00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "object_manipulation_msgs/GraspableObject.h"
00020 #include "geometry_msgs/Quaternion.h"
00021 #include "geometry_msgs/Pose.h"
00022
00023
00024 #include "geometry_msgs/PoseStamped.h"
00025 #include "object_manipulation_msgs/GraspPlanningErrorCode.h"
00026
00027 namespace object_manipulation_msgs
00028 {
00029 template <class ContainerAllocator>
00030 struct PlacePlanningRequest_ {
00031 typedef PlacePlanningRequest_<ContainerAllocator> Type;
00032
00033 PlacePlanningRequest_()
00034 : arm_name()
00035 , target()
00036 , default_orientation()
00037 , grasp_pose()
00038 , collision_object_name()
00039 , collision_support_surface_name()
00040 {
00041 }
00042
00043 PlacePlanningRequest_(const ContainerAllocator& _alloc)
00044 : arm_name(_alloc)
00045 , target(_alloc)
00046 , default_orientation(_alloc)
00047 , grasp_pose(_alloc)
00048 , collision_object_name(_alloc)
00049 , collision_support_surface_name(_alloc)
00050 {
00051 }
00052
00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00055
00056 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00057 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00058
00059 typedef ::geometry_msgs::Quaternion_<ContainerAllocator> _default_orientation_type;
00060 ::geometry_msgs::Quaternion_<ContainerAllocator> default_orientation;
00061
00062 typedef ::geometry_msgs::Pose_<ContainerAllocator> _grasp_pose_type;
00063 ::geometry_msgs::Pose_<ContainerAllocator> grasp_pose;
00064
00065 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00066 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00067
00068 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00069 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00070
00071
00072 private:
00073 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlacePlanningRequest"; }
00074 public:
00075 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00076
00077 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00078
00079 private:
00080 static const char* __s_getMD5Sum_() { return "f8c649647c00f63351f0ba78c050e744"; }
00081 public:
00082 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00083
00084 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00085
00086 private:
00087 static const char* __s_getServerMD5Sum_() { return "0a3a115eac63ffa84432505330a8211c"; }
00088 public:
00089 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00090
00091 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00092
00093 private:
00094 static const char* __s_getMessageDefinition_() { return "\n\
00095 \n\
00096 \n\
00097 string arm_name\n\
00098 \n\
00099 \n\
00100 GraspableObject target\n\
00101 \n\
00102 \n\
00103 \n\
00104 \n\
00105 geometry_msgs/Quaternion default_orientation\n\
00106 \n\
00107 \n\
00108 geometry_msgs/Pose grasp_pose\n\
00109 \n\
00110 \n\
00111 \n\
00112 string collision_object_name\n\
00113 \n\
00114 \n\
00115 \n\
00116 string collision_support_surface_name\n\
00117 \n\
00118 \n\
00119 ================================================================================\n\
00120 MSG: object_manipulation_msgs/GraspableObject\n\
00121 # an object that the object_manipulator can work on\n\
00122 \n\
00123 # a graspable object can be represented in multiple ways. This message\n\
00124 # can contain all of them. Which one is actually used is up to the receiver\n\
00125 # of this message. When adding new representations, one must be careful that\n\
00126 # they have reasonable lightweight defaults indicating that that particular\n\
00127 # representation is not available.\n\
00128 \n\
00129 # the tf frame to be used as a reference frame when combining information from\n\
00130 # the different representations below\n\
00131 string reference_frame_id\n\
00132 \n\
00133 # potential recognition results from a database of models\n\
00134 # all poses are relative to the object reference pose\n\
00135 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00136 \n\
00137 # the point cloud itself\n\
00138 sensor_msgs/PointCloud cluster\n\
00139 \n\
00140 # a region of a PointCloud2 of interest\n\
00141 object_manipulation_msgs/SceneRegion region\n\
00142 \n\
00143 # the name that this object has in the collision environment\n\
00144 string collision_name\n\
00145 ================================================================================\n\
00146 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00147 # Informs that a specific model from the Model Database has been \n\
00148 # identified at a certain location\n\
00149 \n\
00150 # the database id of the model\n\
00151 int32 model_id\n\
00152 \n\
00153 # the pose that it can be found in\n\
00154 geometry_msgs/PoseStamped pose\n\
00155 \n\
00156 # a measure of the confidence level in this detection result\n\
00157 float32 confidence\n\
00158 \n\
00159 # the name of the object detector that generated this detection result\n\
00160 string detector_name\n\
00161 \n\
00162 ================================================================================\n\
00163 MSG: geometry_msgs/PoseStamped\n\
00164 # A Pose with reference coordinate frame and timestamp\n\
00165 Header header\n\
00166 Pose pose\n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: std_msgs/Header\n\
00170 # Standard metadata for higher-level stamped data types.\n\
00171 # This is generally used to communicate timestamped data \n\
00172 # in a particular coordinate frame.\n\
00173 # \n\
00174 # sequence ID: consecutively increasing ID \n\
00175 uint32 seq\n\
00176 #Two-integer timestamp that is expressed as:\n\
00177 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00178 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00179 # time-handling sugar is provided by the client library\n\
00180 time stamp\n\
00181 #Frame this data is associated with\n\
00182 # 0: no frame\n\
00183 # 1: global frame\n\
00184 string frame_id\n\
00185 \n\
00186 ================================================================================\n\
00187 MSG: geometry_msgs/Pose\n\
00188 # A representation of pose in free space, composed of postion and orientation. \n\
00189 Point position\n\
00190 Quaternion orientation\n\
00191 \n\
00192 ================================================================================\n\
00193 MSG: geometry_msgs/Point\n\
00194 # This contains the position of a point in free space\n\
00195 float64 x\n\
00196 float64 y\n\
00197 float64 z\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: geometry_msgs/Quaternion\n\
00201 # This represents an orientation in free space in quaternion form.\n\
00202 \n\
00203 float64 x\n\
00204 float64 y\n\
00205 float64 z\n\
00206 float64 w\n\
00207 \n\
00208 ================================================================================\n\
00209 MSG: sensor_msgs/PointCloud\n\
00210 # This message holds a collection of 3d points, plus optional additional\n\
00211 # information about each point.\n\
00212 \n\
00213 # Time of sensor data acquisition, coordinate frame ID.\n\
00214 Header header\n\
00215 \n\
00216 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00217 # in the frame given in the header.\n\
00218 geometry_msgs/Point32[] points\n\
