$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/srv/PlacePlanning.srv */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H 00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "object_manipulation_msgs/GraspableObject.h" 00020 #include "geometry_msgs/Quaternion.h" 00021 #include "geometry_msgs/Pose.h" 00022 00023 00024 #include "geometry_msgs/PoseStamped.h" 00025 #include "object_manipulation_msgs/GraspPlanningErrorCode.h" 00026 00027 namespace object_manipulation_msgs 00028 { 00029 template <class ContainerAllocator> 00030 struct PlacePlanningRequest_ { 00031 typedef PlacePlanningRequest_<ContainerAllocator> Type; 00032 00033 PlacePlanningRequest_() 00034 : arm_name() 00035 , target() 00036 , default_orientation() 00037 , grasp_pose() 00038 , collision_object_name() 00039 , collision_support_surface_name() 00040 { 00041 } 00042 00043 PlacePlanningRequest_(const ContainerAllocator& _alloc) 00044 : arm_name(_alloc) 00045 , target(_alloc) 00046 , default_orientation(_alloc) 00047 , grasp_pose(_alloc) 00048 , collision_object_name(_alloc) 00049 , collision_support_surface_name(_alloc) 00050 { 00051 } 00052 00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type; 00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name; 00055 00056 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type; 00057 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target; 00058 00059 typedef ::geometry_msgs::Quaternion_<ContainerAllocator> _default_orientation_type; 00060 ::geometry_msgs::Quaternion_<ContainerAllocator> default_orientation; 00061 00062 typedef ::geometry_msgs::Pose_<ContainerAllocator> _grasp_pose_type; 00063 ::geometry_msgs::Pose_<ContainerAllocator> grasp_pose; 00064 00065 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type; 00066 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name; 00067 00068 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type; 00069 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name; 00070 00071 00072 private: 00073 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlacePlanningRequest"; } 00074 public: 00075 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00076 00077 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00078 00079 private: 00080 static const char* __s_getMD5Sum_() { return "f8c649647c00f63351f0ba78c050e744"; } 00081 public: 00082 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00083 00084 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00085 00086 private: 00087 static const char* __s_getServerMD5Sum_() { return "0a3a115eac63ffa84432505330a8211c"; } 00088 public: 00089 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00090 00091 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00092 00093 private: 00094 static const char* __s_getMessageDefinition_() { return "\n\ 00095 \n\ 00096 \n\ 00097 string arm_name\n\ 00098 \n\ 00099 \n\ 00100 GraspableObject target\n\ 00101 \n\ 00102 \n\ 00103 \n\ 00104 \n\ 00105 geometry_msgs/Quaternion default_orientation\n\ 00106 \n\ 00107 \n\ 00108 geometry_msgs/Pose grasp_pose\n\ 00109 \n\ 00110 \n\ 00111 \n\ 00112 string collision_object_name\n\ 00113 \n\ 00114 \n\ 00115 \n\ 00116 string collision_support_surface_name\n\ 00117 \n\ 00118 \n\ 00119 ================================================================================\n\ 00120 MSG: object_manipulation_msgs/GraspableObject\n\ 00121 # an object that the object_manipulator can work on\n\ 00122 \n\ 00123 # a graspable object can be represented in multiple ways. This message\n\ 00124 # can contain all of them. Which one is actually used is up to the receiver\n\ 00125 # of this message. When adding new representations, one must be careful that\n\ 00126 # they have reasonable lightweight defaults indicating that that particular\n\ 00127 # representation is not available.\n\ 00128 \n\ 00129 # the tf frame to be used as a reference frame when combining information from\n\ 00130 # the different representations below\n\ 00131 string reference_frame_id\n\ 00132 \n\ 00133 # potential recognition results from a database of models\n\ 00134 # all poses are relative to the object reference pose\n\ 00135 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00136 \n\ 00137 # the point cloud itself\n\ 00138 sensor_msgs/PointCloud cluster\n\ 00139 \n\ 00140 # a region of a PointCloud2 of interest\n\ 00141 object_manipulation_msgs/SceneRegion region\n\ 00142 \n\ 00143 # the name that this object has in the collision environment\n\ 00144 string collision_name\n\ 00145 ================================================================================\n\ 00146 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00147 # Informs that a specific model from the Model Database has been \n\ 00148 # identified at a certain location\n\ 00149 \n\ 00150 # the database id of the model\n\ 00151 int32 model_id\n\ 00152 \n\ 00153 # the pose that it can be found in\n\ 00154 geometry_msgs/PoseStamped pose\n\ 00155 \n\ 00156 # a measure of the confidence level in this detection result\n\ 00157 float32 confidence\n\ 00158 \n\ 00159 # the name of the object detector that generated this detection result\n\ 00160 string detector_name\n\ 00161 \n\ 00162 ================================================================================\n\ 00163 MSG: geometry_msgs/PoseStamped\n\ 00164 # A Pose with reference coordinate frame and timestamp\n\ 00165 Header header\n\ 00166 Pose pose\n\ 00167 \n\ 00168 ================================================================================\n\ 00169 MSG: std_msgs/Header\n\ 00170 # Standard metadata for higher-level stamped data types.\n\ 00171 # This is generally used to communicate timestamped data \n\ 00172 # in a particular coordinate frame.\n\ 00173 # \n\ 00174 # sequence ID: consecutively increasing ID \n\ 00175 uint32 seq\n\ 00176 #Two-integer timestamp that is expressed as:\n\ 00177 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00178 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00179 # time-handling sugar is provided by the client library\n\ 00180 time stamp\n\ 00181 #Frame this data is associated with\n\ 00182 # 0: no frame\n\ 00183 # 1: global frame\n\ 00184 string frame_id\n\ 00185 \n\ 00186 ================================================================================\n\ 00187 MSG: geometry_msgs/Pose\n\ 00188 # A representation of pose in free space, composed of postion and orientation. \n\ 00189 Point position\n\ 00190 Quaternion orientation\n\ 00191 \n\ 00192 ================================================================================\n\ 00193 MSG: geometry_msgs/Point\n\ 00194 # This contains the position of a point in free space\n\ 00195 float64 x\n\ 00196 float64 y\n\ 00197 float64 z\n\ 00198 \n\ 00199 ================================================================================\n\ 00200 MSG: geometry_msgs/Quaternion\n\ 00201 # This represents an orientation in free space in quaternion form.\n\ 00202 \n\ 00203 float64 x\n\ 00204 float64 y\n\ 00205 float64 z\n\ 00206 float64 w\n\ 00207 \n\ 00208 ================================================================================\n\ 00209 MSG: sensor_msgs/PointCloud\n\ 00210 # This message holds a collection of 3d points, plus optional additional\n\ 00211 # information about each point.