00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "geometry_msgs/PoseStamped.h"
00019 #include "trajectory_msgs/JointTrajectory.h"
00020 #include "sensor_msgs/JointState.h"
00021 #include "sensor_msgs/JointState.h"
00022
00023 namespace object_manipulation_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct ReactiveGraspGoal_ {
00027 typedef ReactiveGraspGoal_<ContainerAllocator> Type;
00028
00029 ReactiveGraspGoal_()
00030 : arm_name()
00031 , target()
00032 , final_grasp_pose()
00033 , trajectory()
00034 , collision_support_surface_name()
00035 , pre_grasp_posture()
00036 , grasp_posture()
00037 , max_contact_force(0.0)
00038 {
00039 }
00040
00041 ReactiveGraspGoal_(const ContainerAllocator& _alloc)
00042 : arm_name(_alloc)
00043 , target(_alloc)
00044 , final_grasp_pose(_alloc)
00045 , trajectory(_alloc)
00046 , collision_support_surface_name(_alloc)
00047 , pre_grasp_posture(_alloc)
00048 , grasp_posture(_alloc)
00049 , max_contact_force(0.0)
00050 {
00051 }
00052
00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00055
00056 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00057 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00058
00059 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _final_grasp_pose_type;
00060 ::geometry_msgs::PoseStamped_<ContainerAllocator> final_grasp_pose;
00061
00062 typedef ::trajectory_msgs::JointTrajectory_<ContainerAllocator> _trajectory_type;
00063 ::trajectory_msgs::JointTrajectory_<ContainerAllocator> trajectory;
00064
00065 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00066 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00067
00068 typedef ::sensor_msgs::JointState_<ContainerAllocator> _pre_grasp_posture_type;
00069 ::sensor_msgs::JointState_<ContainerAllocator> pre_grasp_posture;
00070
00071 typedef ::sensor_msgs::JointState_<ContainerAllocator> _grasp_posture_type;
00072 ::sensor_msgs::JointState_<ContainerAllocator> grasp_posture;
00073
00074 typedef float _max_contact_force_type;
00075 float max_contact_force;
00076
00077
00078 private:
00079 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspGoal"; }
00080 public:
00081 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00082
00083 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00084
00085 private:
00086 static const char* __s_getMD5Sum_() { return "f48f8da93655260d66ea21ae9aaef12f"; }
00087 public:
00088 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00089
00090 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00091
00092 private:
00093 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00094 # an action for reactive grasping\n\
00095 # a reactive grasp starts from the current pose of the gripper and ends\n\
00096 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00097 \n\
00098 # the name of the arm being used\n\
00099 string arm_name\n\
00100 \n\
00101 # the object to be grasped\n\
00102 GraspableObject target\n\
00103 \n\
00104 # the desired grasp pose for the hand\n\
00105 geometry_msgs/PoseStamped final_grasp_pose\n\
00106 \n\
00107 # the joint trajectory to use for the approach (if available)\n\
00108 # this trajectory is expected to start at the current pose of the gripper\n\
00109 # and end at the desired grasp pose\n\
00110 trajectory_msgs/JointTrajectory trajectory\n\
00111 \n\
00112 # the name of the support surface in the collision environment, if any\n\
00113 string collision_support_surface_name\n\
00114 \n\
00115 # The internal posture of the hand for the pre-grasp\n\
00116 # only positions are used\n\
00117 sensor_msgs/JointState pre_grasp_posture\n\
00118 \n\
00119 # The internal posture of the hand for the grasp\n\
00120 # positions and efforts are used\n\
00121 sensor_msgs/JointState grasp_posture\n\
00122 \n\
00123 # The max contact force to use while grasping (<=0 to disable)\n\
00124 float32 max_contact_force\n\
00125 \n\
00126 \n\
00127 ================================================================================\n\
00128 MSG: object_manipulation_msgs/GraspableObject\n\
00129 # an object that the object_manipulator can work on\n\
00130 \n\
00131 # a graspable object can be represented in multiple ways. This message\n\
00132 # can contain all of them. Which one is actually used is up to the receiver\n\
00133 # of this message. When adding new representations, one must be careful that\n\
00134 # they have reasonable lightweight defaults indicating that that particular\n\
00135 # representation is not available.\n\
00136 \n\
00137 # the tf frame to be used as a reference frame when combining information from\n\
00138 # the different representations below\n\
00139 string reference_frame_id\n\
00140 \n\
00141 # potential recognition results from a database of models\n\
00142 # all poses are relative to the object reference pose\n\
00143 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00144 \n\
00145 # the point cloud itself\n\
00146 sensor_msgs/PointCloud cluster\n\
00147 \n\
00148 # a region of a PointCloud2 of interest\n\
00149 object_manipulation_msgs/SceneRegion region\n\
00150 \n\
00151 # the name that this object has in the collision environment\n\
00152 string collision_name\n\
00153 ================================================================================\n\
00154 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00155 # Informs that a specific model from the Model Database has been \n\
00156 # identified at a certain location\n\
00157 \n\
00158 # the database id of the model\n\
00159 int32 model_id\n\
00160 \n\
00161 # the pose that it can be found in\n\
00162 geometry_msgs/PoseStamped pose\n\
00163 \n\
00164 # a measure of the confidence level in this detection result\n\
00165 float32 confidence\n\
00166 \n\
00167 # the name of the object detector that generated this detection result\n\
00168 string detector_name\n\
00169 \n\
00170 ================================================================================\n\
00171 MSG: geometry_msgs/PoseStamped\n\
00172 # A Pose with reference coordinate frame and timestamp\n\
00173 Header header\n\
00174 Pose pose\n\
00175 \n\
00176 ================================================================================\n\
00177 MSG: std_msgs/Header\n\
00178 # Standard metadata for higher-level stamped data types.\n\
00179 # This is generally used to communicate timestamped data \n\
00180 # in a particular coordinate frame.\n\
00181 # \n\
00182 # sequence ID: consecutively increasing ID \n\
00183 uint32 seq\n\
