$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/srv/ReactiveGrasp.srv */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H 00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "object_manipulation_msgs/ReactiveGraspGoal.h" 00020 00021 00022 #include "object_manipulation_msgs/ReactiveGraspResult.h" 00023 00024 namespace object_manipulation_msgs 00025 { 00026 template <class ContainerAllocator> 00027 struct ReactiveGraspRequest_ { 00028 typedef ReactiveGraspRequest_<ContainerAllocator> Type; 00029 00030 ReactiveGraspRequest_() 00031 : goal() 00032 { 00033 } 00034 00035 ReactiveGraspRequest_(const ContainerAllocator& _alloc) 00036 : goal(_alloc) 00037 { 00038 } 00039 00040 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> _goal_type; 00041 ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> goal; 00042 00043 00044 private: 00045 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspRequest"; } 00046 public: 00047 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00048 00049 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00050 00051 private: 00052 static const char* __s_getMD5Sum_() { return "cfc8e5ca2e7695fd97bbd17c05dd9ce7"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00055 00056 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00057 00058 private: 00059 static const char* __s_getServerMD5Sum_() { return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "\n\ 00067 ReactiveGraspGoal goal\n\ 00068 \n\ 00069 \n\ 00070 ================================================================================\n\ 00071 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\ 00072 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00073 # an action for reactive grasping\n\ 00074 # a reactive grasp starts from the current pose of the gripper and ends\n\ 00075 # at a desired grasp pose, presumably using the touch sensors along the way\n\ 00076 \n\ 00077 # the name of the arm being used\n\ 00078 string arm_name\n\ 00079 \n\ 00080 # the object to be grasped\n\ 00081 GraspableObject target\n\ 00082 \n\ 00083 # the desired grasp pose for the hand\n\ 00084 geometry_msgs/PoseStamped final_grasp_pose\n\ 00085 \n\ 00086 # the joint trajectory to use for the approach (if available)\n\ 00087 # this trajectory is expected to start at the current pose of the gripper\n\ 00088 # and end at the desired grasp pose\n\ 00089 trajectory_msgs/JointTrajectory trajectory\n\ 00090 \n\ 00091 # the name of the support surface in the collision environment, if any\n\ 00092 string collision_support_surface_name\n\ 00093 \n\ 00094 # The internal posture of the hand for the pre-grasp\n\ 00095 # only positions are used\n\ 00096 sensor_msgs/JointState pre_grasp_posture\n\ 00097 \n\ 00098 # The internal posture of the hand for the grasp\n\ 00099 # positions and efforts are used\n\ 00100 sensor_msgs/JointState grasp_posture\n\ 00101 \n\ 00102 # The max contact force to use while grasping (<=0 to disable)\n\ 00103 float32 max_contact_force\n\ 00104 \n\ 00105 \n\ 00106 ================================================================================\n\ 00107 MSG: object_manipulation_msgs/GraspableObject\n\ 00108 # an object that the object_manipulator can work on\n\ 00109 \n\ 00110 # a graspable object can be represented in multiple ways. This message\n\ 00111 # can contain all of them. Which one is actually used is up to the receiver\n\ 00112 # of this message. When adding new representations, one must be careful that\n\ 00113 # they have reasonable lightweight defaults indicating that that particular\n\ 00114 # representation is not available.\n\ 00115 \n\ 00116 # the tf frame to be used as a reference frame when combining information from\n\ 00117 # the different representations below\n\ 00118 string reference_frame_id\n\ 00119 \n\ 00120 # potential recognition results from a database of models\n\ 00121 # all poses are relative to the object reference pose\n\ 00122 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00123 \n\ 00124 # the point cloud itself\n\ 00125 sensor_msgs/PointCloud cluster\n\ 00126 \n\ 00127 # a region of a PointCloud2 of interest\n\ 00128 object_manipulation_msgs/SceneRegion region\n\ 00129 \n\ 00130 # the name that this object has in the collision environment\n\ 00131 string collision_name\n\ 00132 ================================================================================\n\ 00133 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00134 # Informs that a specific model from the Model Database has been \n\ 00135 # identified at a certain location\n\ 00136 \n\ 00137 # the database id of the model\n\ 00138 int32 model_id\n\ 00139 \n\ 00140 # the pose that it can be found in\n\ 00141 geometry_msgs/PoseStamped pose\n\ 00142 \n\ 00143 # a measure of the confidence level in this detection result\n\ 00144 float32 confidence\n\ 00145 \n\ 00146 # the name of the object detector that generated this detection result\n\ 00147 string detector_name\n\ 00148 \n\ 00149 ================================================================================\n\ 00150 MSG: geometry_msgs/PoseStamped\n\ 00151 # A Pose with reference coordinate frame and timestamp\n\ 00152 Header header\n\ 00153 Pose pose\n\ 00154 \n\ 00155 ================================================================================\n\ 00156 MSG: std_msgs/Header\n\ 00157 # Standard metadata for higher-level stamped data types.\n\ 00158 # This is generally used to communicate timestamped data \n\ 00159 # in a particular coordinate frame.\n\ 00160 # \n\ 00161 # sequence ID: consecutively increasing ID \n\ 00162 uint32 seq\n\ 00163 #Two-integer timestamp that is expressed as:\n\ 00164 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00165 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00166 # time-handling sugar is provided by the client library\n\ 00167 time stamp\n\ 00168 #Frame this data is associated with\n\ 00169 # 0: no frame\n\ 00170 # 1: global frame\n\ 00171 string frame_id\n\ 00172 \n\ 00173 ================================================================================\n\ 00174 MSG: geometry_msgs/Pose\n\ 00175 # A representation of pose in free space, composed of postion and orientation. \n\ 00176 Point position\n\ 00177 Quaternion orientation\n\ 00178 \n\ 00179 ================================================================================\n\ 00180 MSG: geometry_msgs/Point\n\ 00181 # This contains the position of a point in free space\n\ 00182 float64 x\n\ 00183 float64 y\n\ 00184 float64 z\n\ 00185 \n\ 00186 ================================================================================\n\ 00187 MSG: geometry_msgs/Quaternion\n\ 00188 # This represents an orientation in free space in quaternion form.\n\ 00189 \n\ 00190 float64 x\n\ 00191 float64 y\n\ 00192 float64 z\n\ 00193 float64 w\n\ 00194 \n\ 00195 ================================================================================\n\ 00196 MSG: sensor_msgs/PointCloud\n\ 00197 # This message holds a collection of 3d points, plus optional additional\n\ 00198 # information about each point.\n\ 00199 \n\ 00200 # Time of sensor data acquisition, coordinate frame ID.\n\ 00201 Header header\n\ 00202 \n\ 00203 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00204 # in the frame given in the header.\n\ 00205 geometry_msgs/Point32[] points\n\ 00206 \n\ 00207 # Each channel should have the same number of elements as points array,\n\ 00208 # and the data in each channel should correspond 1:1 with each point.