\n\ 00212 \n\ 00213 # Time of sensor data acquisition, coordinate frame ID.\n\ 00214 Header header\n\ 00215 \n\ 00216 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00217 # in the frame given in the header.\n\ 00218 geometry_msgs/Point32[] points\n\ 00219 \n\ 00220 # Each channel should have the same number of elements as points array,\n\ 00221 # and the data in each channel should correspond 1:1 with each point.\n\ 00222 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00223 ChannelFloat32[] channels\n\ 00224 \n\ 00225 ================================================================================\n\ 00226 MSG: geometry_msgs/Point32\n\ 00227 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00228 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00229 # \n\ 00230 # This recommendation is to promote interoperability. \n\ 00231 #\n\ 00232 # This message is designed to take up less space when sending\n\ 00233 # lots of points at once, as in the case of a PointCloud. \n\ 00234 \n\ 00235 float32 x\n\ 00236 float32 y\n\ 00237 float32 z\n\ 00238 ================================================================================\n\ 00239 MSG: sensor_msgs/ChannelFloat32\n\ 00240 # This message is used by the PointCloud message to hold optional data\n\ 00241 # associated with each point in the cloud. The length of the values\n\ 00242 # array should be the same as the length of the points array in the\n\ 00243 # PointCloud, and each value should be associated with the corresponding\n\ 00244 # point.\n\ 00245 \n\ 00246 # Channel names in existing practice include:\n\ 00247 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00248 # This is opposite to usual conventions but remains for\n\ 00249 # historical reasons. The newer PointCloud2 message has no\n\ 00250 # such problem.\n\ 00251 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00252 # (R,G,B) values packed into the least significant 24 bits,\n\ 00253 # in order.\n\ 00254 # \"intensity\" - laser or pixel intensity.\n\ 00255 # \"distance\"\n\ 00256 \n\ 00257 # The channel name should give semantics of the channel (e.g.\n\ 00258 # \"intensity\" instead of \"value\").\n\ 00259 string name\n\ 00260 \n\ 00261 # The values array should be 1-1 with the elements of the associated\n\ 00262 # PointCloud.\n\ 00263 float32[] values\n\ 00264 \n\ 00265 ================================================================================\n\ 00266 MSG: object_manipulation_msgs/SceneRegion\n\ 00267 # Point cloud\n\ 00268 sensor_msgs/PointCloud2 cloud\n\ 00269 \n\ 00270 # Indices for the region of interest\n\ 00271 int32[] mask\n\ 00272 \n\ 00273 # One of the corresponding 2D images, if applicable\n\ 00274 sensor_msgs/Image image\n\ 00275 \n\ 00276 # The disparity image, if applicable\n\ 00277 sensor_msgs/Image disparity_image\n\ 00278 \n\ 00279 # Camera info for the camera that took the image\n\ 00280 sensor_msgs/CameraInfo cam_info\n\ 00281 \n\ 00282 # a 3D region of interest for grasp planning\n\ 00283 geometry_msgs/PoseStamped roi_box_pose\n\ 00284 geometry_msgs/Vector3 roi_box_dims\n\ 00285 \n\ 00286 ================================================================================\n\ 00287 MSG: sensor_msgs/PointCloud2\n\ 00288 # This message holds a collection of N-dimensional points, which may\n\ 00289 # contain additional information such as normals, intensity, etc. The\n\ 00290 # point data is stored as a binary blob, its layout described by the\n\ 00291 # contents of the \"fields\" array.\n\ 00292 \n\ 00293 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00294 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00295 # camera depth sensors such as stereo or time-of-flight.\n\ 00296 \n\ 00297 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00298 # points).\n\ 00299 Header header\n\ 00300 \n\ 00301 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00302 # 1 and width is the length of the point cloud.\n\ 00303 uint32 height\n\ 00304 uint32 width\n\ 00305 \n\ 00306 # Describes the channels and their layout in the binary data blob.\n\ 00307 PointField[] fields\n\ 00308 \n\ 00309 bool is_bigendian # Is this data bigendian?\n\ 00310 uint32 point_step # Length of a point in bytes\n\ 00311 uint32 row_step # Length of a row in bytes\n\ 00312 uint8[] data # Actual point data, size is (row_step*height)\n\ 00313 \n\ 00314 bool is_dense # True if there are no invalid points\n\ 00315 \n\ 00316 ================================================================================\n\ 00317 MSG: sensor_msgs/PointField\n\ 00318 # This message holds the description of one point entry in the\n\ 00319 # PointCloud2 message format.\n\ 00320 uint8 INT8 = 1\n\ 00321 uint8 UINT8 = 2\n\ 00322 uint8 INT16 = 3\n\ 00323 uint8 UINT16 = 4\n\ 00324 uint8 INT32 = 5\n\ 00325 uint8 UINT32 = 6\n\ 00326 uint8 FLOAT32 = 7\n\ 00327 uint8 FLOAT64 = 8\n\ 00328 \n\ 00329 string name # Name of field\n\ 00330 uint32 offset # Offset from start of point struct\n\ 00331 uint8 datatype # Datatype enumeration, see above\n\ 00332 uint32 count # How many elements in the field\n\ 00333 \n\ 00334 ================================================================================\n\ 00335 MSG: sensor_msgs/Image\n\ 00336 # This message contains an uncompressed image\n\ 00337 # (0, 0) is at top-left corner of image\n\ 00338 #\n\ 00339 \n\ 00340 Header header # Header timestamp should be acquisition time of image\n\ 00341 # Header frame_id should be optical frame of camera\n\ 00342 # origin of frame should be optical center of cameara\n\ 00343 # +x should point to the right in the image\n\ 00344 # +y should point down in the image\n\ 00345 # +z should point into to plane of the image\n\ 00346 # If the frame_id here and the frame_id of the CameraInfo\n\ 00347 # message associated with the image conflict\n\ 00348 # the behavior is undefined\n\ 00349 \n\ 00350 uint32 height # image height, that is, number of rows\n\ 00351 uint32 width # image width, that is, number of columns\n\ 00352 \n\ 00353 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00354 # If you want to standardize a new string format, join\n\ 00355 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00356 \n\ 00357 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00358 # taken from the list of strings in src/image_encodings.cpp\n\ 00359 \n\ 00360 uint8 is_bigendian # is this data bigendian?\n\ 00361 uint32 step # Full row length in bytes\n\ 00362 uint8[] data # actual matrix data, size is (step * rows)\n\ 00363 \n\ 00364 ================================================================================\n\ 00365 MSG: sensor_msgs/CameraInfo\n\ 00366 # This message defines meta information for a camera. It should be in a\n\ 00367 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00368 # image topics named:\n\ 00369 #\n\ 00370 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00371 # image - monochrome, distorted\n\ 00372 # image_color - color, distorted\n\ 00373 # image_rect - monochrome, rectified\n\ 00374 # image_rect_color - color, rectified\n\ 00375 #\n\ 00376 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00377 # for producing the four processed image topics from image_raw and\n\ 00378 # camera_info. The meaning of the camera parameters are described in\n\ 00379 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00380 #\n\ 00381 # The image_geometry package provides a user-friendly interface to\n\ 00382 # common operations using this meta information. If you want to, e.g.,\n\ 00383 # project a 3d point into image coordinates, we strongly recommend\n\ 00384 # using image_geometry.