00219 \n\
00220 # Each channel should have the same number of elements as points array,\n\
00221 # and the data in each channel should correspond 1:1 with each point.\n\
00222 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00223 ChannelFloat32[] channels\n\
00224 \n\
00225 ================================================================================\n\
00226 MSG: geometry_msgs/Point32\n\
00227 # This contains the position of a point in free space(with 32 bits of precision).\n\
00228 # It is recommeded to use Point wherever possible instead of Point32. \n\
00229 # \n\
00230 # This recommendation is to promote interoperability. \n\
00231 #\n\
00232 # This message is designed to take up less space when sending\n\
00233 # lots of points at once, as in the case of a PointCloud. \n\
00234 \n\
00235 float32 x\n\
00236 float32 y\n\
00237 float32 z\n\
00238 ================================================================================\n\
00239 MSG: sensor_msgs/ChannelFloat32\n\
00240 # This message is used by the PointCloud message to hold optional data\n\
00241 # associated with each point in the cloud. The length of the values\n\
00242 # array should be the same as the length of the points array in the\n\
00243 # PointCloud, and each value should be associated with the corresponding\n\
00244 # point.\n\
00245 \n\
00246 # Channel names in existing practice include:\n\
00247 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00248 # This is opposite to usual conventions but remains for\n\
00249 # historical reasons. The newer PointCloud2 message has no\n\
00250 # such problem.\n\
00251 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00252 # (R,G,B) values packed into the least significant 24 bits,\n\
00253 # in order.\n\
00254 # \"intensity\" - laser or pixel intensity.\n\
00255 # \"distance\"\n\
00256 \n\
00257 # The channel name should give semantics of the channel (e.g.\n\
00258 # \"intensity\" instead of \"value\").\n\
00259 string name\n\
00260 \n\
00261 # The values array should be 1-1 with the elements of the associated\n\
00262 # PointCloud.\n\
00263 float32[] values\n\
00264 \n\
00265 ================================================================================\n\
00266 MSG: object_manipulation_msgs/SceneRegion\n\
00267 # Point cloud\n\
00268 sensor_msgs/PointCloud2 cloud\n\
00269 \n\
00270 # Indices for the region of interest\n\
00271 int32[] mask\n\
00272 \n\
00273 # One of the corresponding 2D images, if applicable\n\
00274 sensor_msgs/Image image\n\
00275 \n\
00276 # The disparity image, if applicable\n\
00277 sensor_msgs/Image disparity_image\n\
00278 \n\
00279 # Camera info for the camera that took the image\n\
00280 sensor_msgs/CameraInfo cam_info\n\
00281 \n\
00282 # a 3D region of interest for grasp planning\n\
00283 geometry_msgs/PoseStamped roi_box_pose\n\
00284 geometry_msgs/Vector3 roi_box_dims\n\
00285 \n\
00286 ================================================================================\n\
00287 MSG: sensor_msgs/PointCloud2\n\
00288 # This message holds a collection of N-dimensional points, which may\n\
00289 # contain additional information such as normals, intensity, etc. The\n\
00290 # point data is stored as a binary blob, its layout described by the\n\
00291 # contents of the \"fields\" array.\n\
00292 \n\
00293 # The point cloud data may be organized 2d (image-like) or 1d\n\
00294 # (unordered). Point clouds organized as 2d images may be produced by\n\
00295 # camera depth sensors such as stereo or time-of-flight.\n\
00296 \n\
00297 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00298 # points).\n\
00299 Header header\n\
00300 \n\
00301 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00302 # 1 and width is the length of the point cloud.\n\
00303 uint32 height\n\
00304 uint32 width\n\
00305 \n\
00306 # Describes the channels and their layout in the binary data blob.\n\
00307 PointField[] fields\n\
00308 \n\
00309 bool is_bigendian # Is this data bigendian?\n\
00310 uint32 point_step # Length of a point in bytes\n\
00311 uint32 row_step # Length of a row in bytes\n\
00312 uint8[] data # Actual point data, size is (row_step*height)\n\
00313 \n\
00314 bool is_dense # True if there are no invalid points\n\
00315 \n\
00316 ================================================================================\n\
00317 MSG: sensor_msgs/PointField\n\
00318 # This message holds the description of one point entry in the\n\
00319 # PointCloud2 message format.\n\
00320 uint8 INT8 = 1\n\
00321 uint8 UINT8 = 2\n\
00322 uint8 INT16 = 3\n\
00323 uint8 UINT16 = 4\n\
00324 uint8 INT32 = 5\n\
00325 uint8 UINT32 = 6\n\
00326 uint8 FLOAT32 = 7\n\
00327 uint8 FLOAT64 = 8\n\
00328 \n\
00329 string name # Name of field\n\
00330 uint32 offset # Offset from start of point struct\n\
00331 uint8 datatype # Datatype enumeration, see above\n\
00332 uint32 count # How many elements in the field\n\
00333 \n\
00334 ================================================================================\n\
00335 MSG: sensor_msgs/Image\n\
00336 # This message contains an uncompressed image\n\
00337 # (0, 0) is at top-left corner of image\n\
00338 #\n\
00339 \n\
00340 Header header # Header timestamp should be acquisition time of image\n\
00341 # Header frame_id should be optical frame of camera\n\
00342 # origin of frame should be optical center of cameara\n\
00343 # +x should point to the right in the image\n\
00344 # +y should point down in the image\n\
00345 # +z should point into to plane of the image\n\
00346 # If the frame_id here and the frame_id of the CameraInfo\n\
00347 # message associated with the image conflict\n\
00348 # the behavior is undefined\n\
00349 \n\
00350 uint32 height # image height, that is, number of rows\n\
00351 uint32 width # image width, that is, number of columns\n\
00352 \n\
00353 # The legal values for encoding are in file src/image_encodings.cpp\n\
00354 # If you want to standardize a new string format, join\n\
00355 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00356 \n\
00357 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00358 # taken from the list of strings in src/image_encodings.cpp\n\
00359 \n\
00360 uint8 is_bigendian # is this data bigendian?\n\
00361 uint32 step # Full row length in bytes\n\
00362 uint8[] data # actual matrix data, size is (step * rows)\n\
00363 \n\
00364 ================================================================================\n\
00365 MSG: sensor_msgs/CameraInfo\n\
00366 # This message defines meta information for a camera. It should be in a\n\
00367 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00368 # image topics named:\n\
00369 #\n\
00370 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00371 # image - monochrome, distorted\n\
00372 # image_color - color, distorted\n\
00373 # image_rect - monochrome, rectified\n\
00374 # image_rect_color - color, rectified\n\
00375 #\n\
00376 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00377 # for producing the four processed image topics from image_raw and\n\
00378 # camera_info. The meaning of the camera parameters are described in\n\
00379 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00380 #\n\