00184 #Two-integer timestamp that is expressed as:\n\
00185 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00186 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00187 # time-handling sugar is provided by the client library\n\
00188 time stamp\n\
00189 #Frame this data is associated with\n\
00190 # 0: no frame\n\
00191 # 1: global frame\n\
00192 string frame_id\n\
00193 \n\
00194 ================================================================================\n\
00195 MSG: geometry_msgs/Pose\n\
00196 # A representation of pose in free space, composed of postion and orientation. \n\
00197 Point position\n\
00198 Quaternion orientation\n\
00199 \n\
00200 ================================================================================\n\
00201 MSG: geometry_msgs/Point\n\
00202 # This contains the position of a point in free space\n\
00203 float64 x\n\
00204 float64 y\n\
00205 float64 z\n\
00206 \n\
00207 ================================================================================\n\
00208 MSG: geometry_msgs/Quaternion\n\
00209 # This represents an orientation in free space in quaternion form.\n\
00210 \n\
00211 float64 x\n\
00212 float64 y\n\
00213 float64 z\n\
00214 float64 w\n\
00215 \n\
00216 ================================================================================\n\
00217 MSG: sensor_msgs/PointCloud\n\
00218 # This message holds a collection of 3d points, plus optional additional\n\
00219 # information about each point.\n\
00220 \n\
00221 # Time of sensor data acquisition, coordinate frame ID.\n\
00222 Header header\n\
00223 \n\
00224 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00225 # in the frame given in the header.\n\
00226 geometry_msgs/Point32[] points\n\
00227 \n\
00228 # Each channel should have the same number of elements as points array,\n\
00229 # and the data in each channel should correspond 1:1 with each point.\n\
00230 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00231 ChannelFloat32[] channels\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: geometry_msgs/Point32\n\
00235 # This contains the position of a point in free space(with 32 bits of precision).\n\
00236 # It is recommeded to use Point wherever possible instead of Point32. \n\
00237 # \n\
00238 # This recommendation is to promote interoperability. \n\
00239 #\n\
00240 # This message is designed to take up less space when sending\n\
00241 # lots of points at once, as in the case of a PointCloud. \n\
00242 \n\
00243 float32 x\n\
00244 float32 y\n\
00245 float32 z\n\
00246 ================================================================================\n\
00247 MSG: sensor_msgs/ChannelFloat32\n\
00248 # This message is used by the PointCloud message to hold optional data\n\
00249 # associated with each point in the cloud. The length of the values\n\
00250 # array should be the same as the length of the points array in the\n\
00251 # PointCloud, and each value should be associated with the corresponding\n\
00252 # point.\n\
00253 \n\
00254 # Channel names in existing practice include:\n\
00255 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00256 # This is opposite to usual conventions but remains for\n\
00257 # historical reasons. The newer PointCloud2 message has no\n\
00258 # such problem.\n\
00259 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00260 # (R,G,B) values packed into the least significant 24 bits,\n\
00261 # in order.\n\
00262 # \"intensity\" - laser or pixel intensity.\n\
00263 # \"distance\"\n\
00264 \n\
00265 # The channel name should give semantics of the channel (e.g.\n\
00266 # \"intensity\" instead of \"value\").\n\
00267 string name\n\
00268 \n\
00269 # The values array should be 1-1 with the elements of the associated\n\
00270 # PointCloud.\n\
00271 float32[] values\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: object_manipulation_msgs/SceneRegion\n\
00275 # Point cloud\n\
00276 sensor_msgs/PointCloud2 cloud\n\
00277 \n\
00278 # Indices for the region of interest\n\
00279 int32[] mask\n\
00280 \n\
00281 # One of the corresponding 2D images, if applicable\n\
00282 sensor_msgs/Image image\n\
00283 \n\
00284 # The disparity image, if applicable\n\
00285 sensor_msgs/Image disparity_image\n\
00286 \n\
00287 # Camera info for the camera that took the image\n\
00288 sensor_msgs/CameraInfo cam_info\n\
00289 \n\
00290 # a 3D region of interest for grasp planning\n\
00291 geometry_msgs/PoseStamped roi_box_pose\n\
00292 geometry_msgs/Vector3 roi_box_dims\n\
00293 \n\
00294 ================================================================================\n\
00295 MSG: sensor_msgs/PointCloud2\n\
00296 # This message holds a collection of N-dimensional points, which may\n\
00297 # contain additional information such as normals, intensity, etc. The\n\
00298 # point data is stored as a binary blob, its layout described by the\n\
00299 # contents of the \"fields\" array.\n\
00300 \n\
00301 # The point cloud data may be organized 2d (image-like) or 1d\n\
00302 # (unordered). Point clouds organized as 2d images may be produced by\n\
00303 # camera depth sensors such as stereo or time-of-flight.\n\
00304 \n\
00305 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00306 # points).\n\
00307 Header header\n\
00308 \n\
00309 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00310 # 1 and width is the length of the point cloud.\n\
00311 uint32 height\n\
00312 uint32 width\n\
00313 \n\
00314 # Describes the channels and their layout in the binary data blob.\n\
00315 PointField[] fields\n\
00316 \n\
00317 bool is_bigendian # Is this data bigendian?\n\
00318 uint32 point_step # Length of a point in bytes\n\
00319 uint32 row_step # Length of a row in bytes\n\
00320 uint8[] data # Actual point data, size is (row_step*height)\n\
00321 \n\
00322 bool is_dense # True if there are no invalid points\n\
00323 \n\
00324 ================================================================================\n\
00325 MSG: sensor_msgs/PointField\n\
00326 # This message holds the description of one point entry in the\n\
00327 # PointCloud2 message format.\n\
00328 uint8 INT8 = 1\n\
00329 uint8 UINT8 = 2\n\
00330 uint8 INT16 = 3\n\
00331 uint8 UINT16 = 4\n\
00332 uint8 INT32 = 5\n\
00333 uint8 UINT32 = 6\n\
00334 uint8 FLOAT32 = 7\n\
00335 uint8 FLOAT64 = 8\n\
00336 \n\
00337 string name # Name of field\n\
00338 uint32 offset # Offset from start of point struct\n\
00339 uint8 datatype # Datatype enumeration, see above\n\
00340 uint32 count # How many elements in the field\n\
00341 \n\