\n\ 00385 #\n\ 00386 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00387 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00388 # indicates an uncalibrated camera.\n\ 00389 \n\ 00390 #######################################################################\n\ 00391 # Image acquisition info #\n\ 00392 #######################################################################\n\ 00393 \n\ 00394 # Time of image acquisition, camera coordinate frame ID\n\ 00395 Header header # Header timestamp should be acquisition time of image\n\ 00396 # Header frame_id should be optical frame of camera\n\ 00397 # origin of frame should be optical center of camera\n\ 00398 # +x should point to the right in the image\n\ 00399 # +y should point down in the image\n\ 00400 # +z should point into the plane of the image\n\ 00401 \n\ 00402 \n\ 00403 #######################################################################\n\ 00404 # Calibration Parameters #\n\ 00405 #######################################################################\n\ 00406 # These are fixed during camera calibration. Their values will be the #\n\ 00407 # same in all messages until the camera is recalibrated. Note that #\n\ 00408 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00409 # #\n\ 00410 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00411 # to: #\n\ 00412 # 1. An undistorted image (requires D and K) #\n\ 00413 # 2. A rectified image (requires D, K, R) #\n\ 00414 # The projection matrix P projects 3D points into the rectified image.#\n\ 00415 #######################################################################\n\ 00416 \n\ 00417 # The image dimensions with which the camera was calibrated. Normally\n\ 00418 # this will be the full camera resolution in pixels.\n\ 00419 uint32 height\n\ 00420 uint32 width\n\ 00421 \n\ 00422 # The distortion model used. Supported models are listed in\n\ 00423 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00424 # simple model of radial and tangential distortion - is sufficent.\n\ 00425 string distortion_model\n\ 00426 \n\ 00427 # The distortion parameters, size depending on the distortion model.\n\ 00428 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00429 float64[] D\n\ 00430 \n\ 00431 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00432 # [fx 0 cx]\n\ 00433 # K = [ 0 fy cy]\n\ 00434 # [ 0 0 1]\n\ 00435 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00436 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00437 # (cx, cy).\n\ 00438 float64[9] K # 3x3 row-major matrix\n\ 00439 \n\ 00440 # Rectification matrix (stereo cameras only)\n\ 00441 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00442 # stereo image plane so that epipolar lines in both stereo images are\n\ 00443 # parallel.\n\ 00444 float64[9] R # 3x3 row-major matrix\n\ 00445 \n\ 00446 # Projection/camera matrix\n\ 00447 # [fx' 0 cx' Tx]\n\ 00448 # P = [ 0 fy' cy' Ty]\n\ 00449 # [ 0 0 1 0]\n\ 00450 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00451 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00452 # is the normal camera intrinsic matrix for the rectified image.\n\ 00453 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00454 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00455 # (cx', cy') - these may differ from the values in K.\n\ 00456 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00457 # also have R = the identity and P[1:3,1:3] = K.\n\ 00458 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00459 # position of the optical center of the second camera in the first\n\ 00460 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00461 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00462 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00463 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00464 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00465 # the rectified image is given by:\n\ 00466 # [u v w]' = P * [X Y Z 1]'\n\ 00467 # x = u / w\n\ 00468 # y = v / w\n\ 00469 # This holds for both images of a stereo pair.\n\ 00470 float64[12] P # 3x4 row-major matrix\n\ 00471 \n\ 00472 \n\ 00473 #######################################################################\n\ 00474 # Operational Parameters #\n\ 00475 #######################################################################\n\ 00476 # These define the image region actually captured by the camera #\n\ 00477 # driver. Although they affect the geometry of the output image, they #\n\ 00478 # may be changed freely without recalibrating the camera. #\n\ 00479 #######################################################################\n\ 00480 \n\ 00481 # Binning refers here to any camera setting which combines rectangular\n\ 00482 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00483 # resolution of the output image to\n\ 00484 # (width / binning_x) x (height / binning_y).\n\ 00485 # The default values binning_x = binning_y = 0 is considered the same\n\ 00486 # as binning_x = binning_y = 1 (no subsampling).\n\ 00487 uint32 binning_x\n\ 00488 uint32 binning_y\n\ 00489 \n\ 00490 # Region of interest (subwindow of full camera resolution), given in\n\ 00491 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00492 # always denotes the same window of pixels on the camera sensor,\n\ 00493 # regardless of binning settings.\n\ 00494 # The default setting of roi (all values 0) is considered the same as\n\ 00495 # full resolution (roi.width = width, roi.height = height).\n\ 00496 RegionOfInterest roi\n\ 00497 \n\ 00498 ================================================================================\n\ 00499 MSG: sensor_msgs/RegionOfInterest\n\ 00500 # This message is used to specify a region of interest within an image.\n\ 00501 #\n\ 00502 # When used to specify the ROI setting of the camera when the image was\n\ 00503 # taken, the height and width fields should either match the height and\n\ 00504 # width fields for the associated image; or height = width = 0\n\ 00505 # indicates that the full resolution image was captured.\n\ 00506 \n\ 00507 uint32 x_offset # Leftmost pixel of the ROI\n\ 00508 # (0 if the ROI includes the left edge of the image)\n\ 00509 uint32 y_offset # Topmost pixel of the ROI\n\ 00510 # (0 if the ROI includes the top edge of the image)\n\ 00511 uint32 height # Height of ROI\n\ 00512 uint32 width # Width of ROI\n\ 00513 \n\ 00514 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00515 # ROI in this message. Typically this should be False if the full image\n\ 00516 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00517 # used).