\n\ 00209 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00210 ChannelFloat32[] channels\n\ 00211 \n\ 00212 ================================================================================\n\ 00213 MSG: geometry_msgs/Point32\n\ 00214 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00215 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00216 # \n\ 00217 # This recommendation is to promote interoperability. \n\ 00218 #\n\ 00219 # This message is designed to take up less space when sending\n\ 00220 # lots of points at once, as in the case of a PointCloud. \n\ 00221 \n\ 00222 float32 x\n\ 00223 float32 y\n\ 00224 float32 z\n\ 00225 ================================================================================\n\ 00226 MSG: sensor_msgs/ChannelFloat32\n\ 00227 # This message is used by the PointCloud message to hold optional data\n\ 00228 # associated with each point in the cloud. The length of the values\n\ 00229 # array should be the same as the length of the points array in the\n\ 00230 # PointCloud, and each value should be associated with the corresponding\n\ 00231 # point.\n\ 00232 \n\ 00233 # Channel names in existing practice include:\n\ 00234 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00235 # This is opposite to usual conventions but remains for\n\ 00236 # historical reasons. The newer PointCloud2 message has no\n\ 00237 # such problem.\n\ 00238 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00239 # (R,G,B) values packed into the least significant 24 bits,\n\ 00240 # in order.\n\ 00241 # \"intensity\" - laser or pixel intensity.\n\ 00242 # \"distance\"\n\ 00243 \n\ 00244 # The channel name should give semantics of the channel (e.g.\n\ 00245 # \"intensity\" instead of \"value\").\n\ 00246 string name\n\ 00247 \n\ 00248 # The values array should be 1-1 with the elements of the associated\n\ 00249 # PointCloud.\n\ 00250 float32[] values\n\ 00251 \n\ 00252 ================================================================================\n\ 00253 MSG: object_manipulation_msgs/SceneRegion\n\ 00254 # Point cloud\n\ 00255 sensor_msgs/PointCloud2 cloud\n\ 00256 \n\ 00257 # Indices for the region of interest\n\ 00258 int32[] mask\n\ 00259 \n\ 00260 # One of the corresponding 2D images, if applicable\n\ 00261 sensor_msgs/Image image\n\ 00262 \n\ 00263 # The disparity image, if applicable\n\ 00264 sensor_msgs/Image disparity_image\n\ 00265 \n\ 00266 # Camera info for the camera that took the image\n\ 00267 sensor_msgs/CameraInfo cam_info\n\ 00268 \n\ 00269 # a 3D region of interest for grasp planning\n\ 00270 geometry_msgs/PoseStamped roi_box_pose\n\ 00271 geometry_msgs/Vector3 roi_box_dims\n\ 00272 \n\ 00273 ================================================================================\n\ 00274 MSG: sensor_msgs/PointCloud2\n\ 00275 # This message holds a collection of N-dimensional points, which may\n\ 00276 # contain additional information such as normals, intensity, etc. The\n\ 00277 # point data is stored as a binary blob, its layout described by the\n\ 00278 # contents of the \"fields\" array.\n\ 00279 \n\ 00280 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00281 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00282 # camera depth sensors such as stereo or time-of-flight.\n\ 00283 \n\ 00284 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00285 # points).\n\ 00286 Header header\n\ 00287 \n\ 00288 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00289 # 1 and width is the length of the point cloud.\n\ 00290 uint32 height\n\ 00291 uint32 width\n\ 00292 \n\ 00293 # Describes the channels and their layout in the binary data blob.\n\ 00294 PointField[] fields\n\ 00295 \n\ 00296 bool is_bigendian # Is this data bigendian?\n\ 00297 uint32 point_step # Length of a point in bytes\n\ 00298 uint32 row_step # Length of a row in bytes\n\ 00299 uint8[] data # Actual point data, size is (row_step*height)\n\ 00300 \n\ 00301 bool is_dense # True if there are no invalid points\n\ 00302 \n\ 00303 ================================================================================\n\ 00304 MSG: sensor_msgs/PointField\n\ 00305 # This message holds the description of one point entry in the\n\ 00306 # PointCloud2 message format.\n\ 00307 uint8 INT8 = 1\n\ 00308 uint8 UINT8 = 2\n\ 00309 uint8 INT16 = 3\n\ 00310 uint8 UINT16 = 4\n\ 00311 uint8 INT32 = 5\n\ 00312 uint8 UINT32 = 6\n\ 00313 uint8 FLOAT32 = 7\n\ 00314 uint8 FLOAT64 = 8\n\ 00315 \n\ 00316 string name # Name of field\n\ 00317 uint32 offset # Offset from start of point struct\n\ 00318 uint8 datatype # Datatype enumeration, see above\n\ 00319 uint32 count # How many elements in the field\n\ 00320 \n\ 00321 ================================================================================\n\ 00322 MSG: sensor_msgs/Image\n\ 00323 # This message contains an uncompressed image\n\ 00324 # (0, 0) is at top-left corner of image\n\ 00325 #\n\ 00326 \n\ 00327 Header header # Header timestamp should be acquisition time of image\n\ 00328 # Header frame_id should be optical frame of camera\n\ 00329 # origin of frame should be optical center of cameara\n\ 00330 # +x should point to the right in the image\n\ 00331 # +y should point down in the image\n\ 00332 # +z should point into to plane of the image\n\ 00333 # If the frame_id here and the frame_id of the CameraInfo\n\ 00334 # message associated with the image conflict\n\ 00335 # the behavior is undefined\n\ 00336 \n\ 00337 uint32 height # image height, that is, number of rows\n\ 00338 uint32 width # image width, that is, number of columns\n\ 00339 \n\ 00340 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00341 # If you want to standardize a new string format, join\n\ 00342 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00343 \n\ 00344 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00345 # taken from the list of strings in src/image_encodings.cpp\n\ 00346 \n\ 00347 uint8 is_bigendian # is this data bigendian?\n\ 00348 uint32 step # Full row length in bytes\n\ 00349 uint8[] data # actual matrix data, size is (step * rows)\n\ 00350 \n\ 00351 ================================================================================\n\ 00352 MSG: sensor_msgs/CameraInfo\n\ 00353 # This message defines meta information for a camera. It should be in a\n\ 00354 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00355 # image topics named:\n\ 00356 #\n\ 00357 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00358 # image - monochrome, distorted\n\ 00359 # image_color - color, distorted\n\ 00360 # image_rect - monochrome, rectified\n\ 00361 # image_rect_color - color, rectified\n\ 00362 #\n\ 00363 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00364 # for producing the four processed image topics from image_raw and\n\ 00365 # camera_info. The meaning of the camera parameters are described in\n\ 00366 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00367 #\n\ 00368 # The image_geometry package provides a user-friendly interface to\n\ 00369 # common operations using this meta information. If you want to, e.g.,\n\ 00370 # project a 3d point into image coordinates, we strongly recommend\n\ 00371 # using image_geometry.\n\ 00372 #\n\ 00373 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00374 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00375 # indicates an uncalibrated camera.