$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/PickupResult.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/ManipulationResult.h" 00018 #include "object_manipulation_msgs/Grasp.h" 00019 #include "object_manipulation_msgs/Grasp.h" 00020 #include "object_manipulation_msgs/GraspResult.h" 00021 00022 namespace object_manipulation_msgs 00023 { 00024 template <class ContainerAllocator> 00025 struct PickupResult_ { 00026 typedef PickupResult_<ContainerAllocator> Type; 00027 00028 PickupResult_() 00029 : manipulation_result() 00030 , grasp() 00031 , attempted_grasps() 00032 , attempted_grasp_results() 00033 { 00034 } 00035 00036 PickupResult_(const ContainerAllocator& _alloc) 00037 : manipulation_result(_alloc) 00038 , grasp(_alloc) 00039 , attempted_grasps(_alloc) 00040 , attempted_grasp_results(_alloc) 00041 { 00042 } 00043 00044 typedef ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> _manipulation_result_type; 00045 ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> manipulation_result; 00046 00047 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type; 00048 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp; 00049 00050 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _attempted_grasps_type; 00051 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > attempted_grasps; 00052 00053 typedef std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > _attempted_grasp_results_type; 00054 std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > attempted_grasp_results; 00055 00056 00057 ROS_DEPRECATED uint32_t get_attempted_grasps_size() const { return (uint32_t)attempted_grasps.size(); } 00058 ROS_DEPRECATED void set_attempted_grasps_size(uint32_t size) { attempted_grasps.resize((size_t)size); } 00059 ROS_DEPRECATED void get_attempted_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->attempted_grasps; } 00060 ROS_DEPRECATED void set_attempted_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->attempted_grasps = vec; } 00061 ROS_DEPRECATED uint32_t get_attempted_grasp_results_size() const { return (uint32_t)attempted_grasp_results.size(); } 00062 ROS_DEPRECATED void set_attempted_grasp_results_size(uint32_t size) { attempted_grasp_results.resize((size_t)size); } 00063 ROS_DEPRECATED void get_attempted_grasp_results_vec(std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > & vec) const { vec = this->attempted_grasp_results; } 00064 ROS_DEPRECATED void set_attempted_grasp_results_vec(const std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > & vec) { this->attempted_grasp_results = vec; } 00065 private: 00066 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupResult"; } 00067 public: 00068 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00069 00070 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00071 00072 private: 00073 static const char* __s_getMD5Sum_() { return "e37faa4bc17adb31e87f0a21276cde44"; } 00074 public: 00075 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00076 00077 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00078 00079 private: 00080 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00081 \n\ 00082 # The overall result of the pickup attempt\n\ 00083 ManipulationResult manipulation_result\n\ 00084 \n\ 00085 # The performed grasp, if attempt was successful\n\ 00086 Grasp grasp\n\ 00087 \n\ 00088 # the complete list of attempted grasp, in the order in which they have been attempted\n\ 00089 # the successful one should be the last one in this list\n\ 00090 Grasp[] attempted_grasps\n\ 00091 \n\ 00092 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\ 00093 GraspResult[] attempted_grasp_results\n\ 00094 \n\ 00095 \n\ 00096 ================================================================================\n\ 00097 MSG: object_manipulation_msgs/ManipulationResult\n\ 00098 # Result codes for manipulation tasks\n\ 00099 \n\ 00100 # task completed as expected\n\ 00101 # generally means you can proceed as planned\n\ 00102 int32 SUCCESS = 1\n\ 00103 \n\ 00104 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00105 # generally means that the world was not disturbed, so you can try another task\n\ 00106 int32 UNFEASIBLE = -1\n\ 00107 \n\ 00108 # task was thought possible, but failed due to unexpected events during execution\n\ 00109 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00110 # your sensed world model before proceeding to another task\n\ 00111 int32 FAILED = -2\n\ 00112 \n\ 00113 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00114 # generally requires human attention\n\ 00115 int32 ERROR = -3\n\ 00116 \n\ 00117 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00118 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00119 # probably need a new collision map to move the arm out of the stuck position\n\ 00120 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00121 \n\ 00122 # specific to grasp actions\n\ 00123 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00124 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00125 int32 LIFT_FAILED = -5\n\ 00126 \n\ 00127 # specific to place actions\n\ 00128 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00129 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00130 int32 RETREAT_FAILED = -6\n\ 00131 \n\ 00132 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00133 