00381 # The image_geometry package provides a user-friendly interface to\n\
00382 # common operations using this meta information. If you want to, e.g.,\n\
00383 # project a 3d point into image coordinates, we strongly recommend\n\
00384 # using image_geometry.\n\
00385 #\n\
00386 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00387 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00388 # indicates an uncalibrated camera.\n\
00389 \n\
00390 #######################################################################\n\
00391 # Image acquisition info #\n\
00392 #######################################################################\n\
00393 \n\
00394 # Time of image acquisition, camera coordinate frame ID\n\
00395 Header header # Header timestamp should be acquisition time of image\n\
00396 # Header frame_id should be optical frame of camera\n\
00397 # origin of frame should be optical center of camera\n\
00398 # +x should point to the right in the image\n\
00399 # +y should point down in the image\n\
00400 # +z should point into the plane of the image\n\
00401 \n\
00402 \n\
00403 #######################################################################\n\
00404 # Calibration Parameters #\n\
00405 #######################################################################\n\
00406 # These are fixed during camera calibration. Their values will be the #\n\
00407 # same in all messages until the camera is recalibrated. Note that #\n\
00408 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00409 # #\n\
00410 # The internal parameters can be used to warp a raw (distorted) image #\n\
00411 # to: #\n\
00412 # 1. An undistorted image (requires D and K) #\n\
00413 # 2. A rectified image (requires D, K, R) #\n\
00414 # The projection matrix P projects 3D points into the rectified image.#\n\
00415 #######################################################################\n\
00416 \n\
00417 # The image dimensions with which the camera was calibrated. Normally\n\
00418 # this will be the full camera resolution in pixels.\n\
00419 uint32 height\n\
00420 uint32 width\n\
00421 \n\
00422 # The distortion model used. Supported models are listed in\n\
00423 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00424 # simple model of radial and tangential distortion - is sufficent.\n\
00425 string distortion_model\n\
00426 \n\
00427 # The distortion parameters, size depending on the distortion model.\n\
00428 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00429 float64[] D\n\
00430 \n\
00431 # Intrinsic camera matrix for the raw (distorted) images.\n\
00432 # [fx 0 cx]\n\
00433 # K = [ 0 fy cy]\n\
00434 # [ 0 0 1]\n\
00435 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00436 # coordinates using the focal lengths (fx, fy) and principal point\n\
00437 # (cx, cy).\n\
00438 float64[9] K # 3x3 row-major matrix\n\
00439 \n\
00440 # Rectification matrix (stereo cameras only)\n\
00441 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00442 # stereo image plane so that epipolar lines in both stereo images are\n\
00443 # parallel.\n\
00444 float64[9] R # 3x3 row-major matrix\n\
00445 \n\
00446 # Projection/camera matrix\n\
00447 # [fx' 0 cx' Tx]\n\
00448 # P = [ 0 fy' cy' Ty]\n\
00449 # [ 0 0 1 0]\n\
00450 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00451 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00452 # is the normal camera intrinsic matrix for the rectified image.\n\
00453 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00454 # coordinates using the focal lengths (fx', fy') and principal point\n\
00455 # (cx', cy') - these may differ from the values in K.\n\
00456 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00457 # also have R = the identity and P[1:3,1:3] = K.\n\
00458 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00459 # position of the optical center of the second camera in the first\n\
00460 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00461 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00462 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00463 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00464 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00465 # the rectified image is given by:\n\
00466 # [u v w]' = P * [X Y Z 1]'\n\
00467 # x = u / w\n\
00468 # y = v / w\n\
00469 # This holds for both images of a stereo pair.\n\
00470 float64[12] P # 3x4 row-major matrix\n\
00471 \n\
00472 \n\
00473 #######################################################################\n\
00474 # Operational Parameters #\n\
00475 #######################################################################\n\
00476 # These define the image region actually captured by the camera #\n\
00477 # driver. Although they affect the geometry of the output image, they #\n\
00478 # may be changed freely without recalibrating the camera. #\n\
00479 #######################################################################\n\
00480 \n\
00481 # Binning refers here to any camera setting which combines rectangular\n\
00482 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00483 # resolution of the output image to\n\
00484 # (width / binning_x) x (height / binning_y).\n\
00485 # The default values binning_x = binning_y = 0 is considered the same\n\
00486 # as binning_x = binning_y = 1 (no subsampling).\n\
00487 uint32 binning_x\n\
00488 uint32 binning_y\n\
00489 \n\
00490 # Region of interest (subwindow of full camera resolution), given in\n\
00491 # full resolution (unbinned) image coordinates. A particular ROI\n\
00492 # always denotes the same window of pixels on the camera sensor,\n\
00493 # regardless of binning settings.\n\
00494 # The default setting of roi (all values 0) is considered the same as\n\
00495 # full resolution (roi.width = width, roi.height = height).\n\
00496 RegionOfInterest roi\n\
00497 \n\
00498 ================================================================================\n\
00499 MSG: sensor_msgs/RegionOfInterest\n\
00500 # This message is used to specify a region of interest within an image.\n\
00501 #\n\
00502 # When used to specify the ROI setting of the camera when the image was\n\
00503 # taken, the height and width fields should either match the height and\n\
00504 # width fields for the associated image; or height = width = 0\n\
00505 # indicates that the full resolution image was captured.\n\
00506 \n\
00507 uint32 x_offset # Leftmost pixel of the ROI\n\
00508 # (0 if the ROI includes the left edge of the image)\n\
00509 uint32 y_offset # Topmost pixel of the ROI\n\
00510 # (0 if the ROI includes the top edge of the image)\n\
00511 uint32 height # Height of ROI\n\
00512 uint32 width # Width of ROI\n\
00513 \n\
00514 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00515 # ROI in this message. Typically this should be False if the full image\n\
00516 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00517 # used).\n\
00518 bool do_rectify\n\
00519 \n\
00520 ================================================================================\n\
00521 MSG: geometry_msgs/Vector3\n\
00522 # This represents a vector in free space. \n\
00523 \n\
00524 float64 x\n\