00342 ================================================================================\n\
00343 MSG: sensor_msgs/Image\n\
00344 # This message contains an uncompressed image\n\
00345 # (0, 0) is at top-left corner of image\n\
00346 #\n\
00347 \n\
00348 Header header # Header timestamp should be acquisition time of image\n\
00349 # Header frame_id should be optical frame of camera\n\
00350 # origin of frame should be optical center of cameara\n\
00351 # +x should point to the right in the image\n\
00352 # +y should point down in the image\n\
00353 # +z should point into to plane of the image\n\
00354 # If the frame_id here and the frame_id of the CameraInfo\n\
00355 # message associated with the image conflict\n\
00356 # the behavior is undefined\n\
00357 \n\
00358 uint32 height # image height, that is, number of rows\n\
00359 uint32 width # image width, that is, number of columns\n\
00360 \n\
00361 # The legal values for encoding are in file src/image_encodings.cpp\n\
00362 # If you want to standardize a new string format, join\n\
00363 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00364 \n\
00365 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00366 # taken from the list of strings in src/image_encodings.cpp\n\
00367 \n\
00368 uint8 is_bigendian # is this data bigendian?\n\
00369 uint32 step # Full row length in bytes\n\
00370 uint8[] data # actual matrix data, size is (step * rows)\n\
00371 \n\
00372 ================================================================================\n\
00373 MSG: sensor_msgs/CameraInfo\n\
00374 # This message defines meta information for a camera. It should be in a\n\
00375 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00376 # image topics named:\n\
00377 #\n\
00378 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00379 # image - monochrome, distorted\n\
00380 # image_color - color, distorted\n\
00381 # image_rect - monochrome, rectified\n\
00382 # image_rect_color - color, rectified\n\
00383 #\n\
00384 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00385 # for producing the four processed image topics from image_raw and\n\
00386 # camera_info. The meaning of the camera parameters are described in\n\
00387 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00388 #\n\
00389 # The image_geometry package provides a user-friendly interface to\n\
00390 # common operations using this meta information. If you want to, e.g.,\n\
00391 # project a 3d point into image coordinates, we strongly recommend\n\
00392 # using image_geometry.\n\
00393 #\n\
00394 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00395 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00396 # indicates an uncalibrated camera.\n\
00397 \n\
00398 #######################################################################\n\
00399 # Image acquisition info #\n\
00400 #######################################################################\n\
00401 \n\
00402 # Time of image acquisition, camera coordinate frame ID\n\
00403 Header header # Header timestamp should be acquisition time of image\n\
00404 # Header frame_id should be optical frame of camera\n\
00405 # origin of frame should be optical center of camera\n\
00406 # +x should point to the right in the image\n\
00407 # +y should point down in the image\n\
00408 # +z should point into the plane of the image\n\
00409 \n\
00410 \n\
00411 #######################################################################\n\
00412 # Calibration Parameters #\n\
00413 #######################################################################\n\
00414 # These are fixed during camera calibration. Their values will be the #\n\
00415 # same in all messages until the camera is recalibrated. Note that #\n\
00416 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00417 # #\n\
00418 # The internal parameters can be used to warp a raw (distorted) image #\n\
00419 # to: #\n\
00420 # 1. An undistorted image (requires D and K) #\n\
00421 # 2. A rectified image (requires D, K, R) #\n\
00422 # The projection matrix P projects 3D points into the rectified image.#\n\
00423 #######################################################################\n\
00424 \n\
00425 # The image dimensions with which the camera was calibrated. Normally\n\
00426 # this will be the full camera resolution in pixels.\n\
00427 uint32 height\n\
00428 uint32 width\n\
00429 \n\
00430 # The distortion model used. Supported models are listed in\n\
00431 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00432 # simple model of radial and tangential distortion - is sufficent.\n\
00433 string distortion_model\n\
00434 \n\
00435 # The distortion parameters, size depending on the distortion model.\n\
00436 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00437 float64[] D\n\
00438 \n\
00439 # Intrinsic camera matrix for the raw (distorted) images.\n\
00440 # [fx 0 cx]\n\
00441 # K = [ 0 fy cy]\n\
00442 # [ 0 0 1]\n\
00443 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00444 # coordinates using the focal lengths (fx, fy) and principal point\n\
00445 # (cx, cy).\n\
00446 float64[9] K # 3x3 row-major matrix\n\
00447 \n\
00448 # Rectification matrix (stereo cameras only)\n\
00449 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00450 # stereo image plane so that epipolar lines in both stereo images are\n\
00451 # parallel.\n\
00452 float64[9] R # 3x3 row-major matrix\n\
00453 \n\
00454 # Projection/camera matrix\n\
00455 # [fx' 0 cx' Tx]\n\
00456 # P = [ 0 fy' cy' Ty]\n\
00457 # [ 0 0 1 0]\n\
00458 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00459 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00460 # is the normal camera intrinsic matrix for the rectified image.\n\
00461 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00462 # coordinates using the focal lengths (fx', fy') and principal point\n\
00463 # (cx', cy') - these may differ from the values in K.\n\
00464 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00465 # also have R = the identity and P[1:3,1:3] = K.\n\
00466 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00467 # position of the optical center of the second camera in the first\n\
00468 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00469 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00470 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00471 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00472 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00473 # the rectified image is given by:\n\