int32 CANCELLED = -7\n\ 00134 \n\ 00135 # the actual value of this error code\n\ 00136 int32 value\n\ 00137 \n\ 00138 ================================================================================\n\ 00139 MSG: object_manipulation_msgs/Grasp\n\ 00140 \n\ 00141 # The internal posture of the hand for the pre-grasp\n\ 00142 # only positions are used\n\ 00143 sensor_msgs/JointState pre_grasp_posture\n\ 00144 \n\ 00145 # The internal posture of the hand for the grasp\n\ 00146 # positions and efforts are used\n\ 00147 sensor_msgs/JointState grasp_posture\n\ 00148 \n\ 00149 # The position of the end-effector for the grasp relative to a reference frame \n\ 00150 # (that is always specified elsewhere, not in this message)\n\ 00151 geometry_msgs/Pose grasp_pose\n\ 00152 \n\ 00153 # The estimated probability of success for this grasp\n\ 00154 float64 success_probability\n\ 00155 \n\ 00156 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00157 bool cluster_rep\n\ 00158 \n\ 00159 # how far the pre-grasp should ideally be away from the grasp\n\ 00160 float32 desired_approach_distance\n\ 00161 \n\ 00162 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00163 # for the grasp not to be rejected\n\ 00164 float32 min_approach_distance\n\ 00165 \n\ 00166 # an optional list of obstacles that we have semantic information about\n\ 00167 # and that we expect might move in the course of executing this grasp\n\ 00168 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00169 # execution, grasp executors will not check for collisions against these objects\n\ 00170 GraspableObject[] moved_obstacles\n\ 00171 \n\ 00172 ================================================================================\n\ 00173 MSG: sensor_msgs/JointState\n\ 00174 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00175 #\n\ 00176 # The state of each joint (revolute or prismatic) is defined by:\n\ 00177 # * the position of the joint (rad or m),\n\ 00178 # * the velocity of the joint (rad/s or m/s) and \n\ 00179 # * the effort that is applied in the joint (Nm or N).\n\ 00180 #\n\ 00181 # Each joint is uniquely identified by its name\n\ 00182 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00183 # in one message have to be recorded at the same time.\n\ 00184 #\n\ 00185 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00186 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00187 # effort associated with them, you can leave the effort array empty. \n\ 00188 #\n\ 00189 # All arrays in this message should have the same size, or be empty.\n\ 00190 # This is the only way to uniquely associate the joint name with the correct\n\ 00191 # states.\n\ 00192 \n\ 00193 \n\ 00194 Header header\n\ 00195 \n\ 00196 string[] name\n\ 00197 float64[] position\n\ 00198 float64[] velocity\n\ 00199 float64[] effort\n\ 00200 \n\ 00201 ================================================================================\n\ 00202 MSG: std_msgs/Header\n\ 00203 # Standard metadata for higher-level stamped data types.\n\ 00204 # This is generally used to communicate timestamped data \n\ 00205 # in a particular coordinate frame.\n\ 00206 # \n\ 00207 # sequence ID: consecutively increasing ID \n\ 00208 uint32 seq\n\ 00209 #Two-integer timestamp that is expressed as:\n\ 00210 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00211 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00212 # time-handling sugar is provided by the client library\n\ 00213 time stamp\n\ 00214 #Frame this data is associated with\n\ 00215 # 0: no frame\n\ 00216 # 1: global frame\n\ 00217 string frame_id\n\ 00218 \n\ 00219 ================================================================================\n\ 00220 MSG: geometry_msgs/Pose\n\ 00221 # A representation of pose in free space, composed of postion and orientation. \n\ 00222 Point position\n\ 00223 Quaternion orientation\n\ 00224 \n\ 00225 ================================================================================\n\ 00226 MSG: geometry_msgs/Point\n\ 00227 # This contains the position of a point in free space\n\ 00228 float64 x\n\ 00229 float64 y\n\ 00230 float64 z\n\ 00231 \n\ 00232 ================================================================================\n\ 00233 MSG: geometry_msgs/Quaternion\n\ 00234 # This represents an orientation in free space in quaternion form.\n\ 00235 \n\ 00236 float64 x\n\ 00237 float64 y\n\ 00238 float64 z\n\ 00239 float64 w\n\ 00240 \n\ 00241 ================================================================================\n\ 00242 MSG: object_manipulation_msgs/GraspableObject\n\ 00243 # an object that the object_manipulator can work on\n\ 00244 \n\ 00245 # a graspable object can be represented in multiple ways. This message\n\ 00246 # can contain all of them. Which one is actually used is up to the receiver\n\ 00247 # of this message. When adding new representations, one must be careful that\n\ 00248 # they have reasonable lightweight defaults indicating that that particular\n\ 00249 # representation is not available.