\n\ 00518 bool do_rectify\n\ 00519 \n\ 00520 ================================================================================\n\ 00521 MSG: geometry_msgs/Vector3\n\ 00522 # This represents a vector in free space. \n\ 00523 \n\ 00524 float64 x\n\ 00525 float64 y\n\ 00526 float64 z\n\ 00527 "; } 00528 public: 00529 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00530 00531 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00532 00533 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00534 { 00535 ros::serialization::OStream stream(write_ptr, 1000000000); 00536 ros::serialization::serialize(stream, arm_name); 00537 ros::serialization::serialize(stream, target); 00538 ros::serialization::serialize(stream, default_orientation); 00539 ros::serialization::serialize(stream, grasp_pose); 00540 ros::serialization::serialize(stream, collision_object_name); 00541 ros::serialization::serialize(stream, collision_support_surface_name); 00542 return stream.getData(); 00543 } 00544 00545 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00546 { 00547 ros::serialization::IStream stream(read_ptr, 1000000000); 00548 ros::serialization::deserialize(stream, arm_name); 00549 ros::serialization::deserialize(stream, target); 00550 ros::serialization::deserialize(stream, default_orientation); 00551 ros::serialization::deserialize(stream, grasp_pose); 00552 ros::serialization::deserialize(stream, collision_object_name); 00553 ros::serialization::deserialize(stream, collision_support_surface_name); 00554 return stream.getData(); 00555 } 00556 00557 ROS_DEPRECATED virtual uint32_t serializationLength() const 00558 { 00559 uint32_t size = 0; 00560 size += ros::serialization::serializationLength(arm_name); 00561 size += ros::serialization::serializationLength(target); 00562 size += ros::serialization::serializationLength(default_orientation); 00563 size += ros::serialization::serializationLength(grasp_pose); 00564 size += ros::serialization::serializationLength(collision_object_name); 00565 size += ros::serialization::serializationLength(collision_support_surface_name); 00566 return size; 00567 } 00568 00569 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > Ptr; 00570 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> const> ConstPtr; 00571 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00572 }; // struct PlacePlanningRequest 00573 typedef ::object_manipulation_msgs::PlacePlanningRequest_<std::allocator<void> > PlacePlanningRequest; 00574 00575 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest> PlacePlanningRequestPtr; 00576 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest const> PlacePlanningRequestConstPtr; 00577 00578 00579 template <class ContainerAllocator> 00580 struct PlacePlanningResponse_ { 00581 typedef PlacePlanningResponse_<ContainerAllocator> Type; 00582 00583 PlacePlanningResponse_() 00584 : place_locations() 00585 , error_code() 00586 { 00587 } 00588 00589 PlacePlanningResponse_(const ContainerAllocator& _alloc) 00590 : place_locations(_alloc) 00591 , error_code(_alloc) 00592 { 00593 } 00594 00595 typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > _place_locations_type; 00596 std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > place_locations; 00597 00598 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _error_code_type; 00599 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> error_code; 00600 00601 00602 ROS_DEPRECATED uint32_t get_place_locations_size() const { return (uint32_t)place_locations.size(); } 00603 ROS_DEPRECATED void set_place_locations_size(uint32_t size) { place_locations.resize((size_t)size); } 00604 ROS_DEPRECATED void get_place_locations_vec(std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) const { vec = this->place_locations; } 00605 ROS_DEPRECATED void set_place_locations_vec(const std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) { this->place_locations = vec; } 00606 private: 00607 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlacePlanningResponse"; } 00608 public: 00609 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00610 00611 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00612 00613 private: 00614 static const char* __s_getMD5Sum_() { return "0382b328d7a72bb56384d8d5a71b04a1"; } 00615 public: 00616 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00617 00618 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00619 00620 private: 00621 static const char* __s_getServerMD5Sum_() { return "0a3a115eac63ffa84432505330a8211c"; } 00622 public: 00623 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00624 00625 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00626 00627 private: 00628 static const char* __s_getMessageDefinition_() { return "\n\ 00629 \n\ 00630 geometry_msgs/PoseStamped[] place_locations\n\ 00631 \n\ 00632 \n\ 00633 GraspPlanningErrorCode error_code\n\ 00634 \n\ 00635 \n\ 00636 ================================================================================\n\ 00637 MSG: geometry_msgs/PoseStamped\n\ 00638 # A Pose with reference coordinate frame and timestamp\n\ 00639 Header header\n\ 00640 Pose pose\n\ 00641 \n\ 00642 ================================================================================\n\ 00643 MSG: std_msgs/Header\n\ 00644 # Standard metadata for higher-level stamped data types.\n\ 00645 # This is generally used to communicate timestamped data \n\ 00646 # in a particular coordinate frame.\n\ 00647 # \n\ 00648 # sequence ID: consecutively increasing ID \n\ 00649 uint32 seq\n\ 00650 #Two-integer timestamp that is expressed as:\n\ 00651 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00652 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00653 # time-handling sugar is provided by the client library\n\ 00654 time stamp\n\ 00655 #Frame this data is associated with\n\ 00656 # 0: no frame\n\ 00657 # 1: global frame\n\ 00658 string frame_id\n\ 00659 \n\ 00660 ================================================================================\n\ 00661 MSG: geometry_msgs/Pose\n\ 00662 # A representation of pose in free space, composed of postion and orientation. \n\ 00663 Point position\n\ 00664 Quaternion orientation\n\ 00665 \n\ 00666 ================================================================================\n\ 00667 MSG: geometry_msgs/Point\n\ 00668 # This contains the position of a point in free space\n\ 00669 float64 x\n\ 00670 float64 y\n\ 00671 float64 z\n\ 00672 \n\ 00673 ================================================================================\n\ 00674 MSG: geometry_msgs/Quaternion\n\ 00675 # This represents an orientation in free space in quaternion form.