00474 # [u v w]' = P * [X Y Z 1]'\n\
00475 # x = u / w\n\
00476 # y = v / w\n\
00477 # This holds for both images of a stereo pair.\n\
00478 float64[12] P # 3x4 row-major matrix\n\
00479 \n\
00480 \n\
00481 #######################################################################\n\
00482 # Operational Parameters #\n\
00483 #######################################################################\n\
00484 # These define the image region actually captured by the camera #\n\
00485 # driver. Although they affect the geometry of the output image, they #\n\
00486 # may be changed freely without recalibrating the camera. #\n\
00487 #######################################################################\n\
00488 \n\
00489 # Binning refers here to any camera setting which combines rectangular\n\
00490 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00491 # resolution of the output image to\n\
00492 # (width / binning_x) x (height / binning_y).\n\
00493 # The default values binning_x = binning_y = 0 is considered the same\n\
00494 # as binning_x = binning_y = 1 (no subsampling).\n\
00495 uint32 binning_x\n\
00496 uint32 binning_y\n\
00497 \n\
00498 # Region of interest (subwindow of full camera resolution), given in\n\
00499 # full resolution (unbinned) image coordinates. A particular ROI\n\
00500 # always denotes the same window of pixels on the camera sensor,\n\
00501 # regardless of binning settings.\n\
00502 # The default setting of roi (all values 0) is considered the same as\n\
00503 # full resolution (roi.width = width, roi.height = height).\n\
00504 RegionOfInterest roi\n\
00505 \n\
00506 ================================================================================\n\
00507 MSG: sensor_msgs/RegionOfInterest\n\
00508 # This message is used to specify a region of interest within an image.\n\
00509 #\n\
00510 # When used to specify the ROI setting of the camera when the image was\n\
00511 # taken, the height and width fields should either match the height and\n\
00512 # width fields for the associated image; or height = width = 0\n\
00513 # indicates that the full resolution image was captured.\n\
00514 \n\
00515 uint32 x_offset # Leftmost pixel of the ROI\n\
00516 # (0 if the ROI includes the left edge of the image)\n\
00517 uint32 y_offset # Topmost pixel of the ROI\n\
00518 # (0 if the ROI includes the top edge of the image)\n\
00519 uint32 height # Height of ROI\n\
00520 uint32 width # Width of ROI\n\
00521 \n\
00522 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00523 # ROI in this message. Typically this should be False if the full image\n\
00524 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00525 # used).\n\
00526 bool do_rectify\n\
00527 \n\
00528 ================================================================================\n\
00529 MSG: geometry_msgs/Vector3\n\
00530 # This represents a vector in free space. \n\
00531 \n\
00532 float64 x\n\
00533 float64 y\n\
00534 float64 z\n\
00535 ================================================================================\n\
00536 MSG: trajectory_msgs/JointTrajectory\n\
00537 Header header\n\
00538 string[] joint_names\n\
00539 JointTrajectoryPoint[] points\n\
00540 ================================================================================\n\
00541 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00542 float64[] positions\n\
00543 float64[] velocities\n\
00544 float64[] accelerations\n\
00545 duration time_from_start\n\
00546 ================================================================================\n\
00547 MSG: sensor_msgs/JointState\n\
00548 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00549 #\n\
00550 # The state of each joint (revolute or prismatic) is defined by:\n\
00551 # * the position of the joint (rad or m),\n\
00552 # * the velocity of the joint (rad/s or m/s) and \n\
00553 # * the effort that is applied in the joint (Nm or N).\n\
00554 #\n\
00555 # Each joint is uniquely identified by its name\n\
00556 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00557 # in one message have to be recorded at the same time.\n\
00558 #\n\
00559 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00560 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00561 # effort associated with them, you can leave the effort array empty. \n\
00562 #\n\
00563 # All arrays in this message should have the same size, or be empty.\n\
00564 # This is the only way to uniquely associate the joint name with the correct\n\
00565 # states.\n\
00566 \n\
00567 \n\
00568 Header header\n\
00569 \n\
00570 string[] name\n\
00571 float64[] position\n\
00572 float64[] velocity\n\
00573 float64[] effort\n\
00574 \n\
00575 "; }
00576 public:
00577 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00578
00579 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00580
00581 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00582 {
00583 ros::serialization::OStream stream(write_ptr, 1000000000);
00584 ros::serialization::serialize(stream, arm_name);
00585 ros::serialization::serialize(stream, target);
00586 ros::serialization::serialize(stream, final_grasp_pose);
00587 ros::serialization::serialize(stream, trajectory);
00588 ros::serialization::serialize(stream, collision_support_surface_name);
00589 ros::serialization::serialize(stream, pre_grasp_posture);
00590 ros::serialization::serialize(stream, grasp_posture);
00591 ros::serialization::serialize(stream, max_contact_force);
00592 return stream.getData();
00593 }
00594
00595 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00596 {
00597 ros::serialization::IStream stream(read_ptr, 1000000000);
00598 ros::serialization::deserialize(stream, arm_name);
00599 ros::serialization::deserialize(stream, target);
00600 ros::serialization::deserialize(stream, final_grasp_pose);
00601 ros::serialization::deserialize(stream, trajectory);
00602 ros::serialization::deserialize(stream, collision_support_surface_name);
00603 ros::serialization::deserialize(stream, pre_grasp_posture);
00604 ros::serialization::deserialize(stream, grasp_posture);
00605 ros::serialization::deserialize(stream, max_contact_force);
00606 return stream.getData();
00607 }
00608
00609 ROS_DEPRECATED virtual uint32_t serializationLength() const
00610 {
00611 uint32_t size = 0;
00612 size += ros::serialization::serializationLength(arm_name);
00613 size += ros::serialization::serializationLength(target);
00614 size += ros::serialization::serializationLength(final_grasp_pose);