\n\ 00250 \n\ 00251 # the tf frame to be used as a reference frame when combining information from\n\ 00252 # the different representations below\n\ 00253 string reference_frame_id\n\ 00254 \n\ 00255 # potential recognition results from a database of models\n\ 00256 # all poses are relative to the object reference pose\n\ 00257 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00258 \n\ 00259 # the point cloud itself\n\ 00260 sensor_msgs/PointCloud cluster\n\ 00261 \n\ 00262 # a region of a PointCloud2 of interest\n\ 00263 object_manipulation_msgs/SceneRegion region\n\ 00264 \n\ 00265 # the name that this object has in the collision environment\n\ 00266 string collision_name\n\ 00267 ================================================================================\n\ 00268 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00269 # Informs that a specific model from the Model Database has been \n\ 00270 # identified at a certain location\n\ 00271 \n\ 00272 # the database id of the model\n\ 00273 int32 model_id\n\ 00274 \n\ 00275 # the pose that it can be found in\n\ 00276 geometry_msgs/PoseStamped pose\n\ 00277 \n\ 00278 # a measure of the confidence level in this detection result\n\ 00279 float32 confidence\n\ 00280 \n\ 00281 # the name of the object detector that generated this detection result\n\ 00282 string detector_name\n\ 00283 \n\ 00284 ================================================================================\n\ 00285 MSG: geometry_msgs/PoseStamped\n\ 00286 # A Pose with reference coordinate frame and timestamp\n\ 00287 Header header\n\ 00288 Pose pose\n\ 00289 \n\ 00290 ================================================================================\n\ 00291 MSG: sensor_msgs/PointCloud\n\ 00292 # This message holds a collection of 3d points, plus optional additional\n\ 00293 # information about each point.\n\ 00294 \n\ 00295 # Time of sensor data acquisition, coordinate frame ID.\n\ 00296 Header header\n\ 00297 \n\ 00298 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00299 # in the frame given in the header.\n\ 00300 geometry_msgs/Point32[] points\n\ 00301 \n\ 00302 # Each channel should have the same number of elements as points array,\n\ 00303 # and the data in each channel should correspond 1:1 with each point.\n\ 00304 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00305 ChannelFloat32[] channels\n\ 00306 \n\ 00307 ================================================================================\n\ 00308 MSG: geometry_msgs/Point32\n\ 00309 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00310 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00311 # \n\ 00312 # This recommendation is to promote interoperability. \n\ 00313 #\n\ 00314 # This message is designed to take up less space when sending\n\ 00315 # lots of points at once, as in the case of a PointCloud. \n\ 00316 \n\ 00317 float32 x\n\ 00318 float32 y\n\ 00319 float32 z\n\ 00320 ================================================================================\n\ 00321 MSG: sensor_msgs/ChannelFloat32\n\ 00322 # This message is used by the PointCloud message to hold optional data\n\ 00323 # associated with each point in the cloud. The length of the values\n\ 00324 # array should be the same as the length of the points array in the\n\ 00325 # PointCloud, and each value should be associated with the corresponding\n\ 00326 # point.\n\ 00327 \n\ 00328 # Channel names in existing practice include:\n\ 00329 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00330 # This is opposite to usual conventions but remains for\n\ 00331 # historical reasons. The newer PointCloud2 message has no\n\ 00332 # such problem.\n\ 00333 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00334 # (R,G,B) values packed into the least significant 24 bits,\n\ 00335 # in order.\n\ 00336 # \"intensity\" - laser or pixel intensity.\n\ 00337 # \"distance\"\n\ 00338 \n\ 00339 # The channel name should give semantics of the channel (e.g.\n\ 00340 # \"intensity\" instead of \"value\").\n\ 00341 string name\n\ 00342 \n\ 00343 # The values array should be 1-1 with the elements of the associated\n\ 00344 # PointCloud.\n\ 00345 float32[] values\n\ 00346 \n\ 00347 ================================================================================\n\ 00348 MSG: object_manipulation_msgs/SceneRegion\n\ 00349 # Point cloud\n\ 00350 sensor_msgs/PointCloud2 cloud\n\ 00351 \n\ 00352 # Indices for the region of interest\n\ 00353 int32[] mask\n\ 00354 \n\ 00355 # One of the corresponding 2D images, if applicable\n\ 00356 sensor_msgs/Image image\n\ 00357 \n\ 00358 # The disparity image, if applicable\n\ 00359 sensor_msgs/Image disparity_image\n\ 00360 \n\ 00361 # Camera info for the camera that took the image\n\ 00362 sensor_msgs/CameraInfo cam_info\n\ 00363 \n\ 00364 # a 3D region of interest for grasp planning\n\ 00365 geometry_msgs/PoseStamped roi_box_pose\n\ 00366 geometry_msgs/Vector3 roi_box_dims\n\ 00367 \n\ 00368 ================================================================================\n\ 00369 MSG: sensor_msgs/PointCloud2\n\ 00370 # This message holds a collection of N-dimensional points, which may\n\ 00371 # contain additional information such as normals, intensity, etc. The\n\ 00372 # point data is stored as a binary blob, its layout described by the\n\ 00373 # contents of the \"fields\" array.\n\ 00374 \n\ 00375 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00376 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00377 # camera depth sensors such as stereo or time-of-flight.