00525 float64 y\n\
00526 float64 z\n\
00527 "; }
00528 public:
00529 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00530
00531 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00532
00533 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00534 {
00535 ros::serialization::OStream stream(write_ptr, 1000000000);
00536 ros::serialization::serialize(stream, arm_name);
00537 ros::serialization::serialize(stream, target);
00538 ros::serialization::serialize(stream, default_orientation);
00539 ros::serialization::serialize(stream, grasp_pose);
00540 ros::serialization::serialize(stream, collision_object_name);
00541 ros::serialization::serialize(stream, collision_support_surface_name);
00542 return stream.getData();
00543 }
00544
00545 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00546 {
00547 ros::serialization::IStream stream(read_ptr, 1000000000);
00548 ros::serialization::deserialize(stream, arm_name);
00549 ros::serialization::deserialize(stream, target);
00550 ros::serialization::deserialize(stream, default_orientation);
00551 ros::serialization::deserialize(stream, grasp_pose);
00552 ros::serialization::deserialize(stream, collision_object_name);
00553 ros::serialization::deserialize(stream, collision_support_surface_name);
00554 return stream.getData();
00555 }
00556
00557 ROS_DEPRECATED virtual uint32_t serializationLength() const
00558 {
00559 uint32_t size = 0;
00560 size += ros::serialization::serializationLength(arm_name);
00561 size += ros::serialization::serializationLength(target);
00562 size += ros::serialization::serializationLength(default_orientation);
00563 size += ros::serialization::serializationLength(grasp_pose);
00564 size += ros::serialization::serializationLength(collision_object_name);
00565 size += ros::serialization::serializationLength(collision_support_surface_name);
00566 return size;
00567 }
00568
00569 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > Ptr;
00570 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> const> ConstPtr;
00571 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00572 };
00573 typedef ::object_manipulation_msgs::PlacePlanningRequest_<std::allocator<void> > PlacePlanningRequest;
00574
00575 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest> PlacePlanningRequestPtr;
00576 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest const> PlacePlanningRequestConstPtr;
00577
00578
00579 template <class ContainerAllocator>
00580 struct PlacePlanningResponse_ {
00581 typedef PlacePlanningResponse_<ContainerAllocator> Type;
00582
00583 PlacePlanningResponse_()
00584 : place_locations()
00585 , error_code()
00586 {
00587 }
00588
00589 PlacePlanningResponse_(const ContainerAllocator& _alloc)
00590 : place_locations(_alloc)
00591 , error_code(_alloc)
00592 {
00593 }
00594
00595 typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > _place_locations_type;
00596 std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > place_locations;
00597
00598 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _error_code_type;
00599 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> error_code;
00600
00601
00602 ROS_DEPRECATED uint32_t get_place_locations_size() const { return (uint32_t)place_locations.size(); }
00603 ROS_DEPRECATED void set_place_locations_size(uint32_t size) { place_locations.resize((size_t)size); }
00604 ROS_DEPRECATED void get_place_locations_vec(std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) const { vec = this->place_locations; }
00605 ROS_DEPRECATED void set_place_locations_vec(const std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > & vec) { this->place_locations = vec; }
00606 private:
00607 static const char* __s_getDataType_() { return "object_manipulation_msgs/PlacePlanningResponse"; }
00608 public:
00609 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00610
00611 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00612
00613 private:
00614 static const char* __s_getMD5Sum_() { return "0382b328d7a72bb56384d8d5a71b04a1"; }
00615 public:
00616 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00617
00618 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00619
00620 private:
00621 static const char* __s_getServerMD5Sum_() { return "0a3a115eac63ffa84432505330a8211c"; }
00622 public:
00623 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00624
00625 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00626
00627 private:
00628 static const char* __s_getMessageDefinition_() { return "\n\
00629 \n\
00630 geometry_msgs/PoseStamped[] place_locations\n\
00631 \n\
00632 \n\
00633 GraspPlanningErrorCode error_code\n\
00634 \n\
00635 \n\
00636 ================================================================================\n\
00637 MSG: geometry_msgs/PoseStamped\n\
00638 # A Pose with reference coordinate frame and timestamp\n\
00639 Header header\n\
00640 Pose pose\n\
00641 \n\
00642 ================================================================================\n\
00643 MSG: std_msgs/Header\n\
00644 # Standard metadata for higher-level stamped data types.\n\
00645 # This is generally used to communicate timestamped data \n\
00646 # in a particular coordinate frame.\n\
00647 # \n\
00648 # sequence ID: consecutively increasing ID \n\
00649 uint32 seq\n\
00650 #Two-integer timestamp that is expressed as:\n\
00651 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00652 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00653 # time-handling sugar is provided by the client library\n\
00654 time stamp\n\
00655 #Frame this data is associated with\n\
00656 # 0: no frame\n\
00657 # 1: global frame\n\
00658 string frame_id\n\
00659 \n\
00660 ================================================================================\n\
00661 MSG: geometry_msgs/Pose\n\
00662 # A representation of pose in free space, composed of postion and orientation. \n\
00663 Point position\n\
00664 Quaternion orientation\n\
00665 \n\
00666 ================================================================================\n\
00667 MSG: geometry_msgs/Point\n\
00668 # This contains the position of a point in free space\n\
00669 float64 x\n\
00670 float64 y\n\
00671 float64 z\n\
00672 \n\
00673 ================================================================================\n\
00674 MSG: geometry_msgs/Quaternion\n\
00675 # This represents an orientation in free space in quaternion form.\n\
00676 \n\
00677 float64 x\n\
00678 float64 y\n\
00679 float64 z\n\
00680 float64 w\n\
00681 \n\
00682 ================================================================================\n\
00683 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
00684 # Error codes for grasp and place planning\n\
00685 \n\
00686 # plan completed as expected\n\
00687 int32 SUCCESS = 0\n\
00688 \n\
00689 # tf error encountered while transforming\n\
00690 int32 TF_ERROR = 1 \n\
00691 \n\
00692 # some other error\n\
00693 int32 OTHER_ERROR = 2\n\
00694 \n\
00695 # the actual value of this error code\n\
00696 int32 value\n\
00697 "; }
00698 public:
00699 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00700
00701 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00702