00615 size += ros::serialization::serializationLength(trajectory);
00616 size += ros::serialization::serializationLength(collision_support_surface_name);
00617 size += ros::serialization::serializationLength(pre_grasp_posture);
00618 size += ros::serialization::serializationLength(grasp_posture);
00619 size += ros::serialization::serializationLength(max_contact_force);
00620 return size;
00621 }
00622
00623 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > Ptr;
00624 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> const> ConstPtr;
00625 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00626 };
00627 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<std::allocator<void> > ReactiveGraspGoal;
00628
00629 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal> ReactiveGraspGoalPtr;
00630 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal const> ReactiveGraspGoalConstPtr;
00631
00632
00633 template<typename ContainerAllocator>
00634 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v)
00635 {
00636 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, "", v);
00637 return s;}
00638
00639 }
00640
00641 namespace ros
00642 {
00643 namespace message_traits
00644 {
00645 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > : public TrueType {};
00646 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> const> : public TrueType {};
00647 template<class ContainerAllocator>
00648 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00649 static const char* value()
00650 {
00651 return "f48f8da93655260d66ea21ae9aaef12f";
00652 }
00653
00654 static const char* value(const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); }
00655 static const uint64_t static_value1 = 0xf48f8da93655260dULL;
00656 static const uint64_t static_value2 = 0x66ea21ae9aaef12fULL;
00657 };
00658
00659 template<class ContainerAllocator>
00660 struct DataType< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00661 static const char* value()
00662 {
00663 return "object_manipulation_msgs/ReactiveGraspGoal";
00664 }
00665
00666 static const char* value(const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); }
00667 };
00668
00669 template<class ContainerAllocator>
00670 struct Definition< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00671 static const char* value()
00672 {
00673 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00674 # an action for reactive grasping\n\
00675 # a reactive grasp starts from the current pose of the gripper and ends\n\
00676 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00677 \n\
00678 # the name of the arm being used\n\
00679 string arm_name\n\
00680 \n\
00681 # the object to be grasped\n\
00682 GraspableObject target\n\
00683 \n\
00684 # the desired grasp pose for the hand\n\
00685 geometry_msgs/PoseStamped final_grasp_pose\n\
00686 \n\
00687 # the joint trajectory to use for the approach (if available)\n\
00688 # this trajectory is expected to start at the current pose of the gripper\n\
00689 # and end at the desired grasp pose\n\
00690 trajectory_msgs/JointTrajectory trajectory\n\
00691 \n\
00692 # the name of the support surface in the collision environment, if any\n\
00693 string collision_support_surface_name\n\
00694 \n\
00695 # The internal posture of the hand for the pre-grasp\n\
00696 # only positions are used\n\
00697 sensor_msgs/JointState pre_grasp_posture\n\
00698 \n\
00699 # The internal posture of the hand for the grasp\n\
00700 # positions and efforts are used\n\
00701 sensor_msgs/JointState grasp_posture\n\
00702 \n\
00703 # The max contact force to use while grasping (<=0 to disable)\n\
00704 float32 max_contact_force\n\
00705 \n\
00706 \n\
00707 ================================================================================\n\
00708 MSG: object_manipulation_msgs/GraspableObject\n\
00709 # an object that the object_manipulator can work on\n\
00710 \n\
00711 # a graspable object can be represented in multiple ways. This message\n\
00712 # can contain all of them. Which one is actually used is up to the receiver\n\
00713 # of this message. When adding new representations, one must be careful that\n\
00714 # they have reasonable lightweight defaults indicating that that particular\n\
00715 # representation is not available.\n\
00716 \n\
00717 # the tf frame to be used as a reference frame when combining information from\n\
00718 # the different representations below\n\
00719 string reference_frame_id\n\
00720 \n\
00721 # potential recognition results from a database of models\n\
00722 # all poses are relative to the object reference pose\n\
00723 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00724 \n\
00725 # the point cloud itself\n\
00726 sensor_msgs/PointCloud cluster\n\
00727 \n\
00728 # a region of a PointCloud2 of interest\n\
00729 object_manipulation_msgs/SceneRegion region\n\
00730 \n\
00731 # the name that this object has in the collision environment\n\
00732 string collision_name\n\
00733 ================================================================================\n\
00734 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00735 # Informs that a specific model from the Model Database has been \n\
00736 # identified at a certain location\n\
00737 \n\
00738 # the database id of the model\n\
00739 int32 model_id\n\
00740 \n\
00741 # the pose that it can be found in\n\
00742 geometry_msgs/PoseStamped pose\n\
00743 \n\
00744 # a measure of the confidence level in this detection result\n\
00745 float32 confidence\n\
00746 \n\
00747 # the name of the object detector that generated this detection result\n\
00748 string detector_name\n\
00749 \n\
00750 ================================================================================\n\
00751 MSG: geometry_msgs/PoseStamped\n\
00752 # A Pose with reference coordinate frame and timestamp\n\
00753 Header header\n\
00754 Pose pose\n\
00755 \n\
00756 ================================================================================\n\
00757 MSG: std_msgs/Header\n\
00758 # Standard metadata for higher-level stamped data types.\n\
00759 # This is generally used to communicate timestamped data \n\
00760 # in a particular coordinate frame.\n\
00761 # \n\
00762 # sequence ID: consecutively increasing ID \n\
00763 uint32 seq\n\
00764 #Two-integer timestamp that is expressed as:\n\
00765 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00766 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00767 # time-handling sugar is provided by the client library\n\
00768 time stamp\n\