\n\ 00378 \n\ 00379 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00380 # points).\n\ 00381 Header header\n\ 00382 \n\ 00383 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00384 # 1 and width is the length of the point cloud.\n\ 00385 uint32 height\n\ 00386 uint32 width\n\ 00387 \n\ 00388 # Describes the channels and their layout in the binary data blob.\n\ 00389 PointField[] fields\n\ 00390 \n\ 00391 bool is_bigendian # Is this data bigendian?\n\ 00392 uint32 point_step # Length of a point in bytes\n\ 00393 uint32 row_step # Length of a row in bytes\n\ 00394 uint8[] data # Actual point data, size is (row_step*height)\n\ 00395 \n\ 00396 bool is_dense # True if there are no invalid points\n\ 00397 \n\ 00398 ================================================================================\n\ 00399 MSG: sensor_msgs/PointField\n\ 00400 # This message holds the description of one point entry in the\n\ 00401 # PointCloud2 message format.\n\ 00402 uint8 INT8 = 1\n\ 00403 uint8 UINT8 = 2\n\ 00404 uint8 INT16 = 3\n\ 00405 uint8 UINT16 = 4\n\ 00406 uint8 INT32 = 5\n\ 00407 uint8 UINT32 = 6\n\ 00408 uint8 FLOAT32 = 7\n\ 00409 uint8 FLOAT64 = 8\n\ 00410 \n\ 00411 string name # Name of field\n\ 00412 uint32 offset # Offset from start of point struct\n\ 00413 uint8 datatype # Datatype enumeration, see above\n\ 00414 uint32 count # How many elements in the field\n\ 00415 \n\ 00416 ================================================================================\n\ 00417 MSG: sensor_msgs/Image\n\ 00418 # This message contains an uncompressed image\n\ 00419 # (0, 0) is at top-left corner of image\n\ 00420 #\n\ 00421 \n\ 00422 Header header # Header timestamp should be acquisition time of image\n\ 00423 # Header frame_id should be optical frame of camera\n\ 00424 # origin of frame should be optical center of cameara\n\ 00425 # +x should point to the right in the image\n\ 00426 # +y should point down in the image\n\ 00427 # +z should point into to plane of the image\n\ 00428 # If the frame_id here and the frame_id of the CameraInfo\n\ 00429 # message associated with the image conflict\n\ 00430 # the behavior is undefined\n\ 00431 \n\ 00432 uint32 height # image height, that is, number of rows\n\ 00433 uint32 width # image width, that is, number of columns\n\ 00434 \n\ 00435 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00436 # If you want to standardize a new string format, join\n\ 00437 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00438 \n\ 00439 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00440 # taken from the list of strings in src/image_encodings.cpp\n\ 00441 \n\ 00442 uint8 is_bigendian # is this data bigendian?\n\ 00443 uint32 step # Full row length in bytes\n\ 00444 uint8[] data # actual matrix data, size is (step * rows)\n\ 00445 \n\ 00446 ================================================================================\n\ 00447 MSG: sensor_msgs/CameraInfo\n\ 00448 # This message defines meta information for a camera. It should be in a\n\ 00449 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00450 # image topics named:\n\ 00451 #\n\ 00452 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00453 # image - monochrome, distorted\n\ 00454 # image_color - color, distorted\n\ 00455 # image_rect - monochrome, rectified\n\ 00456 # image_rect_color - color, rectified\n\ 00457 #\n\ 00458 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00459 # for producing the four processed image topics from image_raw and\n\ 00460 # camera_info. The meaning of the camera parameters are described in\n\ 00461 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00462 #\n\ 00463 # The image_geometry package provides a user-friendly interface to\n\ 00464 # common operations using this meta information. If you want to, e.g.,\n\ 00465 # project a 3d point into image coordinates, we strongly recommend\n\ 00466 # using image_geometry.\n\ 00467 #\n\ 00468 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00469 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00470 # indicates an uncalibrated camera.\n\ 00471 \n\ 00472 #######################################################################\n\ 00473 # Image acquisition info #\n\ 00474 #######################################################################\n\ 00475 \n\ 00476 # Time of image acquisition, camera coordinate frame ID\n\ 00477 Header header # Header timestamp should be acquisition time of image\n\ 00478 # Header frame_id should be optical frame of camera\n\ 00479 # origin of frame should be optical center of camera\n\ 00480 # +x should point to the right in the image\n\ 00481 # +y should point down in the image\n\ 00482 # +z should point into the plane of the image\n\ 00483 \n\ 00484 \n\ 00485 #######################################################################\n\ 00486 # Calibration Parameters #\n\ 00487 #######################################################################\n\ 00488 # These are fixed during camera calibration. Their values will be the #\n\ 00489 # same in all messages until the camera is recalibrated. Note that #\n\ 00490 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00491 # #\n\ 00492 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00493 # to: #\n\ 00494 # 1. An undistorted image (requires D and K) #\n\ 00495 # 2. A rectified image (requires D, K, R) #\n\ 00496 # The projection matrix P projects 3D points into the rectified image.