\n\ 00376 \n\ 00377 #######################################################################\n\ 00378 # Image acquisition info #\n\ 00379 #######################################################################\n\ 00380 \n\ 00381 # Time of image acquisition, camera coordinate frame ID\n\ 00382 Header header # Header timestamp should be acquisition time of image\n\ 00383 # Header frame_id should be optical frame of camera\n\ 00384 # origin of frame should be optical center of camera\n\ 00385 # +x should point to the right in the image\n\ 00386 # +y should point down in the image\n\ 00387 # +z should point into the plane of the image\n\ 00388 \n\ 00389 \n\ 00390 #######################################################################\n\ 00391 # Calibration Parameters #\n\ 00392 #######################################################################\n\ 00393 # These are fixed during camera calibration. Their values will be the #\n\ 00394 # same in all messages until the camera is recalibrated. Note that #\n\ 00395 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00396 # #\n\ 00397 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00398 # to: #\n\ 00399 # 1. An undistorted image (requires D and K) #\n\ 00400 # 2. A rectified image (requires D, K, R) #\n\ 00401 # The projection matrix P projects 3D points into the rectified image.#\n\ 00402 #######################################################################\n\ 00403 \n\ 00404 # The image dimensions with which the camera was calibrated. Normally\n\ 00405 # this will be the full camera resolution in pixels.\n\ 00406 uint32 height\n\ 00407 uint32 width\n\ 00408 \n\ 00409 # The distortion model used. Supported models are listed in\n\ 00410 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00411 # simple model of radial and tangential distortion - is sufficent.\n\ 00412 string distortion_model\n\ 00413 \n\ 00414 # The distortion parameters, size depending on the distortion model.\n\ 00415 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00416 float64[] D\n\ 00417 \n\ 00418 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00419 # [fx 0 cx]\n\ 00420 # K = [ 0 fy cy]\n\ 00421 # [ 0 0 1]\n\ 00422 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00423 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00424 # (cx, cy).\n\ 00425 float64[9] K # 3x3 row-major matrix\n\ 00426 \n\ 00427 # Rectification matrix (stereo cameras only)\n\ 00428 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00429 # stereo image plane so that epipolar lines in both stereo images are\n\ 00430 # parallel.\n\ 00431 float64[9] R # 3x3 row-major matrix\n\ 00432 \n\ 00433 # Projection/camera matrix\n\ 00434 # [fx' 0 cx' Tx]\n\ 00435 # P = [ 0 fy' cy' Ty]\n\ 00436 # [ 0 0 1 0]\n\ 00437 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00438 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00439 # is the normal camera intrinsic matrix for the rectified image.\n\ 00440 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00441 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00442 # (cx', cy') - these may differ from the values in K.\n\ 00443 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00444 # also have R = the identity and P[1:3,1:3] = K.\n\ 00445 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00446 # position of the optical center of the second camera in the first\n\ 00447 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00448 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00449 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00450 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00451 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00452 # the rectified image is given by:\n\ 00453 # [u v w]' = P * [X Y Z 1]'\n\ 00454 # x = u / w\n\ 00455 # y = v / w\n\ 00456 # This holds for both images of a stereo pair.\n\ 00457 float64[12] P # 3x4 row-major matrix\n\ 00458 \n\ 00459 \n\ 00460 #######################################################################\n\ 00461 # Operational Parameters #\n\ 00462 #######################################################################\n\ 00463 # These define the image region actually captured by the camera #\n\ 00464 # driver. Although they affect the geometry of the output image, they #\n\ 00465 # may be changed freely without recalibrating the camera. #\n\ 00466 #######################################################################\n\ 00467 \n\ 00468 # Binning refers here to any camera setting which combines rectangular\n\ 00469 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00470 # resolution of the output image to\n\ 00471 # (width / binning_x) x (height / binning_y).\n\ 00472 # The default values binning_x = binning_y = 0 is considered the same\n\ 00473 # as binning_x = binning_y = 1 (no subsampling).\n\ 00474 uint32 binning_x\n\ 00475 uint32 binning_y\n\ 00476 \n\ 00477 # Region of interest (subwindow of full camera resolution), given in\n\ 00478 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00479 # always denotes the same window of pixels on the camera sensor,\n\ 00480 # regardless of binning settings.\n\ 00481 # The default setting of roi (all values 0) is considered the same as\n\ 00482 # full resolution (roi.width = width, roi.height = height).\n\ 00483 RegionOfInterest roi\n\ 00484 \n\ 00485 ================================================================================\n\ 00486 MSG: sensor_msgs/RegionOfInterest\n\ 00487 # This message is used to specify a region of interest within an image.\n\ 00488 #\n\ 00489 # When used to specify the ROI setting of the camera when the image was\n\ 00490 # taken, the height and width fields should either match the height and\n\ 00491 # width fields for the associated image; or height = width = 0\n\ 00492 # indicates that the full resolution image was captured.\n\ 00493 \n\ 00494 uint32 x_offset # Leftmost pixel of the ROI\n\ 00495 # (0 if the ROI includes the left edge of the image)\n\ 00496 uint32 y_offset # Topmost pixel of the ROI\n\ 00497 # (0 if the ROI includes the top edge of the image)\n\ 00498 uint32 height # Height of ROI\n\ 00499 uint32 width # Width of ROI\n\ 00500 \n\ 00501 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00502 # ROI in this message. Typically this should be False if the full image\n\ 00503 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00504 # used).\n\ 00505 bool do_rectify\n\ 00506 \n\ 00507 ================================================================================\n\ 00508 MSG: geometry_msgs/Vector3\n\ 00509 # This represents a vector in free space. \n\ 00510 \n\ 00511 float64 x\n\ 00512 float64 y\n\ 00513 float64 z\n\ 00514 ================================================================================\n\ 00515 MSG: trajectory_msgs/JointTrajectory\n\ 00516 Header header\n\ 00517 string[] joint_names\n\ 00518 JointTrajectoryPoint[] points\n\ 00519 ================================================================================\n\ 00520 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 00521 float64[] positions\n\ 00522 float64[] velocities\n\ 00523 float64[] accelerations\n\ 00524 duration time_from_start\n\ 00525 ================================================================================\n\ 00526 MSG: sensor_msgs/JointState\n\ 00527 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00528 #\n\ 00529 # The state of each joint (revolute or prismatic) is defined by:\n\ 00530 # * the position of the joint (rad or m),\n\ 00531 # * the velocity of the joint (rad/s or m/s) and \n\ 00532 # * the effort that is applied in the joint (Nm or N).