\n\ 00676 \n\ 00677 float64 x\n\ 00678 float64 y\n\ 00679 float64 z\n\ 00680 float64 w\n\ 00681 \n\ 00682 ================================================================================\n\ 00683 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00684 # Error codes for grasp and place planning\n\ 00685 \n\ 00686 # plan completed as expected\n\ 00687 int32 SUCCESS = 0\n\ 00688 \n\ 00689 # tf error encountered while transforming\n\ 00690 int32 TF_ERROR = 1 \n\ 00691 \n\ 00692 # some other error\n\ 00693 int32 OTHER_ERROR = 2\n\ 00694 \n\ 00695 # the actual value of this error code\n\ 00696 int32 value\n\ 00697 "; } 00698 public: 00699 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00700 00701 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00702 00703 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00704 { 00705 ros::serialization::OStream stream(write_ptr, 1000000000); 00706 ros::serialization::serialize(stream, place_locations); 00707 ros::serialization::serialize(stream, error_code); 00708 return stream.getData(); 00709 } 00710 00711 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00712 { 00713 ros::serialization::IStream stream(read_ptr, 1000000000); 00714 ros::serialization::deserialize(stream, place_locations); 00715 ros::serialization::deserialize(stream, error_code); 00716 return stream.getData(); 00717 } 00718 00719 ROS_DEPRECATED virtual uint32_t serializationLength() const 00720 { 00721 uint32_t size = 0; 00722 size += ros::serialization::serializationLength(place_locations); 00723 size += ros::serialization::serializationLength(error_code); 00724 return size; 00725 } 00726 00727 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > Ptr; 00728 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> const> ConstPtr; 00729 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00730 }; // struct PlacePlanningResponse 00731 typedef ::object_manipulation_msgs::PlacePlanningResponse_<std::allocator<void> > PlacePlanningResponse; 00732 00733 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse> PlacePlanningResponsePtr; 00734 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse const> PlacePlanningResponseConstPtr; 00735 00736 struct PlacePlanning 00737 { 00738 00739 typedef PlacePlanningRequest Request; 00740 typedef PlacePlanningResponse Response; 00741 Request request; 00742 Response response; 00743 00744 typedef Request RequestType; 00745 typedef Response ResponseType; 00746 }; // struct PlacePlanning 00747 } // namespace object_manipulation_msgs 00748 00749 namespace ros 00750 { 00751 namespace message_traits 00752 { 00753 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > : public TrueType {}; 00754 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> const> : public TrueType {}; 00755 template<class ContainerAllocator> 00756 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > { 00757 static const char* value() 00758 { 00759 return "f8c649647c00f63351f0ba78c050e744"; 00760 } 00761 00762 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 00763 static const uint64_t static_value1 = 0xf8c649647c00f633ULL; 00764 static const uint64_t static_value2 = 0x51f0ba78c050e744ULL; 00765 }; 00766 00767 template<class ContainerAllocator> 00768 struct DataType< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > { 00769 static const char* value() 00770 { 00771 return "object_manipulation_msgs/PlacePlanningRequest"; 00772 } 00773 00774 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 00775 }; 00776 00777 template<class ContainerAllocator> 00778 struct Definition< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > { 00779 static const char* value() 00780 { 00781 return "\n\ 00782 \n\ 00783 \n\ 00784 string arm_name\n\ 00785 \n\ 00786 \n\ 00787 GraspableObject target\n\ 00788 \n\ 00789 \n\ 00790 \n\ 00791 \n\ 00792 geometry_msgs/Quaternion default_orientation\n\ 00793 \n\ 00794 \n\ 00795 geometry_msgs/Pose grasp_pose\n\ 00796 \n\ 00797 \n\ 00798 \n\ 00799 string collision_object_name\n\ 00800 \n\ 00801 \n\ 00802 \n\ 00803 string collision_support_surface_name\n\ 00804 \n\ 00805 \n\ 00806 ================================================================================\n\ 00807 MSG: object_manipulation_msgs/GraspableObject\n\ 00808 # an object that the object_manipulator can work on\n\ 00809 \n\ 00810 # a graspable object can be represented in multiple ways. This message\n\ 00811 # can contain all of them. Which one is actually used is up to the receiver\n\ 00812 # of this message. When adding new representations, one must be careful that\n\ 00813 # they have reasonable lightweight defaults indicating that that particular\n\ 00814 # representation is not available.\n\ 00815 \n\ 00816 # the tf frame to be used as a reference frame when combining information from\n\ 00817 # the different representations below\n\ 00818 string reference_frame_id\n\ 00819 \n\ 00820 # potential recognition results from a database of models\n\ 00821 # all poses are relative to the object reference pose\n\ 00822 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00823 \n\ 00824 # the point cloud itself\n\ 00825 sensor_msgs/PointCloud cluster\n\ 00826 \n\ 00827 # a region of a PointCloud2 of interest\n\ 00828 object_manipulation_msgs/SceneRegion region\n\ 00829 \n\ 00830 # the name that this object has in the collision environment\n\ 00831 string collision_name\n\ 00832 ================================================================================\n\ 00833 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00834 # Informs that a specific model from the Model Database has been \n\ 00835 # identified at a certain location\n\ 00836 \n\ 00837 # the database id of the model\n\ 00838 int32 model_id\n\ 00839 \n\ 00840 # the pose that it can be found in\n\ 00841 geometry_msgs/PoseStamped pose\n\ 00842 \n\ 00843 # a measure of the confidence level in this detection result\n\ 00844 float32 confidence\n\ 00845 \n\ 00846 # the name of the object detector that generated this detection result\n\ 00847 string detector_name\n\ 00848 \n\ 00849 ================================================================================\n\ 00850 MSG: geometry_msgs/PoseStamped\n\ 00851 # A Pose with reference coordinate frame and timestamp\n\ 00852 Header header\n\ 00853 Pose pose\n\ 00854 \n\ 00855 ================================================================================\n\ 00856 MSG: std_msgs/Header\n\ 00857 # Standard metadata for higher-level stamped data types.\n\ 00858 # This is generally used to communicate timestamped data \n\ 00859 # in a particular coordinate frame.\n\ 00860 # \n\ 00861 # sequence ID: consecutively increasing ID \n\ 00862 uint32 seq\n\ 00863 #Two-integer timestamp that is expressed as:\n\ 00864 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00865 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00866 # time-handling sugar is provided by the client library\n\ 00867 time stamp\n\ 00868 #Frame this data is associated with\n\ 00869 # 0: no frame\n\ 00870 # 1: global frame\n\ 00871 string frame_id\n\ 00872 \n\ 00873 ================================================================================\n\ 00874 MSG: geometry_msgs/Pose\n\ 00875 # A representation of pose in free space, composed of postion and orientation. \n\ 00876 Point position\n\ 00877 Quaternion orientation\n\ 00878 \n\ 00879 ================================================================================\n\ 00880 MSG: geometry_msgs/Point\n\ 00881 # This contains the position of a point in free space\n\ 00882 float64 x\n\ 00883 float64 y\n\ 00884 float64 z\n\ 00885 \n\ 00886 ================================================================================\n\ 00887 MSG: geometry_msgs/Quaternion\n\ 00888 # This represents an orientation in free space in quaternion form.