00769 #Frame this data is associated with\n\
00770 # 0: no frame\n\
00771 # 1: global frame\n\
00772 string frame_id\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: geometry_msgs/Pose\n\
00776 # A representation of pose in free space, composed of postion and orientation. \n\
00777 Point position\n\
00778 Quaternion orientation\n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: geometry_msgs/Point\n\
00782 # This contains the position of a point in free space\n\
00783 float64 x\n\
00784 float64 y\n\
00785 float64 z\n\
00786 \n\
00787 ================================================================================\n\
00788 MSG: geometry_msgs/Quaternion\n\
00789 # This represents an orientation in free space in quaternion form.\n\
00790 \n\
00791 float64 x\n\
00792 float64 y\n\
00793 float64 z\n\
00794 float64 w\n\
00795 \n\
00796 ================================================================================\n\
00797 MSG: sensor_msgs/PointCloud\n\
00798 # This message holds a collection of 3d points, plus optional additional\n\
00799 # information about each point.\n\
00800 \n\
00801 # Time of sensor data acquisition, coordinate frame ID.\n\
00802 Header header\n\
00803 \n\
00804 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00805 # in the frame given in the header.\n\
00806 geometry_msgs/Point32[] points\n\
00807 \n\
00808 # Each channel should have the same number of elements as points array,\n\
00809 # and the data in each channel should correspond 1:1 with each point.\n\
00810 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00811 ChannelFloat32[] channels\n\
00812 \n\
00813 ================================================================================\n\
00814 MSG: geometry_msgs/Point32\n\
00815 # This contains the position of a point in free space(with 32 bits of precision).\n\
00816 # It is recommeded to use Point wherever possible instead of Point32. \n\
00817 # \n\
00818 # This recommendation is to promote interoperability. \n\
00819 #\n\
00820 # This message is designed to take up less space when sending\n\
00821 # lots of points at once, as in the case of a PointCloud. \n\
00822 \n\
00823 float32 x\n\
00824 float32 y\n\
00825 float32 z\n\
00826 ================================================================================\n\
00827 MSG: sensor_msgs/ChannelFloat32\n\
00828 # This message is used by the PointCloud message to hold optional data\n\
00829 # associated with each point in the cloud. The length of the values\n\
00830 # array should be the same as the length of the points array in the\n\
00831 # PointCloud, and each value should be associated with the corresponding\n\
00832 # point.\n\
00833 \n\
00834 # Channel names in existing practice include:\n\
00835 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00836 # This is opposite to usual conventions but remains for\n\
00837 # historical reasons. The newer PointCloud2 message has no\n\
00838 # such problem.\n\
00839 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00840 # (R,G,B) values packed into the least significant 24 bits,\n\
00841 # in order.\n\
00842 # \"intensity\" - laser or pixel intensity.\n\
00843 # \"distance\"\n\
00844 \n\
00845 # The channel name should give semantics of the channel (e.g.\n\
00846 # \"intensity\" instead of \"value\").\n\
00847 string name\n\
00848 \n\
00849 # The values array should be 1-1 with the elements of the associated\n\
00850 # PointCloud.\n\
00851 float32[] values\n\
00852 \n\
00853 ================================================================================\n\
00854 MSG: object_manipulation_msgs/SceneRegion\n\
00855 # Point cloud\n\
00856 sensor_msgs/PointCloud2 cloud\n\
00857 \n\
00858 # Indices for the region of interest\n\
00859 int32[] mask\n\
00860 \n\
00861 # One of the corresponding 2D images, if applicable\n\
00862 sensor_msgs/Image image\n\
00863 \n\
00864 # The disparity image, if applicable\n\
00865 sensor_msgs/Image disparity_image\n\
00866 \n\
00867 # Camera info for the camera that took the image\n\
00868 sensor_msgs/CameraInfo cam_info\n\
00869 \n\
00870 # a 3D region of interest for grasp planning\n\
00871 geometry_msgs/PoseStamped roi_box_pose\n\
00872 geometry_msgs/Vector3 roi_box_dims\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: sensor_msgs/PointCloud2\n\
00876 # This message holds a collection of N-dimensional points, which may\n\
00877 # contain additional information such as normals, intensity, etc. The\n\
00878 # point data is stored as a binary blob, its layout described by the\n\
00879 # contents of the \"fields\" array.\n\
00880 \n\
00881 # The point cloud data may be organized 2d (image-like) or 1d\n\
00882 # (unordered). Point clouds organized as 2d images may be produced by\n\
00883 # camera depth sensors such as stereo or time-of-flight.\n\
00884 \n\
00885 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00886 # points).\n\
00887 Header header\n\
00888 \n\
00889 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00890 # 1 and width is the length of the point cloud.\n\
00891 uint32 height\n\
00892 uint32 width\n\
00893 \n\
00894 # Describes the channels and their layout in the binary data blob.\n\
00895 PointField[] fields\n\
00896 \n\
00897 bool is_bigendian # Is this data bigendian?\n\
00898 uint32 point_step # Length of a point in bytes\n\
00899 uint32 row_step # Length of a row in bytes\n\
00900 uint8[] data # Actual point data, size is (row_step*height)\n\
00901 \n\
00902 bool is_dense # True if there are no invalid points\n\
00903 \n\
00904 ================================================================================\n\
00905 MSG: sensor_msgs/PointField\n\
00906 # This message holds the description of one point entry in the\n\
00907 # PointCloud2 message format.\n\
00908 uint8 INT8 = 1\n\
00909 uint8 UINT8 = 2\n\
00910 uint8 INT16 = 3\n\
00911 uint8 UINT16 = 4\n\
00912 uint8 INT32 = 5\n\
00913 uint8 UINT32 = 6\n\
00914 uint8 FLOAT32 = 7\n\
00915 uint8 FLOAT64 = 8\n\
00916 \n\
00917 string name # Name of field\n\
00918 uint32 offset # Offset from start of point struct\n\
00919 uint8 datatype # Datatype enumeration, see above\n\
00920 uint32 count # How many elements in the field\n\
00921 \n\
00922 ================================================================================\n\
00923 MSG: sensor_msgs/Image\n\
00924 # This message contains an uncompressed image\n\
00925 # (0, 0) is at top-left corner of image\n\
00926 #\n\
00927 \n\
00928 Header header # Header timestamp should be acquisition time of image\n\