\n\ 00533 #\n\ 00534 # Each joint is uniquely identified by its name\n\ 00535 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00536 # in one message have to be recorded at the same time.\n\ 00537 #\n\ 00538 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00539 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00540 # effort associated with them, you can leave the effort array empty. \n\ 00541 #\n\ 00542 # All arrays in this message should have the same size, or be empty.\n\ 00543 # This is the only way to uniquely associate the joint name with the correct\n\ 00544 # states.\n\ 00545 \n\ 00546 \n\ 00547 Header header\n\ 00548 \n\ 00549 string[] name\n\ 00550 float64[] position\n\ 00551 float64[] velocity\n\ 00552 float64[] effort\n\ 00553 \n\ 00554 "; } 00555 public: 00556 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00557 00558 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00559 00560 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00561 { 00562 ros::serialization::OStream stream(write_ptr, 1000000000); 00563 ros::serialization::serialize(stream, goal); 00564 return stream.getData(); 00565 } 00566 00567 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00568 { 00569 ros::serialization::IStream stream(read_ptr, 1000000000); 00570 ros::serialization::deserialize(stream, goal); 00571 return stream.getData(); 00572 } 00573 00574 ROS_DEPRECATED virtual uint32_t serializationLength() const 00575 { 00576 uint32_t size = 0; 00577 size += ros::serialization::serializationLength(goal); 00578 return size; 00579 } 00580 00581 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > Ptr; 00582 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> const> ConstPtr; 00583 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00584 }; // struct ReactiveGraspRequest 00585 typedef ::object_manipulation_msgs::ReactiveGraspRequest_<std::allocator<void> > ReactiveGraspRequest; 00586 00587 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest> ReactiveGraspRequestPtr; 00588 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest const> ReactiveGraspRequestConstPtr; 00589 00590 00591 template <class ContainerAllocator> 00592 struct ReactiveGraspResponse_ { 00593 typedef ReactiveGraspResponse_<ContainerAllocator> Type; 00594 00595 ReactiveGraspResponse_() 00596 : result() 00597 { 00598 } 00599 00600 ReactiveGraspResponse_(const ContainerAllocator& _alloc) 00601 : result(_alloc) 00602 { 00603 } 00604 00605 typedef ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator> _result_type; 00606 ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator> result; 00607 00608 00609 private: 00610 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspResponse"; } 00611 public: 00612 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00613 00614 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00615 00616 private: 00617 static const char* __s_getMD5Sum_() { return "eb66ddf1bad009330070ddb3ebea8f76"; } 00618 public: 00619 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00620 00621 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00622 00623 private: 00624 static const char* __s_getServerMD5Sum_() { return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; } 00625 public: 00626 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00627 00628 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00629 00630 private: 00631 static const char* __s_getMessageDefinition_() { return "\n\ 00632 \n\ 00633 ReactiveGraspResult result\n\ 00634 \n\ 00635 ================================================================================\n\ 00636 MSG: object_manipulation_msgs/ReactiveGraspResult\n\ 00637 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00638 \n\ 00639 # the result of the reactive grasp attempt\n\ 00640 \n\ 00641 ManipulationResult manipulation_result\n\ 00642 \n\ 00643 \n\ 00644 ================================================================================\n\ 00645 MSG: object_manipulation_msgs/ManipulationResult\n\ 00646 # Result codes for manipulation tasks\n\ 00647 \n\ 00648 # task completed as expected\n\ 00649 # generally means you can proceed as planned\n\ 00650 int32 SUCCESS = 1\n\ 00651 \n\ 00652 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00653 # generally means that the world was not disturbed, so you can try another task\n\ 00654 int32 UNFEASIBLE = -1\n\ 00655 \n\ 00656 # task was thought possible, but failed due to unexpected events during execution\n\ 00657 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00658 # your sensed world model before proceeding to another task\n\ 00659 int32 FAILED = -2\n\ 00660 \n\ 00661 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00662 # generally requires human attention\n\ 00663 int32 ERROR = -3\n\ 00664 \n\ 00665 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00666 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00667 # probably need a new collision map to move the arm out of the stuck position\n\ 00668 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00669 \n\ 00670 # specific to grasp actions\n\ 00671 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00672 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00673 int32 LIFT_FAILED = -5\n\ 00674 \n\ 00675 # specific to place actions\n\ 00676 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00677 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00678 int32 RETREAT_FAILED = -6\n\ 00679 \n\ 00680 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00681 int32 CANCELLED = -7\n\ 00682 \n\ 00683 # the actual value of this error code\n\ 00684 int32 value\n\ 00685 \n\ 00686 "; } 00687 public: 00688 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00689 00690 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00691 00692 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00693 { 00694 ros::serialization::OStream stream(write_ptr, 1000000000); 00695 ros::serialization::serialize(stream, result); 00696 return stream.getData(); 00697 } 00698 00699 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00700 { 00701 ros::serialization::IStream stream(read_ptr, 1000000000); 00702 ros::serialization::deserialize(stream, result); 00703 return stream.getData(); 00704 } 00705 00706 ROS_DEPRECATED virtual uint32_t serializationLength() const 00707 { 00708 uint32_t size = 0; 00709 size += ros::serialization::serializationLength(result); 00710 return size; 00711 } 00712 00713 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > Ptr; 00714 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> const> ConstPtr; 00715 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00716 }; // struct ReactiveGraspResponse 00717 typedef ::object_manipulation_msgs::ReactiveGraspResponse_<std::allocator<void> > ReactiveGraspResponse; 00718 00719 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse> ReactiveGraspResponsePtr; 00720 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse const> ReactiveGraspResponseConstPtr; 00721 00722 struct ReactiveGrasp 00723 { 00724 00725 typedef ReactiveGraspRequest Request; 00726 typedef ReactiveGraspResponse Response; 00727 Request request; 00728 Response