\n\ 00889 \n\ 00890 float64 x\n\ 00891 float64 y\n\ 00892 float64 z\n\ 00893 float64 w\n\ 00894 \n\ 00895 ================================================================================\n\ 00896 MSG: sensor_msgs/PointCloud\n\ 00897 # This message holds a collection of 3d points, plus optional additional\n\ 00898 # information about each point.\n\ 00899 \n\ 00900 # Time of sensor data acquisition, coordinate frame ID.\n\ 00901 Header header\n\ 00902 \n\ 00903 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00904 # in the frame given in the header.\n\ 00905 geometry_msgs/Point32[] points\n\ 00906 \n\ 00907 # Each channel should have the same number of elements as points array,\n\ 00908 # and the data in each channel should correspond 1:1 with each point.\n\ 00909 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00910 ChannelFloat32[] channels\n\ 00911 \n\ 00912 ================================================================================\n\ 00913 MSG: geometry_msgs/Point32\n\ 00914 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00915 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00916 # \n\ 00917 # This recommendation is to promote interoperability. \n\ 00918 #\n\ 00919 # This message is designed to take up less space when sending\n\ 00920 # lots of points at once, as in the case of a PointCloud. \n\ 00921 \n\ 00922 float32 x\n\ 00923 float32 y\n\ 00924 float32 z\n\ 00925 ================================================================================\n\ 00926 MSG: sensor_msgs/ChannelFloat32\n\ 00927 # This message is used by the PointCloud message to hold optional data\n\ 00928 # associated with each point in the cloud. The length of the values\n\ 00929 # array should be the same as the length of the points array in the\n\ 00930 # PointCloud, and each value should be associated with the corresponding\n\ 00931 # point.\n\ 00932 \n\ 00933 # Channel names in existing practice include:\n\ 00934 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00935 # This is opposite to usual conventions but remains for\n\ 00936 # historical reasons. The newer PointCloud2 message has no\n\ 00937 # such problem.\n\ 00938 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00939 # (R,G,B) values packed into the least significant 24 bits,\n\ 00940 # in order.\n\ 00941 # \"intensity\" - laser or pixel intensity.\n\ 00942 # \"distance\"\n\ 00943 \n\ 00944 # The channel name should give semantics of the channel (e.g.\n\ 00945 # \"intensity\" instead of \"value\").\n\ 00946 string name\n\ 00947 \n\ 00948 # The values array should be 1-1 with the elements of the associated\n\ 00949 # PointCloud.\n\ 00950 float32[] values\n\ 00951 \n\ 00952 ================================================================================\n\ 00953 MSG: object_manipulation_msgs/SceneRegion\n\ 00954 # Point cloud\n\ 00955 sensor_msgs/PointCloud2 cloud\n\ 00956 \n\ 00957 # Indices for the region of interest\n\ 00958 int32[] mask\n\ 00959 \n\ 00960 # One of the corresponding 2D images, if applicable\n\ 00961 sensor_msgs/Image image\n\ 00962 \n\ 00963 # The disparity image, if applicable\n\ 00964 sensor_msgs/Image disparity_image\n\ 00965 \n\ 00966 # Camera info for the camera that took the image\n\ 00967 sensor_msgs/CameraInfo cam_info\n\ 00968 \n\ 00969 # a 3D region of interest for grasp planning\n\ 00970 geometry_msgs/PoseStamped roi_box_pose\n\ 00971 geometry_msgs/Vector3 roi_box_dims\n\ 00972 \n\ 00973 ================================================================================\n\ 00974 MSG: sensor_msgs/PointCloud2\n\ 00975 # This message holds a collection of N-dimensional points, which may\n\ 00976 # contain additional information such as normals, intensity, etc. The\n\ 00977 # point data is stored as a binary blob, its layout described by the\n\ 00978 # contents of the \"fields\" array.\n\ 00979 \n\ 00980 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00981 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00982 # camera depth sensors such as stereo or time-of-flight.\n\ 00983 \n\ 00984 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00985 # points).\n\ 00986 Header header\n\ 00987 \n\ 00988 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00989 # 1 and width is the length of the point cloud.\n\ 00990 uint32 height\n\ 00991 uint32 width\n\ 00992 \n\ 00993 # Describes the channels and their layout in the binary data blob.\n\ 00994 PointField[] fields\n\ 00995 \n\ 00996 bool is_bigendian # Is this data bigendian?\n\ 00997 uint32 point_step # Length of a point in bytes\n\ 00998 uint32 row_step # Length of a row in bytes\n\ 00999 uint8[] data # Actual point data, size is (row_step*height)\n\ 01000 \n\ 01001 bool is_dense # True if there are no invalid points\n\ 01002 \n\ 01003 ================================================================================\n\ 01004 MSG: sensor_msgs/PointField\n\ 01005 # This message holds the description of one point entry in the\n\ 01006 # PointCloud2 message format.\n\ 01007 uint8 INT8 = 1\n\ 01008 uint8 UINT8 = 2\n\ 01009 uint8 INT16 = 3\n\ 01010 uint8 UINT16 = 4\n\ 01011 uint8 INT32 = 5\n\ 01012 uint8 UINT32 = 6\n\ 01013 uint8 FLOAT32 = 7\n\ 01014 uint8 FLOAT64 = 8\n\ 01015 \n\ 01016 string name # Name of field\n\ 01017 uint32 offset # Offset from start of point struct\n\ 01018 uint8 datatype # Datatype enumeration, see above\n\ 01019 uint32 count # How many elements in the field\n\ 01020 \n\ 01021 ================================================================================\n\ 01022 MSG: sensor_msgs/Image\n\ 01023 # This message contains an uncompressed image\n\ 01024 # (0, 0) is at top-left corner of image\n\ 01025 #\n\ 01026 \n\ 01027 Header header # Header timestamp should be acquisition time of image\n\ 01028 # Header frame_id should be optical frame of camera\n\ 01029 # origin of frame should be optical center of cameara\n\ 01030 # +x should point to the right in the image\n\ 01031 # +y should point down in the image\n\ 01032 # +z should point into to plane of the image\n\ 01033 # If the frame_id here and the frame_id of the CameraInfo\n\ 01034 # message associated with the image conflict\n\ 01035 # the behavior is undefined\n\ 01036 \n\ 01037 uint32 height # image height, that is, number of rows\n\ 01038 uint32 width # image width, that is, number of columns\n\ 01039 \n\ 01040 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01041 # If you want to standardize a new string format, join\n\ 01042 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01043 \n\ 01044 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01045 # taken from the list of strings in src/image_encodings.cpp\n\ 01046 \n\ 01047 uint8 is_bigendian # is this data bigendian?\n\ 01048 uint32 step # Full row length in bytes\n\ 01049 uint8[] data # actual matrix data, size is (step * rows)\n\ 01050 \n\ 01051 ================================================================================\n\ 01052 MSG: sensor_msgs/CameraInfo\n\ 01053 # This message defines meta information for a camera. It should be in a\n\ 01054 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01055 # image topics named:\n\ 01056 #\n\ 01057 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01058 # image - monochrome, distorted\n\ 01059 # image_color - color, distorted\n\ 01060 # image_rect - monochrome, rectified\n\ 01061 # image_rect_color - color, rectified\n\ 01062 #\n\ 01063 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01064 # for producing the four processed image topics from image_raw and\n\ 01065 # camera_info. The meaning of the camera parameters are described in\n\ 01066 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01067 #\n\ 01068 # The image_geometry package provides a user-friendly interface to\n\ 01069 # common operations using this meta information. If you want to, e.g.,\n\ 01070 # project a 3d point into image coordinates, we strongly recommend\n\ 01071 # using image_geometry.