of the joint (rad or m),\n\
01232 # * the velocity of the joint (rad/s or m/s) and \n\
01233 # * the effort that is applied in the joint (Nm or N).\n\
01234 #\n\
01235 # Each joint is uniquely identified by its name\n\
01236 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01237 # in one message have to be recorded at the same time.\n\
01238 #\n\
01239 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01240 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01241 # effort associated with them, you can leave the effort array empty. \n\
01242 #\n\
01243 # All arrays in this message should have the same size, or be empty.\n\
01244 # This is the only way to uniquely associate the joint name with the correct\n\
01245 # states.\n\
01246 \n\
01247 \n\
01248 Header header\n\
01249 \n\
01250 string[] name\n\
01251 float64[] position\n\
01252 float64[] velocity\n\
01253 float64[] effort\n\
01254 \n\
01255 ";
01256 }
01257
01258 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
01259 };
01260
01261 }
01262 }
01263
01264
01265 namespace ros
01266 {
01267 namespace message_traits
01268 {
01269 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {};
01270 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> const> : public TrueType {};
01271 template<class ContainerAllocator>
01272 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01273 static const char* value()
01274 {
01275 return "eb66ddf1bad009330070ddb3ebea8f76";
01276 }
01277
01278 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01279 static const uint64_t static_value1 = 0xeb66ddf1bad00933ULL;
01280 static const uint64_t static_value2 = 0x0070ddb3ebea8f76ULL;
01281 };
01282
01283 template<class ContainerAllocator>
01284 struct DataType< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01285 static const char* value()
01286 {
01287 return "object_manipulation_msgs/ReactiveGraspResponse";
01288 }
01289
01290 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01291 };
01292
01293 template<class ContainerAllocator>
01294 struct Definition< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01295 static const char* value()
01296 {
01297 return "\n\
01298 \n\
01299 ReactiveGraspResult result\n\
01300 \n\
01301 ================================================================================\n\
01302 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
01303 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01304 \n\
01305 # the result of the reactive grasp attempt\n\
01306 \n\
01307 ManipulationResult manipulation_result\n\
01308 \n\
01309 \n\
01310 ================================================================================\n\
01311 MSG: object_manipulation_msgs/ManipulationResult\n\
01312 # Result codes for manipulation tasks\n\
01313 \n\
01314 # task completed as expected\n\
01315 # generally means you can proceed as planned\n\
01316 int32 SUCCESS = 1\n\
01317 \n\
01318 # task not possible (e.g. out of reach or obstacles in the way)\n\
01319 # generally means that the world was not disturbed, so you can try another task\n\
01320 int32 UNFEASIBLE = -1\n\
01321 \n\
01322 # task was thought possible, but failed due to unexpected events during execution\n\
01323 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01324 # your sensed world model before proceeding to another task\n\
01325 int32 FAILED = -2\n\
01326 \n\
01327 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01328 # generally requires human attention\n\
01329 int32 ERROR = -3\n\
01330 \n\
01331 # means that at some point during execution we ended up in a state that the collision-aware\n\
01332 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01333 # probably need a new collision map to move the arm out of the stuck position\n\
01334 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01335 \n\
01336 # specific to grasp actions\n\
01337 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01338 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01339 int32 LIFT_FAILED = -5\n\
01340 \n\
01341 # specific to place actions\n\
01342 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01343 # it is likely that the collision environment will see collisions between the hand and the object\n\
01344 int32 RETREAT_FAILED = -6\n\
01345 \n\
01346 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01347 int32 CANCELLED = -7\n\
01348 \n\
01349 # the actual value of this error code\n\
01350 int32 value\n\
01351 \n\
01352 ";
01353 }
01354
01355 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01356 };
01357
01358 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {};
01359 }
01360 }
01361
01362 namespace ros
01363 {
01364 namespace serialization
01365 {
01366
01367 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> >
01368 {
01369 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01370 {
01371 stream.next(m.goal);
01372 }
01373
01374 ROS_DECLARE_ALLINONE_SERIALIZER;
01375 };
01376 }
01377 }
01378
01379
01380 namespace ros
01381 {
01382 namespace serialization
01383 {
01384
01385 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> >
01386 {
01387 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01388 {
01389 stream.next(m.result);
01390 }
01391
01392 ROS_DECLARE_ALLINONE_SERIALIZER;
01393 };
01394 }
01395 }
01396
01397 namespace ros
01398 {
01399 namespace service_traits
01400 {
01401 template<>
01402 struct MD5Sum<object_manipulation_msgs::ReactiveGrasp> {
01403 static const char* value()
01404 {
01405 return "4d5c2e842d2f6dbd7fc4253a66c2bb5f";
01406 }
01407
01408 static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); }
01409 };
01410
01411 template<>
01412 struct DataType<object_manipulation_msgs::ReactiveGrasp> {
01413 static const char* value()
01414 {
01415 return "object_manipulation_msgs/ReactiveGrasp";
01416 }
01417
01418 static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); }
01419 };
01420
01421 template<class ContainerAllocator>
01422 struct MD5Sum<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
01423 static const char* value()
01424 {
01425 return "4d5c2e842d2f6dbd7fc4253a66c2bb5f";
01426 }
01427
01428 static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
01429 };
01430
01431 template<class ContainerAllocator>
01432 struct DataType<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
01433 static const char* value()
01434 {
01435 return "object_manipulation_msgs/ReactiveGrasp";
01436 }
01437
01438 static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
01439 };
01440
01441 template<class ContainerAllocator>
01442 struct MD5Sum<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01443 static const char* value()
01444 {
01445 return "4d5c2e842d2f6dbd7fc4253a66c2bb5f";
01446 }
01447
01448 static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01449 };
01450
01451 template<class ContainerAllocator>
01452 struct DataType<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01453 static const char* value()
01454 {
01455 return "object_manipulation_msgs/ReactiveGrasp";
01456 }
01457
01458 static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01459 };
01460
01461 }
01462 }
01463
01464 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
01465