00703 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00704 {
00705 ros::serialization::OStream stream(write_ptr, 1000000000);
00706 ros::serialization::serialize(stream, place_locations);
00707 ros::serialization::serialize(stream, error_code);
00708 return stream.getData();
00709 }
00710
00711 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00712 {
00713 ros::serialization::IStream stream(read_ptr, 1000000000);
00714 ros::serialization::deserialize(stream, place_locations);
00715 ros::serialization::deserialize(stream, error_code);
00716 return stream.getData();
00717 }
00718
00719 ROS_DEPRECATED virtual uint32_t serializationLength() const
00720 {
00721 uint32_t size = 0;
00722 size += ros::serialization::serializationLength(place_locations);
00723 size += ros::serialization::serializationLength(error_code);
00724 return size;
00725 }
00726
00727 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > Ptr;
00728 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> const> ConstPtr;
00729 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00730 };
00731 typedef ::object_manipulation_msgs::PlacePlanningResponse_<std::allocator<void> > PlacePlanningResponse;
00732
00733 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse> PlacePlanningResponsePtr;
00734 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse const> PlacePlanningResponseConstPtr;
00735
00736 struct PlacePlanning
00737 {
00738
00739 typedef PlacePlanningRequest Request;
00740 typedef PlacePlanningResponse Response;
00741 Request request;
00742 Response response;
00743
00744 typedef Request RequestType;
00745 typedef Response ResponseType;
00746 };
00747 }
00748
00749 namespace ros
00750 {
00751 namespace message_traits
00752 {
00753 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > : public TrueType {};
00754 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> const> : public TrueType {};
00755 template<class ContainerAllocator>
00756 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00757 static const char* value()
00758 {
00759 return "f8c649647c00f63351f0ba78c050e744";
00760 }
00761
00762 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00763 static const uint64_t static_value1 = 0xf8c649647c00f633ULL;
00764 static const uint64_t static_value2 = 0x51f0ba78c050e744ULL;
00765 };
00766
00767 template<class ContainerAllocator>
00768 struct DataType< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00769 static const char* value()
00770 {
00771 return "object_manipulation_msgs/PlacePlanningRequest";
00772 }
00773
00774 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
00775 };
00776
00777 template<class ContainerAllocator>
00778 struct Definition< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00779 static const char* value()
00780 {
00781 return "\n\
00782 \n\
00783 \n\
00784 string arm_name\n\
00785 \n\
00786 \n\
00787 GraspableObject target\n\
00788 \n\
00789 \n\
00790 \n\
00791 \n\
00792 geometry_msgs/Quaternion default_orientation\n\
00793 \n\
00794 \n\
00795 geometry_msgs/Pose grasp_pose\n\
00796 \n\
00797 \n\
00798 \n\
00799 string collision_object_name\n\
00800 \n\
00801 \n\
00802 \n\
00803 string collision_support_surface_name\n\
00804 \n\
00805 \n\
00806 ================================================================================\n\
00807 MSG: object_manipulation_msgs/GraspableObject\n\
00808 # an object that the object_manipulator can work on\n\
00809 \n\
00810 # a graspable object can be represented in multiple ways. This message\n\
00811 # can contain all of them. Which one is actually used is up to the receiver\n\
00812 # of this message. When adding new representations, one must be careful that\n\
00813 # they have reasonable lightweight defaults indicating that that particular\n\
00814 # representation is not available.\n\
00815 \n\
00816 # the tf frame to be used as a reference frame when combining information from\n\
00817 # the different representations below\n\
00818 string reference_frame_id\n\
00819 \n\
00820 # potential recognition results from a database of models\n\
00821 # all poses are relative to the object reference pose\n\
00822 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00823 \n\
00824 # the point cloud itself\n\
00825 sensor_msgs/PointCloud cluster\n\
00826 \n\
00827 # a region of a PointCloud2 of interest\n\
00828 object_manipulation_msgs/SceneRegion region\n\
00829 \n\
00830 # the name that this object has in the collision environment\n\
00831 string collision_name\n\
00832 ================================================================================\n\
00833 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00834 # Informs that a specific model from the Model Database has been \n\
00835 # identified at a certain location\n\
00836 \n\
00837 # the database id of the model\n\
00838 int32 model_id\n\
00839 \n\
00840 # the pose that it can be found in\n\
00841 geometry_msgs/PoseStamped pose\n\
00842 \n\
00843 # a measure of the confidence level in this detection result\n\
00844 float32 confidence\n\
00845 \n\
00846 # the name of the object detector that generated this detection result\n\
00847 string detector_name\n\
00848 \n\
00849 ================================================================================\n\
00850 MSG: geometry_msgs/PoseStamped\n\
00851 # A Pose with reference coordinate frame and timestamp\n\
00852 Header header\n\
00853 Pose pose\n\
00854 \n\
00855 ================================================================================\n\
00856 MSG: std_msgs/Header\n\
00857 # Standard metadata for higher-level stamped data types.\n\
00858 # This is generally used to communicate timestamped data \n\
00859 # in a particular coordinate frame.\n\
00860 # \n\
00861 # sequence ID: consecutively increasing ID \n\
00862 uint32 seq\n\
00863 #Two-integer timestamp that is expressed as:\n\
00864 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00865 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00866 # time-handling sugar is provided by the client library\n\
00867 time stamp\n\
00868 #Frame this data is associated with\n\
00869 # 0: no frame\n\
00870 # 1: global frame\n\
00871 string frame_id\n\
00872 \n\
00873 ================================================================================\n\
00874 MSG: geometry_msgs/Pose\n\
00875 # A representation of pose in free space, composed of postion and orientation. \n\
00876 Point position\n\
00877 Quaternion orientation\n\
00878 \n\
00879 ================================================================================\n\
00880 MSG: geometry_msgs/Point\n\
00881 # This contains the position of a point in free space\n\
00882 float64 x\n\
00883 float64 y\n\
00884 float64 z\n\
00885 \n\
00886 ================================================================================\n\
00887 MSG: geometry_msgs/Quaternion\n\
00888 # This represents an orientation in free space in quaternion form.\n\
00889 \n\
00890 float64 x\n\
00891 float64 y\n\
00892 float64 z\n\
00893 float64 w\n\
00894 \n\
00895 ================================================================================\n\
00896 MSG: sensor_msgs/PointCloud\n\