#\n\ 00497 #######################################################################\n\ 00498 \n\ 00499 # The image dimensions with which the camera was calibrated. Normally\n\ 00500 # this will be the full camera resolution in pixels.\n\ 00501 uint32 height\n\ 00502 uint32 width\n\ 00503 \n\ 00504 # The distortion model used. Supported models are listed in\n\ 00505 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00506 # simple model of radial and tangential distortion - is sufficent.\n\ 00507 string distortion_model\n\ 00508 \n\ 00509 # The distortion parameters, size depending on the distortion model.\n\ 00510 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00511 float64[] D\n\ 00512 \n\ 00513 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00514 # [fx 0 cx]\n\ 00515 # K = [ 0 fy cy]\n\ 00516 # [ 0 0 1]\n\ 00517 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00518 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00519 # (cx, cy).\n\ 00520 float64[9] K # 3x3 row-major matrix\n\ 00521 \n\ 00522 # Rectification matrix (stereo cameras only)\n\ 00523 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00524 # stereo image plane so that epipolar lines in both stereo images are\n\ 00525 # parallel.\n\ 00526 float64[9] R # 3x3 row-major matrix\n\ 00527 \n\ 00528 # Projection/camera matrix\n\ 00529 # [fx' 0 cx' Tx]\n\ 00530 # P = [ 0 fy' cy' Ty]\n\ 00531 # [ 0 0 1 0]\n\ 00532 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00533 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00534 # is the normal camera intrinsic matrix for the rectified image.\n\ 00535 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00536 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00537 # (cx', cy') - these may differ from the values in K.\n\ 00538 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00539 # also have R = the identity and P[1:3,1:3] = K.\n\ 00540 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00541 # position of the optical center of the second camera in the first\n\ 00542 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00543 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00544 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00545 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00546 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00547 # the rectified image is given by:\n\ 00548 # [u v w]' = P * [X Y Z 1]'\n\ 00549 # x = u / w\n\ 00550 # y = v / w\n\ 00551 # This holds for both images of a stereo pair.\n\ 00552 float64[12] P # 3x4 row-major matrix\n\ 00553 \n\ 00554 \n\ 00555 #######################################################################\n\ 00556 # Operational Parameters #\n\ 00557 #######################################################################\n\ 00558 # These define the image region actually captured by the camera #\n\ 00559 # driver. Although they affect the geometry of the output image, they #\n\ 00560 # may be changed freely without recalibrating the camera. #\n\ 00561 #######################################################################\n\ 00562 \n\ 00563 # Binning refers here to any camera setting which combines rectangular\n\ 00564 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00565 # resolution of the output image to\n\ 00566 # (width / binning_x) x (height / binning_y).\n\ 00567 # The default values binning_x = binning_y = 0 is considered the same\n\ 00568 # as binning_x = binning_y = 1 (no subsampling).\n\ 00569 uint32 binning_x\n\ 00570 uint32 binning_y\n\ 00571 \n\ 00572 # Region of interest (subwindow of full camera resolution), given in\n\ 00573 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00574 # always denotes the same window of pixels on the camera sensor,\n\ 00575 # regardless of binning settings.\n\ 00576 # The default setting of roi (all values 0) is considered the same as\n\ 00577 # full resolution (roi.width = width, roi.height = height).\n\ 00578 RegionOfInterest roi\n\ 00579 \n\ 00580 ================================================================================\n\ 00581 MSG: sensor_msgs/RegionOfInterest\n\ 00582 # This message is used to specify a region of interest within an image.\n\ 00583 #\n\ 00584 # When used to specify the ROI setting of the camera when the image was\n\ 00585 # taken, the height and width fields should either match the height and\n\ 00586 # width fields for the associated image; or height = width = 0\n\ 00587 # indicates that the full resolution image was captured.\n\ 00588 \n\ 00589 uint32 x_offset # Leftmost pixel of the ROI\n\ 00590 # (0 if the ROI includes the left edge of the image)\n\ 00591 uint32 y_offset # Topmost pixel of the ROI\n\ 00592 # (0 if the ROI includes the top edge of the image)\n\ 00593 uint32 height # Height of ROI\n\ 00594 uint32 width # Width of ROI\n\ 00595 \n\ 00596 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00597 # ROI in this message. Typically this should be False if the full image\n\ 00598 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00599 # used).