00929 # Header frame_id should be optical frame of camera\n\
00930 # origin of frame should be optical center of cameara\n\
00931 # +x should point to the right in the image\n\
00932 # +y should point down in the image\n\
00933 # +z should point into to plane of the image\n\
00934 # If the frame_id here and the frame_id of the CameraInfo\n\
00935 # message associated with the image conflict\n\
00936 # the behavior is undefined\n\
00937 \n\
00938 uint32 height # image height, that is, number of rows\n\
00939 uint32 width # image width, that is, number of columns\n\
00940 \n\
00941 # The legal values for encoding are in file src/image_encodings.cpp\n\
00942 # If you want to standardize a new string format, join\n\
00943 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00944 \n\
00945 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00946 # taken from the list of strings in src/image_encodings.cpp\n\
00947 \n\
00948 uint8 is_bigendian # is this data bigendian?\n\
00949 uint32 step # Full row length in bytes\n\
00950 uint8[] data # actual matrix data, size is (step * rows)\n\
00951 \n\
00952 ================================================================================\n\
00953 MSG: sensor_msgs/CameraInfo\n\
00954 # This message defines meta information for a camera. It should be in a\n\
00955 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00956 # image topics named:\n\
00957 #\n\
00958 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00959 # image - monochrome, distorted\n\
00960 # image_color - color, distorted\n\
00961 # image_rect - monochrome, rectified\n\
00962 # image_rect_color - color, rectified\n\
00963 #\n\
00964 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00965 # for producing the four processed image topics from image_raw and\n\
00966 # camera_info. The meaning of the camera parameters are described in\n\
00967 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00968 #\n\
00969 # The image_geometry package provides a user-friendly interface to\n\
00970 # common operations using this meta information. If you want to, e.g.,\n\
00971 # project a 3d point into image coordinates, we strongly recommend\n\
00972 # using image_geometry.\n\
00973 #\n\
00974 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00975 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00976 # indicates an uncalibrated camera.\n\
00977 \n\
00978 #######################################################################\n\
00979 # Image acquisition info #\n\
00980 #######################################################################\n\
00981 \n\
00982 # Time of image acquisition, camera coordinate frame ID\n\
00983 Header header # Header timestamp should be acquisition time of image\n\
00984 # Header frame_id should be optical frame of camera\n\
00985 # origin of frame should be optical center of camera\n\
00986 # +x should point to the right in the image\n\
00987 # +y should point down in the image\n\
00988 # +z should point into the plane of the image\n\
00989 \n\
00990 \n\
00991 #######################################################################\n\
00992 # Calibration Parameters #\n\
00993 #######################################################################\n\
00994 # These are fixed during camera calibration. Their values will be the #\n\
00995 # same in all messages until the camera is recalibrated. Note that #\n\
00996 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00997 # #\n\
00998 # The internal parameters can be used to warp a raw (distorted) image #\n\
00999 # to: #\n\
01000 # 1. An undistorted image (requires D and K) #\n\
01001 # 2. A rectified image (requires D, K, R) #\n\
01002 # The projection matrix P projects 3D points into the rectified image.#\n\
01003 #######################################################################\n\
01004 \n\
01005 # The image dimensions with which the camera was calibrated. Normally\n\
01006 # this will be the full camera resolution in pixels.\n\
01007 uint32 height\n\
01008 uint32 width\n\
01009 \n\
01010 # The distortion model used. Supported models are listed in\n\
01011 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01012 # simple model of radial and tangential distortion - is sufficent.\n\
01013 string distortion_model\n\
01014 \n\
01015 # The distortion parameters, size depending on the distortion model.\n\
01016 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01017 float64[] D\n\
01018 \n\
01019 # Intrinsic camera matrix for the raw (distorted) images.\n\
01020 # [fx 0 cx]\n\
01021 # K = [ 0 fy cy]\n\
01022 # [ 0 0 1]\n\
01023 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01024 # coordinates using the focal lengths (fx, fy) and principal point\n\
01025 # (cx, cy).\n\
01026 float64[9] K # 3x3 row-major matrix\n\
01027 \n\
01028 # Rectification matrix (stereo cameras only)\n\
01029 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01030 # stereo image plane so that epipolar lines in both stereo images are\n\
01031 # parallel.\n\
01032 float64[9] R # 3x3 row-major matrix\n\
01033 \n\
01034 # Projection/camera matrix\n\
01035 # [fx' 0 cx' Tx]\n\
01036 # P = [ 0 fy' cy' Ty]\n\
01037 # [ 0 0 1 0]\n\
01038 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01039 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01040 # is the normal camera intrinsic matrix for the rectified image.\n\
01041 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01042 # coordinates using the focal lengths (fx', fy') and principal point\n\
01043 # (cx', cy') - these may differ from the values in K.\n\
01044 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01045 # also have R = the identity and P[1:3,1:3] = K.\n\
01046 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01047 # position of the optical center of the second camera in the first\n\
01048 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01049 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01050 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01051 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01052 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01053 # the rectified image is given by:\n\
01054 # [u v w]' = P * [X Y Z 1]'\n\
01055 # x = u / w\n\
01056 # y = v / w\n\
01057 # This holds for both images of a stereo pair.\n\
01058 float64[12] P # 3x4 row-major matrix\n\
01059 \n\
01060 \n\
01061 #######################################################################\n\