00897 # This message holds a collection of 3d points, plus optional additional\n\
00898 # information about each point.\n\
00899 \n\
00900 # Time of sensor data acquisition, coordinate frame ID.\n\
00901 Header header\n\
00902 \n\
00903 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00904 # in the frame given in the header.\n\
00905 geometry_msgs/Point32[] points\n\
00906 \n\
00907 # Each channel should have the same number of elements as points array,\n\
00908 # and the data in each channel should correspond 1:1 with each point.\n\
00909 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00910 ChannelFloat32[] channels\n\
00911 \n\
00912 ================================================================================\n\
00913 MSG: geometry_msgs/Point32\n\
00914 # This contains the position of a point in free space(with 32 bits of precision).\n\
00915 # It is recommeded to use Point wherever possible instead of Point32. \n\
00916 # \n\
00917 # This recommendation is to promote interoperability. \n\
00918 #\n\
00919 # This message is designed to take up less space when sending\n\
00920 # lots of points at once, as in the case of a PointCloud. \n\
00921 \n\
00922 float32 x\n\
00923 float32 y\n\
00924 float32 z\n\
00925 ================================================================================\n\
00926 MSG: sensor_msgs/ChannelFloat32\n\
00927 # This message is used by the PointCloud message to hold optional data\n\
00928 # associated with each point in the cloud. The length of the values\n\
00929 # array should be the same as the length of the points array in the\n\
00930 # PointCloud, and each value should be associated with the corresponding\n\
00931 # point.\n\
00932 \n\
00933 # Channel names in existing practice include:\n\
00934 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00935 # This is opposite to usual conventions but remains for\n\
00936 # historical reasons. The newer PointCloud2 message has no\n\
00937 # such problem.\n\
00938 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00939 # (R,G,B) values packed into the least significant 24 bits,\n\
00940 # in order.\n\
00941 # \"intensity\" - laser or pixel intensity.\n\
00942 # \"distance\"\n\
00943 \n\
00944 # The channel name should give semantics of the channel (e.g.\n\
00945 # \"intensity\" instead of \"value\").\n\
00946 string name\n\
00947 \n\
00948 # The values array should be 1-1 with the elements of the associated\n\
00949 # PointCloud.\n\
00950 float32[] values\n\
00951 \n\
00952 ================================================================================\n\
00953 MSG: object_manipulation_msgs/SceneRegion\n\
00954 # Point cloud\n\
00955 sensor_msgs/PointCloud2 cloud\n\
00956 \n\
00957 # Indices for the region of interest\n\
00958 int32[] mask\n\
00959 \n\
00960 # One of the corresponding 2D images, if applicable\n\
00961 sensor_msgs/Image image\n\
00962 \n\
00963 # The disparity image, if applicable\n\
00964 sensor_msgs/Image disparity_image\n\
00965 \n\
00966 # Camera info for the camera that took the image\n\
00967 sensor_msgs/CameraInfo cam_info\n\
00968 \n\
00969 # a 3D region of interest for grasp planning\n\
00970 geometry_msgs/PoseStamped roi_box_pose\n\
00971 geometry_msgs/Vector3 roi_box_dims\n\
00972 \n\
00973 ================================================================================\n\
00974 MSG: sensor_msgs/PointCloud2\n\
00975 # This message holds a collection of N-dimensional points, which may\n\
00976 # contain additional information such as normals, intensity, etc. The\n\
00977 # point data is stored as a binary blob, its layout described by the\n\
00978 # contents of the \"fields\" array.\n\
00979 \n\
00980 # The point cloud data may be organized 2d (image-like) or 1d\n\
00981 # (unordered). Point clouds organized as 2d images may be produced by\n\
00982 # camera depth sensors such as stereo or time-of-flight.\n\
00983 \n\
00984 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00985 # points).\n\
00986 Header header\n\
00987 \n\
00988 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00989 # 1 and width is the length of the point cloud.\n\
00990 uint32 height\n\
00991 uint32 width\n\
00992 \n\
00993 # Describes the channels and their layout in the binary data blob.\n\
00994 PointField[] fields\n\
00995 \n\
00996 bool is_bigendian # Is this data bigendian?\n\
00997 uint32 point_step # Length of a point in bytes\n\
00998 uint32 row_step # Length of a row in bytes\n\
00999 uint8[] data # Actual point data, size is (row_step*height)\n\
01000 \n\
01001 bool is_dense # True if there are no invalid points\n\
01002 \n\
01003 ================================================================================\n\
01004 MSG: sensor_msgs/PointField\n\
01005 # This message holds the description of one point entry in the\n\
01006 # PointCloud2 message format.\n\
01007 uint8 INT8 = 1\n\
01008 uint8 UINT8 = 2\n\
01009 uint8 INT16 = 3\n\
01010 uint8 UINT16 = 4\n\
01011 uint8 INT32 = 5\n\
01012 uint8 UINT32 = 6\n\
01013 uint8 FLOAT32 = 7\n\
01014 uint8 FLOAT64 = 8\n\
01015 \n\
01016 string name # Name of field\n\
01017 uint32 offset # Offset from start of point struct\n\
01018 uint8 datatype # Datatype enumeration, see above\n\
01019 uint32 count # How many elements in the field\n\
01020 \n\
01021 ================================================================================\n\
01022 MSG: sensor_msgs/Image\n\
01023 # This message contains an uncompressed image\n\
01024 # (0, 0) is at top-left corner of image\n\
01025 #\n\
01026 \n\
01027 Header header # Header timestamp should be acquisition time of image\n\
01028 # Header frame_id should be optical frame of camera\n\
01029 # origin of frame should be optical center of cameara\n\
01030 # +x should point to the right in the image\n\
01031 # +y should point down in the image\n\
01032 # +z should point into to plane of the image\n\
01033 # If the frame_id here and the frame_id of the CameraInfo\n\
01034 # message associated with the image conflict\n\
01035 # the behavior is undefined\n\
01036 \n\
01037 uint32 height # image height, that is, number of rows\n\
01038 uint32 width # image width, that is, number of columns\n\
01039 \n\
01040 # The legal values for encoding are in file src/image_encodings.cpp\n\
01041 # If you want to standardize a new string format, join\n\
01042 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01043 \n\
01044 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01045 # taken from the list of strings in src/image_encodings.cpp\n\
01046 \n\
01047 uint8 is_bigendian # is this data bigendian?\n\
01048 uint32 step # Full row length in bytes\n\
01049 uint8[] data # actual matrix data, size is (step * rows)\n\
01050 \n\
01051 ================================================================================\n\
01052 MSG: sensor_msgs/CameraInfo\n\
01053 # This message defines meta information for a camera. It should be in a\n\
01054 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01055 # image topics named:\n\
01056 #\n\
01057 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01058 # image - monochrome, distorted\n\
01059 # image_color - color, distorted\n\