\n\ 00600 bool do_rectify\n\ 00601 \n\ 00602 ================================================================================\n\ 00603 MSG: geometry_msgs/Vector3\n\ 00604 # This represents a vector in free space. \n\ 00605 \n\ 00606 float64 x\n\ 00607 float64 y\n\ 00608 float64 z\n\ 00609 ================================================================================\n\ 00610 MSG: object_manipulation_msgs/GraspResult\n\ 00611 int32 SUCCESS = 1\n\ 00612 int32 GRASP_OUT_OF_REACH = 2\n\ 00613 int32 GRASP_IN_COLLISION = 3\n\ 00614 int32 GRASP_UNFEASIBLE = 4\n\ 00615 int32 PREGRASP_OUT_OF_REACH = 5\n\ 00616 int32 PREGRASP_IN_COLLISION = 6\n\ 00617 int32 PREGRASP_UNFEASIBLE = 7\n\ 00618 int32 LIFT_OUT_OF_REACH = 8\n\ 00619 int32 LIFT_IN_COLLISION = 9\n\ 00620 int32 LIFT_UNFEASIBLE = 10\n\ 00621 int32 MOVE_ARM_FAILED = 11\n\ 00622 int32 GRASP_FAILED = 12\n\ 00623 int32 LIFT_FAILED = 13\n\ 00624 int32 RETREAT_FAILED = 14\n\ 00625 int32 result_code\n\ 00626 \n\ 00627 # whether the state of the world was disturbed by this attempt. generally, this flag\n\ 00628 # shows if another task can be attempted, or a new sensed world model is recommeded\n\ 00629 # before proceeding\n\ 00630 bool continuation_possible\n\ 00631 \n\ 00632 "; } 00633 public: 00634 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00635 00636 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00637 00638 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00639 { 00640 ros::serialization::OStream stream(write_ptr, 1000000000); 00641 ros::serialization::serialize(stream, manipulation_result); 00642 ros::serialization::serialize(stream, grasp); 00643 ros::serialization::serialize(stream, attempted_grasps); 00644 ros::serialization::serialize(stream, attempted_grasp_results); 00645 return stream.getData(); 00646 } 00647 00648 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00649 { 00650 ros::serialization::IStream stream(read_ptr, 1000000000); 00651 ros::serialization::deserialize(stream, manipulation_result); 00652 ros::serialization::deserialize(stream, grasp); 00653 ros::serialization::deserialize(stream, attempted_grasps); 00654 ros::serialization::deserialize(stream, attempted_grasp_results); 00655 return stream.getData(); 00656 } 00657 00658 ROS_DEPRECATED virtual uint32_t serializationLength() const 00659 { 00660 uint32_t size = 0; 00661 size += ros::serialization::serializationLength(manipulation_result); 00662 size += ros::serialization::serializationLength(grasp); 00663 size += ros::serialization::serializationLength(attempted_grasps); 00664 size += ros::serialization::serializationLength(attempted_grasp_results); 00665 return size; 00666 } 00667 00668 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > Ptr; 00669 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> const> ConstPtr; 00670 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00671 }; // struct PickupResult 00672 typedef ::object_manipulation_msgs::PickupResult_<std::allocator<void> > PickupResult; 00673 00674 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult> PickupResultPtr; 00675 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult const> PickupResultConstPtr; 00676 00677 00678 template<typename ContainerAllocator> 00679 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> & v) 00680 { 00681 ros::message_operations::Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >::stream(s, "", v); 00682 return s;} 00683 00684 } // namespace object_manipulation_msgs 00685 00686 namespace ros 00687 { 00688 namespace message_traits 00689 { 00690 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > : public TrueType {}; 00691 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> const> : public TrueType {}; 00692 template<class ContainerAllocator> 00693 struct MD5Sum< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > { 00694 static const char* value() 00695 { 00696 return "e37faa4bc17adb31e87f0a21276cde44"; 00697 } 00698 00699 static const char* value(const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); } 00700 static const uint64_t static_value1 = 0xe37faa4bc17adb31ULL; 00701 static const uint64_t static_value2 = 0xe87f0a21276cde44ULL; 00702 }; 00703 00704 template<class ContainerAllocator> 00705 struct DataType< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > { 00706 static const char* value() 00707 { 00708 return "object_manipulation_msgs/PickupResult"; 00709 } 00710 00711 static const char* value(const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); } 00712 }; 00713 00714 template<class ContainerAllocator> 00715 struct Definition< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > { 00716 static const char* value() 00717 { 00718 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00719 \n\ 00720 # The overall result of the pickup attempt\n\ 00721 ManipulationResult manipulation_result\n\ 00722 \n\ 00723 # The performed grasp, if attempt was successful\n\ 00724 Grasp grasp\n\ 00725 \n\ 00726 # the complete list of attempted grasp, in the order in which they have been attempted\n\ 00727 # the successful one should be the last one in this list\n\ 00728 Grasp[] attempted_grasps\n\ 00729 \n\ 00730 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\ 00731 GraspResult[] attempted_grasp_results\n\ 00732 \n\ 00733 \n\ 00734 ================================================================================\n\ 00735 MSG: object_manipulation_msgs/ManipulationResult\n\ 00736 # Result codes for