response; 00729 00730 typedef Request RequestType; 00731 typedef Response ResponseType; 00732 }; // struct ReactiveGrasp 00733 } // namespace object_manipulation_msgs 00734 00735 namespace ros 00736 { 00737 namespace message_traits 00738 { 00739 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > : public TrueType {}; 00740 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> const> : public TrueType {}; 00741 template<class ContainerAllocator> 00742 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > { 00743 static const char* value() 00744 { 00745 return "cfc8e5ca2e7695fd97bbd17c05dd9ce7"; 00746 } 00747 00748 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 00749 static const uint64_t static_value1 = 0xcfc8e5ca2e7695fdULL; 00750 static const uint64_t static_value2 = 0x97bbd17c05dd9ce7ULL; 00751 }; 00752 00753 template<class ContainerAllocator> 00754 struct DataType< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > { 00755 static const char* value() 00756 { 00757 return "object_manipulation_msgs/ReactiveGraspRequest"; 00758 } 00759 00760 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 00761 }; 00762 00763 template<class ContainerAllocator> 00764 struct Definition< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > { 00765 static const char* value() 00766 { 00767 return "\n\ 00768 ReactiveGraspGoal goal\n\ 00769 \n\ 00770 \n\ 00771 ================================================================================\n\ 00772 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\ 00773 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00774 # an action for reactive grasping\n\ 00775 # a reactive grasp starts from the current pose of the gripper and ends\n\ 00776 # at a desired grasp pose, presumably using the touch sensors along the way\n\ 00777 \n\ 00778 # the name of the arm being used\n\ 00779 string arm_name\n\ 00780 \n\ 00781 # the object to be grasped\n\ 00782 GraspableObject target\n\ 00783 \n\ 00784 # the desired grasp pose for the hand\n\ 00785 geometry_msgs/PoseStamped final_grasp_pose\n\ 00786 \n\ 00787 # the joint trajectory to use for the approach (if available)\n\ 00788 # this trajectory is expected to start at the current pose of the gripper\n\ 00789 # and end at the desired grasp pose\n\ 00790 trajectory_msgs/JointTrajectory trajectory\n\ 00791 \n\ 00792 # the name of the support surface in the collision environment, if any\n\ 00793 string collision_support_surface_name\n\ 00794 \n\ 00795 # The internal posture of the hand for the pre-grasp\n\ 00796 # only positions are used\n\ 00797 sensor_msgs/JointState pre_grasp_posture\n\ 00798 \n\ 00799 # The internal posture of the hand for the grasp\n\ 00800 # positions and efforts are used\n\ 00801 sensor_msgs/JointState grasp_posture\n\ 00802 \n\ 00803 # The max contact force to use while grasping (<=0 to disable)\n\ 00804 float32 max_contact_force\n\ 00805 \n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: object_manipulation_msgs/GraspableObject\n\ 00809 # an object that the object_manipulator can work on\n\ 00810 \n\ 00811 # a graspable object can be represented in multiple ways. This message\n\ 00812 # can contain all of them. Which one is actually used is up to the receiver\n\ 00813 # of this message. When adding new representations, one must be careful that\n\ 00814 # they have reasonable lightweight defaults indicating that that particular\n\ 00815 # representation is not available.\n\ 00816 \n\ 00817 # the tf frame to be used as a reference frame when combining information from\n\ 00818 # the different representations below\n\ 00819 string reference_frame_id\n\ 00820 \n\ 00821 # potential recognition results from a database of models\n\ 00822 # all poses are relative to the object reference pose\n\ 00823 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00824 \n\ 00825 # the point cloud itself\n\ 00826 sensor_msgs/PointCloud cluster\n\ 00827 \n\ 00828 # a region of a PointCloud2 of interest\n\ 00829 object_manipulation_msgs/SceneRegion region\n\ 00830 \n\ 00831 # the name that this object has in the collision environment\n\ 00832 string collision_name\n\ 00833 ================================================================================\n\ 00834 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00835 # Informs that a specific model from the Model Database has been \n\ 00836 # identified at a certain location\n\ 00837 \n\ 00838 # the database id of the model\n\ 00839 int32 model_id\n\ 00840 \n\ 00841 # the pose that it can be found in\n\ 00842 geometry_msgs/PoseStamped pose\n\ 00843 \n\ 00844 # a measure of the confidence level in this detection result\n\ 00845 float32 confidence\n\ 00846 \n\ 00847 # the name of the object detector that generated this detection result\n\ 00848 string detector_name\n\ 00849 \n\ 00850 ================================================================================\n\ 00851 MSG: geometry_msgs/PoseStamped\n\ 00852 # A Pose with reference coordinate frame and timestamp\n\ 00853 Header header\n\ 00854 Pose pose\n\ 00855 \n\ 00856 ================================================================================\n\ 00857 MSG: std_msgs/Header\n\ 00858 # Standard metadata for higher-level stamped data types.\n\ 00859 # This is generally used to communicate timestamped data \n\ 00860 # in a particular coordinate frame.\n\ 00861 # \n\ 00862 # sequence ID: consecutively increasing ID \n\ 00863 uint32 seq\n\ 00864 #Two-integer timestamp that is expressed as:\n\ 00865 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00866 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00867 # time-handling sugar is provided by the client library\n\ 00868 time stamp\n\ 00869 #Frame this data is associated with\n\ 00870 # 0: no frame\n\ 00871 # 1: global frame\n\ 00872 string frame_id\n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: geometry_msgs/Pose\n\ 00876 # A representation of pose in free space, composed of postion and orientation. \n\ 00877 Point position\n\ 00878 Quaternion orientation\n\ 00879 \n\ 00880 ================================================================================\n\ 00881 MSG: geometry_msgs/Point\n\ 00882 # This contains the position of a point in free space\n\ 00883 float64 x\n\ 00884 float64 y\n\ 00885 float64 z\n\ 00886 \n\ 00887 ================================================================================\n\ 00888 MSG: geometry_msgs/Quaternion\n\ 00889 # This represents an orientation in free space in quaternion form.\n\ 00890 \n\ 00891 float64 x\n\ 00892 float64 y\n\ 00893 float64 z\n\ 00894 float64 w\n\ 00895 \n\ 00896 ================================================================================\n\ 00897 MSG: sensor_msgs/PointCloud\n\ 00898 # This message holds a collection of 3d points, plus optional additional\n\ 00899 # information about each point.\n\ 00900 \n\ 00901 # Time of sensor data acquisition, coordinate frame ID.\n\ 00902 Header header\n\ 00903 \n\ 00904 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00905 # in the frame given in the header.\n\ 00906 geometry_msgs/Point32[] points\n\ 00907 \n\ 00908 # Each channel should have the same number of elements as points array,\n\ 00909 # and the data in each channel should correspond 1:1 with each point.