01062 # Operational Parameters #\n\
01063 #######################################################################\n\
01064 # These define the image region actually captured by the camera #\n\
01065 # driver. Although they affect the geometry of the output image, they #\n\
01066 # may be changed freely without recalibrating the camera. #\n\
01067 #######################################################################\n\
01068 \n\
01069 # Binning refers here to any camera setting which combines rectangular\n\
01070 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01071 # resolution of the output image to\n\
01072 # (width / binning_x) x (height / binning_y).\n\
01073 # The default values binning_x = binning_y = 0 is considered the same\n\
01074 # as binning_x = binning_y = 1 (no subsampling).\n\
01075 uint32 binning_x\n\
01076 uint32 binning_y\n\
01077 \n\
01078 # Region of interest (subwindow of full camera resolution), given in\n\
01079 # full resolution (unbinned) image coordinates. A particular ROI\n\
01080 # always denotes the same window of pixels on the camera sensor,\n\
01081 # regardless of binning settings.\n\
01082 # The default setting of roi (all values 0) is considered the same as\n\
01083 # full resolution (roi.width = width, roi.height = height).\n\
01084 RegionOfInterest roi\n\
01085 \n\
01086 ================================================================================\n\
01087 MSG: sensor_msgs/RegionOfInterest\n\
01088 # This message is used to specify a region of interest within an image.\n\
01089 #\n\
01090 # When used to specify the ROI setting of the camera when the image was\n\
01091 # taken, the height and width fields should either match the height and\n\
01092 # width fields for the associated image; or height = width = 0\n\
01093 # indicates that the full resolution image was captured.\n\
01094 \n\
01095 uint32 x_offset # Leftmost pixel of the ROI\n\
01096 # (0 if the ROI includes the left edge of the image)\n\
01097 uint32 y_offset # Topmost pixel of the ROI\n\
01098 # (0 if the ROI includes the top edge of the image)\n\
01099 uint32 height # Height of ROI\n\
01100 uint32 width # Width of ROI\n\
01101 \n\
01102 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01103 # ROI in this message. Typically this should be False if the full image\n\
01104 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01105 # used).\n\
01106 bool do_rectify\n\
01107 \n\
01108 ================================================================================\n\
01109 MSG: geometry_msgs/Vector3\n\
01110 # This represents a vector in free space. \n\
01111 \n\
01112 float64 x\n\
01113 float64 y\n\
01114 float64 z\n\
01115 ================================================================================\n\
01116 MSG: trajectory_msgs/JointTrajectory\n\
01117 Header header\n\
01118 string[] joint_names\n\
01119 JointTrajectoryPoint[] points\n\
01120 ================================================================================\n\
01121 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01122 float64[] positions\n\
01123 float64[] velocities\n\
01124 float64[] accelerations\n\
01125 duration time_from_start\n\
01126 ================================================================================\n\
01127 MSG: sensor_msgs/JointState\n\
01128 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01129 #\n\
01130 # The state of each joint (revolute or prismatic) is defined by:\n\
01131 # * the position of the joint (rad or m),\n\
01132 # * the velocity of the joint (rad/s or m/s) and \n\
01133 # * the effort that is applied in the joint (Nm or N).\n\
01134 #\n\
01135 # Each joint is uniquely identified by its name\n\
01136 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01137 # in one message have to be recorded at the same time.\n\
01138 #\n\
01139 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01140 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01141 # effort associated with them, you can leave the effort array empty. \n\
01142 #\n\
01143 # All arrays in this message should have the same size, or be empty.\n\
01144 # This is the only way to uniquely associate the joint name with the correct\n\
01145 # states.\n\
01146 \n\
01147 \n\
01148 Header header\n\
01149 \n\
01150 string[] name\n\
01151 float64[] position\n\
01152 float64[] velocity\n\
01153 float64[] effort\n\
01154 \n\
01155 ";
01156 }
01157
01158 static const char* value(const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); }
01159 };
01160
01161 }
01162 }
01163
01164 namespace ros
01165 {
01166 namespace serialization
01167 {
01168
01169 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
01170 {
01171 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01172 {
01173 stream.next(m.arm_name);
01174 stream.next(m.target);
01175 stream.next(m.final_grasp_pose);
01176 stream.next(m.trajectory);
01177 stream.next(m.collision_support_surface_name);
01178 stream.next(m.pre_grasp_posture);
01179 stream.next(m.grasp_posture);
01180 stream.next(m.max_contact_force);
01181 }
01182
01183 ROS_DECLARE_ALLINONE_SERIALIZER;
01184 };
01185 }
01186 }
01187
01188 namespace ros
01189 {
01190 namespace message_operations
01191 {
01192
01193 template<class ContainerAllocator>
01194 struct Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
01195 {
01196 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v)
01197 {
01198 s << indent << "arm_name: ";
01199 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01200 s << indent << "target: ";
01201 s << std::endl;
01202 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
01203 s << indent << "final_grasp_pose: ";
01204 s << std::endl;
01205 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.final_grasp_pose);
01206 s << indent << "trajectory: ";
01207 s << std::endl;
01208 Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + " ", v.trajectory);
01209 s << indent << "collision_support_surface_name: ";
01210 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01211 s << indent << "pre_grasp_posture: ";
01212 s << std::endl;
01213 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.pre_grasp_posture);
01214 s << indent << "grasp_posture: ";
01215 s << std::endl;
01216 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_posture);
01217 s << indent << "max_contact_force: ";
01218 Printer<float>::stream(s, indent + " ", v.max_contact_force);
01219 }
01220 };
01221
01222
01223 }
01224 }
01225
01226 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
01227