manipulation tasks\n\ 00737 \n\ 00738 # task completed as expected\n\ 00739 # generally means you can proceed as planned\n\ 00740 int32 SUCCESS = 1\n\ 00741 \n\ 00742 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00743 # generally means that the world was not disturbed, so you can try another task\n\ 00744 int32 UNFEASIBLE = -1\n\ 00745 \n\ 00746 # task was thought possible, but failed due to unexpected events during execution\n\ 00747 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00748 # your sensed world model before proceeding to another task\n\ 00749 int32 FAILED = -2\n\ 00750 \n\ 00751 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00752 # generally requires human attention\n\ 00753 int32 ERROR = -3\n\ 00754 \n\ 00755 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00756 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00757 # probably need a new collision map to move the arm out of the stuck position\n\ 00758 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00759 \n\ 00760 # specific to grasp actions\n\ 00761 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00762 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00763 int32 LIFT_FAILED = -5\n\ 00764 \n\ 00765 # specific to place actions\n\ 00766 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00767 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00768 int32 RETREAT_FAILED = -6\n\ 00769 \n\ 00770 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00771 int32 CANCELLED = -7\n\ 00772 \n\ 00773 # the actual value of this error code\n\ 00774 int32 value\n\ 00775 \n\ 00776 ================================================================================\n\ 00777 MSG: object_manipulation_msgs/Grasp\n\ 00778 \n\ 00779 # The internal posture of the hand for the pre-grasp\n\ 00780 # only positions are used\n\ 00781 sensor_msgs/JointState pre_grasp_posture\n\ 00782 \n\ 00783 # The internal posture of the hand for the grasp\n\ 00784 # positions and efforts are used\n\ 00785 sensor_msgs/JointState grasp_posture\n\ 00786 \n\ 00787 # The position of the end-effector for the grasp relative to a reference frame \n\ 00788 # (that is always specified elsewhere, not in this message)\n\ 00789 geometry_msgs/Pose grasp_pose\n\ 00790 \n\ 00791 # The estimated probability of success for this grasp\n\ 00792 float64 success_probability\n\ 00793 \n\ 00794 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00795 bool cluster_rep\n\ 00796 \n\ 00797 # how far the pre-grasp should ideally be away from the grasp\n\ 00798 float32 desired_approach_distance\n\ 00799 \n\ 00800 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00801 # for the grasp not to be rejected\n\ 00802 float32 min_approach_distance\n\ 00803 \n\ 00804 # an optional list of obstacles that we have semantic information about\n\ 00805 # and that we expect might move in the course of executing this grasp\n\ 00806 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00807 # execution, grasp executors will not check for collisions against these objects\n\ 00808 GraspableObject[] moved_obstacles\n\ 00809 \n\ 00810 ================================================================================\n\ 00811 MSG: sensor_msgs/JointState\n\ 00812 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00813 #\n\ 00814 # The state of each joint (revolute or prismatic) is defined by:\n\ 00815 # * the position of the joint (rad or m),\n\ 00816 # * the velocity of the joint (rad/s or m/s) and \n\ 00817 # * the effort that is applied in the joint (Nm or N).\n\ 00818 #\n\ 00819 # Each joint is uniquely identified by its name\n\ 00820 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00821 # in one message have to be recorded at the same time.\n\ 00822 #\n\ 00823 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00824 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00825 # effort associated with them, you can leave the effort array empty. \n\ 00826 #\n\ 00827 # All arrays in this message should have the same size, or be empty.\n\ 00828 # This is the only way to uniquely associate the joint name with the correct\n\ 00829 # states.\n\ 00830 \n\ 00831 \n\ 00832 Header header\n\ 00833 \n\ 00834 string[] name\n\ 00835 float64[] position\n\ 00836 float64[] velocity\n\ 00837 float64[] effort\n\ 00838 \n\ 00839 ================================================================================\n\ 00840 MSG: std_msgs/Header\n\ 00841 # Standard metadata for higher-level stamped data types.\n\ 00842 # This is generally used to communicate timestamped data \n\ 00843 # in a particular coordinate frame.\n\ 00844 # \n\ 00845 # sequence ID: consecutively increasing ID \n\ 00846 uint32 seq\n\ 00847 #Two-integer timestamp that is expressed as:\n\ 00848 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00849 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00850 # time-handling sugar is provided by the client library\n\ 00851 time stamp\n\ 00852 #Frame this data is associated with\n\ 00853 # 0: no frame\n\ 00854 # 1: global frame\n\ 00855 string frame_id\n\ 00856 \n\ 00857 ================================================================================\n\ 00858 MSG: geometry_msgs/Pose\n\ 00859 # A representation of pose in free space, composed of postion and orientation. \n\ 00860 Point position\n\ 00861 Quaternion orientation\n\ 00862 \n\ 00863 ================================================================================\n\ 00864 MSG: geometry_msgs/Point\n\ 00865 # This contains the position of a point in free space\n\ 00866 float64 x\n\ 00867 float64 y\n\ 00868 float64 z\n\ 00869 \n\ 00870 ================================================================================\n\ 00871 MSG: geometry_msgs/Quaternion\n\ 00872 # This represents an orientation in free space in quaternion form.