\n\ 01072 #\n\ 01073 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01074 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01075 # indicates an uncalibrated camera.\n\ 01076 \n\ 01077 #######################################################################\n\ 01078 # Image acquisition info #\n\ 01079 #######################################################################\n\ 01080 \n\ 01081 # Time of image acquisition, camera coordinate frame ID\n\ 01082 Header header # Header timestamp should be acquisition time of image\n\ 01083 # Header frame_id should be optical frame of camera\n\ 01084 # origin of frame should be optical center of camera\n\ 01085 # +x should point to the right in the image\n\ 01086 # +y should point down in the image\n\ 01087 # +z should point into the plane of the image\n\ 01088 \n\ 01089 \n\ 01090 #######################################################################\n\ 01091 # Calibration Parameters #\n\ 01092 #######################################################################\n\ 01093 # These are fixed during camera calibration. Their values will be the #\n\ 01094 # same in all messages until the camera is recalibrated. Note that #\n\ 01095 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01096 # #\n\ 01097 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01098 # to: #\n\ 01099 # 1. An undistorted image (requires D and K) #\n\ 01100 # 2. A rectified image (requires D, K, R) #\n\ 01101 # The projection matrix P projects 3D points into the rectified image.#\n\ 01102 #######################################################################\n\ 01103 \n\ 01104 # The image dimensions with which the camera was calibrated. Normally\n\ 01105 # this will be the full camera resolution in pixels.\n\ 01106 uint32 height\n\ 01107 uint32 width\n\ 01108 \n\ 01109 # The distortion model used. Supported models are listed in\n\ 01110 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01111 # simple model of radial and tangential distortion - is sufficent.\n\ 01112 string distortion_model\n\ 01113 \n\ 01114 # The distortion parameters, size depending on the distortion model.\n\ 01115 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01116 float64[] D\n\ 01117 \n\ 01118 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01119 # [fx 0 cx]\n\ 01120 # K = [ 0 fy cy]\n\ 01121 # [ 0 0 1]\n\ 01122 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01123 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01124 # (cx, cy).\n\ 01125 float64[9] K # 3x3 row-major matrix\n\ 01126 \n\ 01127 # Rectification matrix (stereo cameras only)\n\ 01128 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01129 # stereo image plane so that epipolar lines in both stereo images are\n\ 01130 # parallel.\n\ 01131 float64[9] R # 3x3 row-major matrix\n\ 01132 \n\ 01133 # Projection/camera matrix\n\ 01134 # [fx' 0 cx' Tx]\n\ 01135 # P = [ 0 fy' cy' Ty]\n\ 01136 # [ 0 0 1 0]\n\ 01137 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01138 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01139 # is the normal camera intrinsic matrix for the rectified image.\n\ 01140 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01141 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01142 # (cx', cy') - these may differ from the values in K.\n\ 01143 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01144 # also have R = the identity and P[1:3,1:3] = K.\n\ 01145 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01146 # position of the optical center of the second camera in the first\n\ 01147 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01148 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01149 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01150 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01151 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01152 # the rectified image is given by:\n\ 01153 # [u v w]' = P * [X Y Z 1]'\n\ 01154 # x = u / w\n\ 01155 # y = v / w\n\ 01156 # This holds for both images of a stereo pair.\n\ 01157 float64[12] P # 3x4 row-major matrix\n\ 01158 \n\ 01159 \n\ 01160 #######################################################################\n\ 01161 # Operational Parameters #\n\ 01162 #######################################################################\n\ 01163 # These define the image region actually captured by the camera #\n\ 01164 # driver. Although they affect the geometry of the output image, they #\n\ 01165 # may be changed freely without recalibrating the camera. #\n\ 01166 #######################################################################\n\ 01167 \n\ 01168 # Binning refers here to any camera setting which combines rectangular\n\ 01169 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01170 # resolution of the output image to\n\ 01171 # (width / binning_x) x (height / binning_y).\n\ 01172 # The default values binning_x = binning_y = 0 is considered the same\n\ 01173 # as binning_x = binning_y = 1 (no subsampling).\n\ 01174 uint32 binning_x\n\ 01175 uint32 binning_y\n\ 01176 \n\ 01177 # Region of interest (subwindow of full camera resolution), given in\n\ 01178 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01179 # always denotes the same window of pixels on the camera sensor,\n\ 01180 # regardless of binning settings.\n\ 01181 # The default setting of roi (all values 0) is considered the same as\n\ 01182 # full resolution (roi.width = width, roi.height = height).\n\ 01183 RegionOfInterest roi\n\ 01184 \n\ 01185 ================================================================================\n\ 01186 MSG: sensor_msgs/RegionOfInterest\n\ 01187 # This message is used to specify a region of interest within an image.\n\ 01188 #\n\ 01189 # When used to specify the ROI setting of the camera when the image was\n\ 01190 # taken, the height and width fields should either match the height and\n\ 01191 # width fields for the associated image; or height = width = 0\n\ 01192 # indicates that the full resolution image was captured.\n\ 01193 \n\ 01194 uint32 x_offset # Leftmost pixel of the ROI\n\ 01195 # (0 if the ROI includes the left edge of the image)\n\ 01196 uint32 y_offset # Topmost pixel of the ROI\n\ 01197 # (0 if the ROI includes the top edge of the image)\n\ 01198 uint32 height # Height of ROI\n\ 01199 uint32 width # Width of ROI\n\ 01200 \n\ 01201 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01202 # ROI in this message. Typically this should be False if the full image\n\ 01203 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01204 # used).