01060 # image_rect - monochrome, rectified\n\
01061 # image_rect_color - color, rectified\n\
01062 #\n\
01063 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01064 # for producing the four processed image topics from image_raw and\n\
01065 # camera_info. The meaning of the camera parameters are described in\n\
01066 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01067 #\n\
01068 # The image_geometry package provides a user-friendly interface to\n\
01069 # common operations using this meta information. If you want to, e.g.,\n\
01070 # project a 3d point into image coordinates, we strongly recommend\n\
01071 # using image_geometry.\n\
01072 #\n\
01073 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01074 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01075 # indicates an uncalibrated camera.\n\
01076 \n\
01077 #######################################################################\n\
01078 # Image acquisition info #\n\
01079 #######################################################################\n\
01080 \n\
01081 # Time of image acquisition, camera coordinate frame ID\n\
01082 Header header # Header timestamp should be acquisition time of image\n\
01083 # Header frame_id should be optical frame of camera\n\
01084 # origin of frame should be optical center of camera\n\
01085 # +x should point to the right in the image\n\
01086 # +y should point down in the image\n\
01087 # +z should point into the plane of the image\n\
01088 \n\
01089 \n\
01090 #######################################################################\n\
01091 # Calibration Parameters #\n\
01092 #######################################################################\n\
01093 # These are fixed during camera calibration. Their values will be the #\n\
01094 # same in all messages until the camera is recalibrated. Note that #\n\
01095 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01096 # #\n\
01097 # The internal parameters can be used to warp a raw (distorted) image #\n\
01098 # to: #\n\
01099 # 1. An undistorted image (requires D and K) #\n\
01100 # 2. A rectified image (requires D, K, R) #\n\
01101 # The projection matrix P projects 3D points into the rectified image.#\n\
01102 #######################################################################\n\
01103 \n\
01104 # The image dimensions with which the camera was calibrated. Normally\n\
01105 # this will be the full camera resolution in pixels.\n\
01106 uint32 height\n\
01107 uint32 width\n\
01108 \n\
01109 # The distortion model used. Supported models are listed in\n\
01110 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01111 # simple model of radial and tangential distortion - is sufficent.\n\
01112 string distortion_model\n\
01113 \n\
01114 # The distortion parameters, size depending on the distortion model.\n\
01115 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01116 float64[] D\n\
01117 \n\
01118 # Intrinsic camera matrix for the raw (distorted) images.\n\
01119 # [fx 0 cx]\n\
01120 # K = [ 0 fy cy]\n\
01121 # [ 0 0 1]\n\
01122 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01123 # coordinates using the focal lengths (fx, fy) and principal point\n\
01124 # (cx, cy).\n\
01125 float64[9] K # 3x3 row-major matrix\n\
01126 \n\
01127 # Rectification matrix (stereo cameras only)\n\
01128 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01129 # stereo image plane so that epipolar lines in both stereo images are\n\
01130 # parallel.\n\
01131 float64[9] R # 3x3 row-major matrix\n\
01132 \n\
01133 # Projection/camera matrix\n\
01134 # [fx' 0 cx' Tx]\n\
01135 # P = [ 0 fy' cy' Ty]\n\
01136 # [ 0 0 1 0]\n\
01137 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01138 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01139 # is the normal camera intrinsic matrix for the rectified image.\n\
01140 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01141 # coordinates using the focal lengths (fx', fy') and principal point\n\
01142 # (cx', cy') - these may differ from the values in K.\n\
01143 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01144 # also have R = the identity and P[1:3,1:3] = K.\n\
01145 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01146 # position of the optical center of the second camera in the first\n\
01147 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01148 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01149 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01150 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01151 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01152 # the rectified image is given by:\n\
01153 # [u v w]' = P * [X Y Z 1]'\n\
01154 # x = u / w\n\
01155 # y = v / w\n\
01156 # This holds for both images of a stereo pair.\n\
01157 float64[12] P # 3x4 row-major matrix\n\
01158 \n\
01159 \n\
01160 #######################################################################\n\
01161 # Operational Parameters #\n\
01162 #######################################################################\n\
01163 # These define the image region actually captured by the camera #\n\
01164 # driver. Although they affect the geometry of the output image, they #\n\
01165 # may be changed freely without recalibrating the camera. #\n\
01166 #######################################################################\n\
01167 \n\
01168 # Binning refers here to any camera setting which combines rectangular\n\
01169 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01170 # resolution of the output image to\n\
01171 # (width / binning_x) x (height / binning_y).\n\
01172 # The default values binning_x = binning_y = 0 is considered the same\n\
01173 # as binning_x = binning_y = 1 (no subsampling).\n\
01174 uint32 binning_x\n\
01175 uint32 binning_y\n\
01176 \n\
01177 # Region of interest (subwindow of full camera resolution), given in\n\
01178 # full resolution (unbinned) image coordinates. A particular ROI\n\
01179 # always denotes the same window of pixels on the camera sensor,\n\
01180 # regardless of binning settings.\n\
01181 # The default setting of roi (all values 0) is considered the same as\n\
01182 # full resolution (roi.width = width, roi.height = height).\n\
01183 RegionOfInterest roi\n\
01184 \n\
01185 ================================================================================\n\
01186 MSG: sensor_msgs/RegionOfInterest\n\
01187 # This message is used to specify a region of interest within an image.\n\
01188 #\n\
01189 # When used to specify the ROI setting of the camera when the image was\n\
01190 # taken, the height and width fields should either match the height and\n\
01191 # width fields for the associated image; or height = width = 0\n\
01192 # indicates that the full resolution image was captured.\n\
01193 \n\
01194 uint32 x_offset # Leftmost pixel of the ROI\n\
01195 # (0 if the ROI includes the left edge of the image)\n\
01196 uint32 y_offset # Topmost pixel of the ROI\n\
01197 # (0 if the ROI includes the top edge of the image)\n\
01198 uint32 height # Height of ROI\n\
01199 uint32 width # Width of ROI\n\
01200 \n\
01201 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01202 # ROI in this message. Typically this should be False if the full image\n\