\n\ 00910 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00911 ChannelFloat32[] channels\n\ 00912 \n\ 00913 ================================================================================\n\ 00914 MSG: geometry_msgs/Point32\n\ 00915 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00916 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00917 # \n\ 00918 # This recommendation is to promote interoperability. \n\ 00919 #\n\ 00920 # This message is designed to take up less space when sending\n\ 00921 # lots of points at once, as in the case of a PointCloud. \n\ 00922 \n\ 00923 float32 x\n\ 00924 float32 y\n\ 00925 float32 z\n\ 00926 ================================================================================\n\ 00927 MSG: sensor_msgs/ChannelFloat32\n\ 00928 # This message is used by the PointCloud message to hold optional data\n\ 00929 # associated with each point in the cloud. The length of the values\n\ 00930 # array should be the same as the length of the points array in the\n\ 00931 # PointCloud, and each value should be associated with the corresponding\n\ 00932 # point.\n\ 00933 \n\ 00934 # Channel names in existing practice include:\n\ 00935 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00936 # This is opposite to usual conventions but remains for\n\ 00937 # historical reasons. The newer PointCloud2 message has no\n\ 00938 # such problem.\n\ 00939 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00940 # (R,G,B) values packed into the least significant 24 bits,\n\ 00941 # in order.\n\ 00942 # \"intensity\" - laser or pixel intensity.\n\ 00943 # \"distance\"\n\ 00944 \n\ 00945 # The channel name should give semantics of the channel (e.g.\n\ 00946 # \"intensity\" instead of \"value\").\n\ 00947 string name\n\ 00948 \n\ 00949 # The values array should be 1-1 with the elements of the associated\n\ 00950 # PointCloud.\n\ 00951 float32[] values\n\ 00952 \n\ 00953 ================================================================================\n\ 00954 MSG: object_manipulation_msgs/SceneRegion\n\ 00955 # Point cloud\n\ 00956 sensor_msgs/PointCloud2 cloud\n\ 00957 \n\ 00958 # Indices for the region of interest\n\ 00959 int32[] mask\n\ 00960 \n\ 00961 # One of the corresponding 2D images, if applicable\n\ 00962 sensor_msgs/Image image\n\ 00963 \n\ 00964 # The disparity image, if applicable\n\ 00965 sensor_msgs/Image disparity_image\n\ 00966 \n\ 00967 # Camera info for the camera that took the image\n\ 00968 sensor_msgs/CameraInfo cam_info\n\ 00969 \n\ 00970 # a 3D region of interest for grasp planning\n\ 00971 geometry_msgs/PoseStamped roi_box_pose\n\ 00972 geometry_msgs/Vector3 roi_box_dims\n\ 00973 \n\ 00974 ================================================================================\n\ 00975 MSG: sensor_msgs/PointCloud2\n\ 00976 # This message holds a collection of N-dimensional points, which may\n\ 00977 # contain additional information such as normals, intensity, etc. The\n\ 00978 # point data is stored as a binary blob, its layout described by the\n\ 00979 # contents of the \"fields\" array.\n\ 00980 \n\ 00981 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00982 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00983 # camera depth sensors such as stereo or time-of-flight.\n\ 00984 \n\ 00985 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00986 # points).\n\ 00987 Header header\n\ 00988 \n\ 00989 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00990 # 1 and width is the length of the point cloud.\n\ 00991 uint32 height\n\ 00992 uint32 width\n\ 00993 \n\ 00994 # Describes the channels and their layout in the binary data blob.\n\ 00995 PointField[] fields\n\ 00996 \n\ 00997 bool is_bigendian # Is this data bigendian?\n\ 00998 uint32 point_step # Length of a point in bytes\n\ 00999 uint32 row_step # Length of a row in bytes\n\ 01000 uint8[] data # Actual point data, size is (row_step*height)\n\ 01001 \n\ 01002 bool is_dense # True if there are no invalid points\n\ 01003 \n\ 01004 ================================================================================\n\ 01005 MSG: sensor_msgs/PointField\n\ 01006 # This message holds the description of one point entry in the\n\ 01007 # PointCloud2 message format.\n\ 01008 uint8 INT8 = 1\n\ 01009 uint8 UINT8 = 2\n\ 01010 uint8 INT16 = 3\n\ 01011 uint8 UINT16 = 4\n\ 01012 uint8 INT32 = 5\n\ 01013 uint8 UINT32 = 6\n\ 01014 uint8 FLOAT32 = 7\n\ 01015 uint8 FLOAT64 = 8\n\ 01016 \n\ 01017 string name # Name of field\n\ 01018 uint32 offset # Offset from start of point struct\n\ 01019 uint8 datatype # Datatype enumeration, see above\n\ 01020 uint32 count # How many elements in the field\n\ 01021 \n\ 01022 ================================================================================\n\ 01023 MSG: sensor_msgs/Image\n\ 01024 # This message contains an uncompressed image\n\ 01025 # (0, 0) is at top-left corner of image\n\ 01026 #\n\ 01027 \n\ 01028 Header header # Header timestamp should be acquisition time of image\n\ 01029 # Header frame_id should be optical frame of camera\n\ 01030 # origin of frame should be optical center of cameara\n\ 01031 # +x should point to the right in the image\n\ 01032 # +y should point down in the image\n\ 01033 # +z should point into to plane of the image\n\ 01034 # If the frame_id here and the frame_id of the CameraInfo\n\ 01035 # message associated with the image conflict\n\ 01036 # the behavior is undefined\n\ 01037 \n\ 01038 uint32 height # image height, that is, number of rows\n\ 01039 uint32 width # image width, that is, number of columns\n\ 01040 \n\ 01041 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01042 # If you want to standardize a new string format, join\n\ 01043 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01044 \n\ 01045 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01046 # taken from the list of strings in src/image_encodings.cpp\n\ 01047 \n\ 01048 uint8 is_bigendian # is this data bigendian?\n\ 01049 uint32 step # Full row length in bytes\n\ 01050 uint8[] data # actual matrix data, size is (step * rows)\n\ 01051 \n\ 01052 ================================================================================\n\ 01053 MSG: sensor_msgs/CameraInfo\n\ 01054 # This message defines meta information for a camera. It should be in a\n\ 01055 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01056 # image topics named:\n\ 01057 #\n\ 01058 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01059 # image - monochrome, distorted\n\ 01060 # image_color - color, distorted\n\ 01061 # image_rect - monochrome, rectified\n\ 01062 # image_rect_color - color, rectified\n\ 01063 #\n\ 01064 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01065 # for producing the four processed image topics from image_raw and\n\ 01066 # camera_info. The meaning of the camera parameters are described in\n\ 01067 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01068 #\n\ 01069 # The image_geometry package provides a user-friendly interface to\n\ 01070 # common operations using this meta information. If you want to, e.g.,\n\ 01071 # project a 3d point into image coordinates, we strongly recommend\n\ 01072 # using image_geometry.\n\ 01073 #\n\ 01074 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01075 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01076 # indicates an uncalibrated camera.