\n\ 01205 bool do_rectify\n\ 01206 \n\ 01207 ================================================================================\n\ 01208 MSG: geometry_msgs/Vector3\n\ 01209 # This represents a vector in free space. \n\ 01210 \n\ 01211 float64 x\n\ 01212 float64 y\n\ 01213 float64 z\n\ 01214 "; 01215 } 01216 01217 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 01218 }; 01219 01220 } // namespace message_traits 01221 } // namespace ros 01222 01223 01224 namespace ros 01225 { 01226 namespace message_traits 01227 { 01228 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > : public TrueType {}; 01229 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> const> : public TrueType {}; 01230 template<class ContainerAllocator> 01231 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > { 01232 static const char* value() 01233 { 01234 return "0382b328d7a72bb56384d8d5a71b04a1"; 01235 } 01236 01237 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 01238 static const uint64_t static_value1 = 0x0382b328d7a72bb5ULL; 01239 static const uint64_t static_value2 = 0x6384d8d5a71b04a1ULL; 01240 }; 01241 01242 template<class ContainerAllocator> 01243 struct DataType< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > { 01244 static const char* value() 01245 { 01246 return "object_manipulation_msgs/PlacePlanningResponse"; 01247 } 01248 01249 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 01250 }; 01251 01252 template<class ContainerAllocator> 01253 struct Definition< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > { 01254 static const char* value() 01255 { 01256 return "\n\ 01257 \n\ 01258 geometry_msgs/PoseStamped[] place_locations\n\ 01259 \n\ 01260 \n\ 01261 GraspPlanningErrorCode error_code\n\ 01262 \n\ 01263 \n\ 01264 ================================================================================\n\ 01265 MSG: geometry_msgs/PoseStamped\n\ 01266 # A Pose with reference coordinate frame and timestamp\n\ 01267 Header header\n\ 01268 Pose pose\n\ 01269 \n\ 01270 ================================================================================\n\ 01271 MSG: std_msgs/Header\n\ 01272 # Standard metadata for higher-level stamped data types.\n\ 01273 # This is generally used to communicate timestamped data \n\ 01274 # in a particular coordinate frame.\n\ 01275 # \n\ 01276 # sequence ID: consecutively increasing ID \n\ 01277 uint32 seq\n\ 01278 #Two-integer timestamp that is expressed as:\n\ 01279 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 01280 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 01281 # time-handling sugar is provided by the client library\n\ 01282 time stamp\n\ 01283 #Frame this data is associated with\n\ 01284 # 0: no frame\n\ 01285 # 1: global frame\n\ 01286 string frame_id\n\ 01287 \n\ 01288 ================================================================================\n\ 01289 MSG: geometry_msgs/Pose\n\ 01290 # A representation of pose in free space, composed of postion and orientation. \n\ 01291 Point position\n\ 01292 Quaternion orientation\n\ 01293 \n\ 01294 ================================================================================\n\ 01295 MSG: geometry_msgs/Point\n\ 01296 # This contains the position of a point in free space\n\ 01297 float64 x\n\ 01298 float64 y\n\ 01299 float64 z\n\ 01300 \n\ 01301 ================================================================================\n\ 01302 MSG: geometry_msgs/Quaternion\n\ 01303 # This represents an orientation in free space in quaternion form.\n\ 01304 \n\ 01305 float64 x\n\ 01306 float64 y\n\ 01307 float64 z\n\ 01308 float64 w\n\ 01309 \n\ 01310 ================================================================================\n\ 01311 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01312 # Error codes for grasp and place planning\n\ 01313 \n\ 01314 # plan completed as expected\n\ 01315 int32 SUCCESS = 0\n\ 01316 \n\ 01317 # tf error encountered while transforming\n\ 01318 int32 TF_ERROR = 1 \n\ 01319 \n\ 01320 # some other error\n\ 01321 int32 OTHER_ERROR = 2\n\ 01322 \n\ 01323 # the actual value of this error code\n\ 01324 int32 value\n\ 01325 "; 01326 } 01327 01328 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 01329 }; 01330 01331 } // namespace message_traits 01332 } // namespace ros 01333 01334 namespace ros 01335 { 01336 namespace serialization 01337 { 01338 01339 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > 01340 { 01341 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01342 { 01343 stream.next(m.arm_name); 01344 stream.next(m.target); 01345 stream.next(m.default_orientation); 01346 stream.next(m.grasp_pose); 01347 stream.next(m.collision_object_name); 01348 stream.next(m.collision_support_surface_name); 01349 } 01350 01351 ROS_DECLARE_ALLINONE_SERIALIZER; 01352 }; // struct PlacePlanningRequest_ 01353 } // namespace serialization 01354 } // namespace ros 01355 01356 01357 namespace ros 01358 { 01359 namespace serialization 01360 { 01361 01362 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > 01363 { 01364 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01365 { 01366 stream.next(m.place_locations); 01367 stream.next(m.error_code); 01368 } 01369 01370 ROS_DECLARE_ALLINONE_SERIALIZER; 01371 }; // struct PlacePlanningResponse_ 01372 } // namespace serialization 01373 } // namespace ros 01374 01375 namespace ros 01376 { 01377 namespace service_traits 01378 { 01379 template<> 01380 struct MD5Sum<object_manipulation_msgs::PlacePlanning> { 01381 static const char* value() 01382 { 01383 return "0a3a115eac63ffa84432505330a8211c"; 01384 } 01385 01386 static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); } 01387 }; 01388 01389 template<> 01390 struct DataType<object_manipulation_msgs::PlacePlanning> { 01391 static const char* value() 01392 { 01393 return "object_manipulation_msgs/PlacePlanning"; 01394 } 01395 01396 static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); } 01397 }; 01398 01399 template<class ContainerAllocator> 01400 struct MD5Sum<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > { 01401 static const char* value() 01402 { 01403 return "0a3a115eac63ffa84432505330a8211c"; 01404 } 01405 01406 static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 01407 }; 01408 01409 template<class ContainerAllocator> 01410 struct DataType<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > { 01411 static const char* value() 01412 { 01413 return "object_manipulation_msgs/PlacePlanning"; 01414 } 01415 01416 static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 01417 }; 01418 01419 template<class ContainerAllocator> 01420 struct MD5Sum<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > { 01421 static const char* value() 01422 { 01423 return "0a3a115eac63ffa84432505330a8211c"; 01424 } 01425 01426 static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 01427 }; 01428 01429 template<class ContainerAllocator> 01430 struct DataType<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > { 01431 static const char* value() 01432 { 01433 return "object_manipulation_msgs/PlacePlanning"; 01434 } 01435 01436 static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 01437 }; 01438 01439 } // namespace service_traits 01440 } // namespace ros 01441 01442 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H 01443