01203 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01204 # used).\n\
01205 bool do_rectify\n\
01206 \n\
01207 ================================================================================\n\
01208 MSG: geometry_msgs/Vector3\n\
01209 # This represents a vector in free space. \n\
01210 \n\
01211 float64 x\n\
01212 float64 y\n\
01213 float64 z\n\
01214 ";
01215 }
01216
01217 static const char* value(const ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
01218 };
01219
01220 }
01221 }
01222
01223
01224 namespace ros
01225 {
01226 namespace message_traits
01227 {
01228 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > : public TrueType {};
01229 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> const> : public TrueType {};
01230 template<class ContainerAllocator>
01231 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
01232 static const char* value()
01233 {
01234 return "0382b328d7a72bb56384d8d5a71b04a1";
01235 }
01236
01237 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
01238 static const uint64_t static_value1 = 0x0382b328d7a72bb5ULL;
01239 static const uint64_t static_value2 = 0x6384d8d5a71b04a1ULL;
01240 };
01241
01242 template<class ContainerAllocator>
01243 struct DataType< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
01244 static const char* value()
01245 {
01246 return "object_manipulation_msgs/PlacePlanningResponse";
01247 }
01248
01249 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
01250 };
01251
01252 template<class ContainerAllocator>
01253 struct Definition< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
01254 static const char* value()
01255 {
01256 return "\n\
01257 \n\
01258 geometry_msgs/PoseStamped[] place_locations\n\
01259 \n\
01260 \n\
01261 GraspPlanningErrorCode error_code\n\
01262 \n\
01263 \n\
01264 ================================================================================\n\
01265 MSG: geometry_msgs/PoseStamped\n\
01266 # A Pose with reference coordinate frame and timestamp\n\
01267 Header header\n\
01268 Pose pose\n\
01269 \n\
01270 ================================================================================\n\
01271 MSG: std_msgs/Header\n\
01272 # Standard metadata for higher-level stamped data types.\n\
01273 # This is generally used to communicate timestamped data \n\
01274 # in a particular coordinate frame.\n\
01275 # \n\
01276 # sequence ID: consecutively increasing ID \n\
01277 uint32 seq\n\
01278 #Two-integer timestamp that is expressed as:\n\
01279 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01280 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01281 # time-handling sugar is provided by the client library\n\
01282 time stamp\n\
01283 #Frame this data is associated with\n\
01284 # 0: no frame\n\
01285 # 1: global frame\n\
01286 string frame_id\n\
01287 \n\
01288 ================================================================================\n\
01289 MSG: geometry_msgs/Pose\n\
01290 # A representation of pose in free space, composed of postion and orientation. \n\
01291 Point position\n\
01292 Quaternion orientation\n\
01293 \n\
01294 ================================================================================\n\
01295 MSG: geometry_msgs/Point\n\
01296 # This contains the position of a point in free space\n\
01297 float64 x\n\
01298 float64 y\n\
01299 float64 z\n\
01300 \n\
01301 ================================================================================\n\
01302 MSG: geometry_msgs/Quaternion\n\
01303 # This represents an orientation in free space in quaternion form.\n\
01304 \n\
01305 float64 x\n\
01306 float64 y\n\
01307 float64 z\n\
01308 float64 w\n\
01309 \n\
01310 ================================================================================\n\
01311 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
01312 # Error codes for grasp and place planning\n\
01313 \n\
01314 # plan completed as expected\n\
01315 int32 SUCCESS = 0\n\
01316 \n\
01317 # tf error encountered while transforming\n\
01318 int32 TF_ERROR = 1 \n\
01319 \n\
01320 # some other error\n\
01321 int32 OTHER_ERROR = 2\n\
01322 \n\
01323 # the actual value of this error code\n\
01324 int32 value\n\
01325 ";
01326 }
01327
01328 static const char* value(const ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
01329 };
01330
01331 }
01332 }
01333
01334 namespace ros
01335 {
01336 namespace serialization
01337 {
01338
01339 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> >
01340 {
01341 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01342 {
01343 stream.next(m.arm_name);
01344 stream.next(m.target);
01345 stream.next(m.default_orientation);
01346 stream.next(m.grasp_pose);
01347 stream.next(m.collision_object_name);
01348 stream.next(m.collision_support_surface_name);
01349 }
01350
01351 ROS_DECLARE_ALLINONE_SERIALIZER;
01352 };
01353 }
01354 }
01355
01356
01357 namespace ros
01358 {
01359 namespace serialization
01360 {
01361
01362 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> >
01363 {
01364 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01365 {
01366 stream.next(m.place_locations);
01367 stream.next(m.error_code);
01368 }
01369
01370 ROS_DECLARE_ALLINONE_SERIALIZER;
01371 };
01372 }
01373 }
01374
01375 namespace ros
01376 {
01377 namespace service_traits
01378 {
01379 template<>
01380 struct MD5Sum<object_manipulation_msgs::PlacePlanning> {
01381 static const char* value()
01382 {
01383 return "0a3a115eac63ffa84432505330a8211c";
01384 }
01385
01386 static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); }
01387 };
01388
01389 template<>
01390 struct DataType<object_manipulation_msgs::PlacePlanning> {
01391 static const char* value()
01392 {
01393 return "object_manipulation_msgs/PlacePlanning";
01394 }
01395
01396 static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); }
01397 };
01398
01399 template<class ContainerAllocator>
01400 struct MD5Sum<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
01401 static const char* value()
01402 {
01403 return "0a3a115eac63ffa84432505330a8211c";
01404 }
01405
01406 static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
01407 };
01408
01409 template<class ContainerAllocator>
01410 struct DataType<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
01411 static const char* value()
01412 {
01413 return "object_manipulation_msgs/PlacePlanning";
01414 }
01415
01416 static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); }
01417 };
01418
01419 template<class ContainerAllocator>
01420 struct MD5Sum<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
01421 static const char* value()
01422 {
01423 return "0a3a115eac63ffa84432505330a8211c";
01424 }
01425
01426 static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
01427 };
01428
01429 template<class ContainerAllocator>
01430 struct DataType<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
01431 static const char* value()
01432 {
01433 return "object_manipulation_msgs/PlacePlanning";
01434 }
01435
01436 static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); }
01437 };
01438
01439 }
01440 }
01441
01442 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
01443