\n\ 01077 \n\ 01078 #######################################################################\n\ 01079 # Image acquisition info #\n\ 01080 #######################################################################\n\ 01081 \n\ 01082 # Time of image acquisition, camera coordinate frame ID\n\ 01083 Header header # Header timestamp should be acquisition time of image\n\ 01084 # Header frame_id should be optical frame of camera\n\ 01085 # origin of frame should be optical center of camera\n\ 01086 # +x should point to the right in the image\n\ 01087 # +y should point down in the image\n\ 01088 # +z should point into the plane of the image\n\ 01089 \n\ 01090 \n\ 01091 #######################################################################\n\ 01092 # Calibration Parameters #\n\ 01093 #######################################################################\n\ 01094 # These are fixed during camera calibration. Their values will be the #\n\ 01095 # same in all messages until the camera is recalibrated. Note that #\n\ 01096 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01097 # #\n\ 01098 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01099 # to: #\n\ 01100 # 1. An undistorted image (requires D and K) #\n\ 01101 # 2. A rectified image (requires D, K, R) #\n\ 01102 # The projection matrix P projects 3D points into the rectified image.#\n\ 01103 #######################################################################\n\ 01104 \n\ 01105 # The image dimensions with which the camera was calibrated. Normally\n\ 01106 # this will be the full camera resolution in pixels.\n\ 01107 uint32 height\n\ 01108 uint32 width\n\ 01109 \n\ 01110 # The distortion model used. Supported models are listed in\n\ 01111 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01112 # simple model of radial and tangential distortion - is sufficent.\n\ 01113 string distortion_model\n\ 01114 \n\ 01115 # The distortion parameters, size depending on the distortion model.\n\ 01116 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01117 float64[] D\n\ 01118 \n\ 01119 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01120 # [fx 0 cx]\n\ 01121 # K = [ 0 fy cy]\n\ 01122 # [ 0 0 1]\n\ 01123 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01124 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01125 # (cx, cy).\n\ 01126 float64[9] K # 3x3 row-major matrix\n\ 01127 \n\ 01128 # Rectification matrix (stereo cameras only)\n\ 01129 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01130 # stereo image plane so that epipolar lines in both stereo images are\n\ 01131 # parallel.\n\ 01132 float64[9] R # 3x3 row-major matrix\n\ 01133 \n\ 01134 # Projection/camera matrix\n\ 01135 # [fx' 0 cx' Tx]\n\ 01136 # P = [ 0 fy' cy' Ty]\n\ 01137 # [ 0 0 1 0]\n\ 01138 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01139 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01140 # is the normal camera intrinsic matrix for the rectified image.\n\ 01141 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01142 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01143 # (cx', cy') - these may differ from the values in K.\n\ 01144 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01145 # also have R = the identity and P[1:3,1:3] = K.\n\ 01146 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01147 # position of the optical center of the second camera in the first\n\ 01148 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01149 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01150 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01151 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01152 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01153 # the rectified image is given by:\n\ 01154 # [u v w]' = P * [X Y Z 1]'\n\ 01155 # x = u / w\n\ 01156 # y = v / w\n\ 01157 # This holds for both images of a stereo pair.\n\ 01158 float64[12] P # 3x4 row-major matrix\n\ 01159 \n\ 01160 \n\ 01161 #######################################################################\n\ 01162 # Operational Parameters #\n\ 01163 #######################################################################\n\ 01164 # These define the image region actually captured by the camera #\n\ 01165 # driver. Although they affect the geometry of the output image, they #\n\ 01166 # may be changed freely without recalibrating the camera. #\n\ 01167 #######################################################################\n\ 01168 \n\ 01169 # Binning refers here to any camera setting which combines rectangular\n\ 01170 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01171 # resolution of the output image to\n\ 01172 # (width / binning_x) x (height / binning_y).\n\ 01173 # The default values binning_x = binning_y = 0 is considered the same\n\ 01174 # as binning_x = binning_y = 1 (no subsampling).\n\ 01175 uint32 binning_x\n\ 01176 uint32 binning_y\n\ 01177 \n\ 01178 # Region of interest (subwindow of full camera resolution), given in\n\ 01179 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01180 # always denotes the same window of pixels on the camera sensor,\n\ 01181 # regardless of binning settings.\n\ 01182 # The default setting of roi (all values 0) is considered the same as\n\ 01183 # full resolution (roi.width = width, roi.height = height).\n\ 01184 RegionOfInterest roi\n\ 01185 \n\ 01186 ================================================================================\n\ 01187 MSG: sensor_msgs/RegionOfInterest\n\ 01188 # This message is used to specify a region of interest within an image.\n\ 01189 #\n\ 01190 # When used to specify the ROI setting of the camera when the image was\n\ 01191 # taken, the height and width fields should either match the height and\n\ 01192 # width fields for the associated image; or height = width = 0\n\ 01193 # indicates that the full resolution image was captured.\n\ 01194 \n\ 01195 uint32 x_offset # Leftmost pixel of the ROI\n\ 01196 # (0 if the ROI includes the left edge of the image)\n\ 01197 uint32 y_offset # Topmost pixel of the ROI\n\ 01198 # (0 if the ROI includes the top edge of the image)\n\ 01199 uint32 height # Height of ROI\n\ 01200 uint32 width # Width of ROI\n\ 01201 \n\ 01202 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01203 # ROI in this message. Typically this should be False if the full image\n\ 01204 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01205 # used).\n\ 01206 bool do_rectify\n\ 01207 \n\ 01208 ================================================================================\n\ 01209 MSG: geometry_msgs/Vector3\n\ 01210 # This represents a vector in free space. \n\ 01211 \n\ 01212 float64 x\n\ 01213 float64 y\n\ 01214 float64 z\n\ 01215 ================================================================================\n\ 01216 MSG: trajectory_msgs/JointTrajectory\n\ 01217 Header header\n\ 01218 string[] joint_names\n\ 01219 JointTrajectoryPoint[] points\n\ 01220 ================================================================================\n\ 01221 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 01222 float64[] positions\n\ 01223 float64[] velocities\n\ 01224 float64[] accelerations\n\ 01225 duration time_from_start\n\ 01226 ================================================================================\n\ 01227 MSG: sensor_msgs/JointState\n\ 01228 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01229 #\n\ 01230 # The state of each joint (revolute or prismatic) is defined by:\n\ 01231 # * the position of the joint (rad or m),\n\ 01232 # * the velocity of the joint (rad/s or m/s) and \n\ 01233 # * the effort that is applied in the joint (Nm or N).\n\ 01234 #\n\ 01235 # Each joint is uniquely identified by its name\n\ 01236 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01237 # in one message have to be recorded at the same time.\n\ 01238 #\n\ 01239 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01240 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01241 # effort associated with them, you can leave the effort array empty. \n\ 01242 #\n\ 01243 # All arrays in this message should have the same size, or be empty.\n\ 01244 # This is the only way to uniquely associate the joint name with the correct\n\ 01245 # states.\n\ 01246 \n\ 01247 \n\ 01248 Header header\n\ 01249 \n\ 01250 string[] name\n\ 01251 float64[] position\n\ 01252 float64[] velocity\n\ 01253 float64[] effort\n\ 01254 \n\ 01255 "; 01256 } 01257 01258 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 01259 }; 01260 01261 } // namespace message_traits 01262 } // namespace ros 01263 01264 01265 namespace ros 01266 { 01267 namespace message_traits 01268 { 01269 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {}; 01270 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> const> : public TrueType {}; 01271 template<class ContainerAllocator> 01272 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > { 01273 static const char* value() 01274 { 01275 return "eb66ddf1bad009330070ddb3ebea8f76"; 01276 } 01277 01278 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 01279 static const uint64_t static_value1 = 0xeb66ddf1bad00933ULL; 01280 static const uint64_t static_value2 = 0x0070ddb3ebea8f76ULL; 01281 }; 01282 01283 template<class ContainerAllocator> 01284 struct DataType< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > { 01285 static const char* value() 01286 { 01287 return "object_manipulation_msgs/ReactiveGraspResponse"; 01288 } 01289 01290 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 01291 }; 01292 01293 template<class ContainerAllocator> 01294 struct Definition< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > { 01295 static const char* value() 01296 { 01297 return "\n\ 01298 \n\ 01299 ReactiveGraspResult result\n\ 01300 \n\ 01301 ================================================================================\n\ 01302 MSG: object_manipulation_msgs/ReactiveGraspResult\n\ 01303 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01304 \n\ 01305 # the result of the reactive grasp attempt\n\ 01306 \n\ 01307 ManipulationResult manipulation_result\n\ 01308 \n\ 01309 \n\ 01310 ================================================================================\n\ 01311 MSG: object_manipulation_msgs/ManipulationResult\n\ 01312 # Result codes for manipulation tasks\n\ 01313 \n\ 01314 # task completed as expected\n\ 01315 # generally means you can proceed as planned\n\ 01316 int32 SUCCESS = 1\n\ 01317 \n\ 01318 # task not possible (e.g. out of reach or obstacles in the way)\n\ 01319 # generally means that the world was not disturbed, so you can try another task\n\ 01320 int32 UNFEASIBLE = -1\n\ 01321 \n\ 01322 # task was thought possible, but failed due to unexpected events during execution\n\ 01323 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 01324 # your sensed world model before proceeding to another task\n\ 01325 int32 FAILED = -2\n\ 01326 \n\ 01327 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 01328 # generally requires human attention\n\ 01329 int32 ERROR = -3\n\ 01330 \n\ 01331 # means that at some point during execution we ended up in a state that the collision-aware\n\ 01332 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 01333 # probably need a new collision map to move the arm out of the stuck position\n\ 01334 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 01335 \n\ 01336 # specific to grasp actions\n\ 01337 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 01338 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 01339 int32 LIFT_FAILED = -5\n\ 01340 \n\ 01341 # specific to place actions\n\ 01342 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 01343 # it is likely that the collision environment will see collisions between the hand and the object\n\ 01344 int32 RETREAT_FAILED = -6\n\ 01345 \n\ 01346 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 01347 int32 CANCELLED = -7\n\ 01348 \n\ 01349 # the actual value of this error code\n\ 01350 int32 value\n\ 01351 \n\ 01352 "; 01353 } 01354 01355 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 01356 }; 01357 01358 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {}; 01359 } // namespace message_traits 01360 } // namespace ros 01361 01362 namespace ros 01363 { 01364 namespace serialization 01365 { 01366 01367 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > 01368 { 01369 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01370 { 01371 stream.next(m.goal); 01372 } 01373 01374 ROS_DECLARE_ALLINONE_SERIALIZER; 01375 }; // struct ReactiveGraspRequest_ 01376 } // namespace serialization 01377 } // namespace ros 01378 01379 01380 namespace ros 01381 { 01382 namespace serialization 01383 { 01384 01385 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > 01386 { 01387 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01388 { 01389 stream.next(m.result); 01390 } 01391 01392 ROS_DECLARE_ALLINONE_SERIALIZER; 01393 }; // struct ReactiveGraspResponse_ 01394 } // namespace serialization 01395 } // namespace ros 01396 01397 namespace ros 01398 { 01399 namespace service_traits 01400 { 01401 template<> 01402 struct MD5Sum<object_manipulation_msgs::ReactiveGrasp> { 01403 static const char* value() 01404 { 01405 return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; 01406 } 01407 01408 static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); } 01409 }; 01410 01411 template<> 01412 struct DataType<object_manipulation_msgs::ReactiveGrasp> { 01413 static const char* value() 01414 { 01415 return "object_manipulation_msgs/ReactiveGrasp"; 01416 } 01417 01418 static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); } 01419 }; 01420 01421 template<class ContainerAllocator> 01422 struct MD5Sum<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > { 01423 static const char* value() 01424 { 01425 return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; 01426 } 01427 01428 static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 01429 }; 01430 01431 template<class ContainerAllocator> 01432 struct DataType<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > { 01433 static const char* value() 01434 { 01435 return "object_manipulation_msgs/ReactiveGrasp"; 01436 } 01437 01438 static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 01439 }; 01440 01441 template<class ContainerAllocator> 01442 struct MD5Sum<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > { 01443 static const char* value() 01444 { 01445 return "4d5c2e842d2f6dbd7fc4253a66c2bb5f"; 01446 } 01447 01448 static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 01449 }; 01450 01451 template<class ContainerAllocator> 01452 struct DataType<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > { 01453 static const char* value() 01454 { 01455 return "object_manipulation_msgs/ReactiveGrasp"; 01456 } 01457 01458 static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 01459 }; 01460 01461 } // namespace service_traits 01462 } // namespace ros 01463 01464 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H 01465