\n\ 00873 \n\ 00874 float64 x\n\ 00875 float64 y\n\ 00876 float64 z\n\ 00877 float64 w\n\ 00878 \n\ 00879 ================================================================================\n\ 00880 MSG: object_manipulation_msgs/GraspableObject\n\ 00881 # an object that the object_manipulator can work on\n\ 00882 \n\ 00883 # a graspable object can be represented in multiple ways. This message\n\ 00884 # can contain all of them. Which one is actually used is up to the receiver\n\ 00885 # of this message. When adding new representations, one must be careful that\n\ 00886 # they have reasonable lightweight defaults indicating that that particular\n\ 00887 # representation is not available.\n\ 00888 \n\ 00889 # the tf frame to be used as a reference frame when combining information from\n\ 00890 # the different representations below\n\ 00891 string reference_frame_id\n\ 00892 \n\ 00893 # potential recognition results from a database of models\n\ 00894 # all poses are relative to the object reference pose\n\ 00895 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00896 \n\ 00897 # the point cloud itself\n\ 00898 sensor_msgs/PointCloud cluster\n\ 00899 \n\ 00900 # a region of a PointCloud2 of interest\n\ 00901 object_manipulation_msgs/SceneRegion region\n\ 00902 \n\ 00903 # the name that this object has in the collision environment\n\ 00904 string collision_name\n\ 00905 ================================================================================\n\ 00906 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00907 # Informs that a specific model from the Model Database has been \n\ 00908 # identified at a certain location\n\ 00909 \n\ 00910 # the database id of the model\n\ 00911 int32 model_id\n\ 00912 \n\ 00913 # the pose that it can be found in\n\ 00914 geometry_msgs/PoseStamped pose\n\ 00915 \n\ 00916 # a measure of the confidence level in this detection result\n\ 00917 float32 confidence\n\ 00918 \n\ 00919 # the name of the object detector that generated this detection result\n\ 00920 string detector_name\n\ 00921 \n\ 00922 ================================================================================\n\ 00923 MSG: geometry_msgs/PoseStamped\n\ 00924 # A Pose with reference coordinate frame and timestamp\n\ 00925 Header header\n\ 00926 Pose pose\n\ 00927 \n\ 00928 ================================================================================\n\ 00929 MSG: sensor_msgs/PointCloud\n\ 00930 # This message holds a collection of 3d points, plus optional additional\n\ 00931 # information about each point.\n\ 00932 \n\ 00933 # Time of sensor data acquisition, coordinate frame ID.\n\ 00934 Header header\n\ 00935 \n\ 00936 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00937 # in the frame given in the header.\n\ 00938 geometry_msgs/Point32[] points\n\ 00939 \n\ 00940 # Each channel should have the same number of elements as points array,\n\ 00941 # and the data in each channel should correspond 1:1 with each point.\n\ 00942 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00943 ChannelFloat32[] channels\n\ 00944 \n\ 00945 ================================================================================\n\ 00946 MSG: geometry_msgs/Point32\n\ 00947 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00948 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00949 # \n\ 00950 # This recommendation is to promote interoperability. \n\ 00951 #\n\ 00952 # This message is designed to take up less space when sending\n\ 00953 # lots of points at once, as in the case of a PointCloud. \n\ 00954 \n\ 00955 float32 x\n\ 00956 float32 y\n\ 00957 float32 z\n\ 00958 ================================================================================\n\ 00959 MSG: sensor_msgs/ChannelFloat32\n\ 00960 # This message is used by the PointCloud message to hold optional data\n\ 00961 # associated with each point in the cloud. The length of the values\n\ 00962 # array should be the same as the length of the points array in the\n\ 00963 # PointCloud, and each value should be associated with the corresponding\n\ 00964 # point.\n\ 00965 \n\ 00966 # Channel names in existing practice include:\n\ 00967 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00968 # This is opposite to usual conventions but remains for\n\ 00969 # historical reasons. The newer PointCloud2 message has no\n\ 00970 # such problem.\n\ 00971 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00972 # (R,G,B) values packed into the least significant 24 bits,\n\ 00973 # in order.\n\ 00974 # \"intensity\" - laser or pixel intensity.\n\ 00975 # \"distance\"\n\ 00976 \n\ 00977 # The channel name should give semantics of the channel (e.g.\n\ 00978 # \"intensity\" instead of \"value\").\n\ 00979 string name\n\ 00980 \n\ 00981 # The values array should be 1-1 with the elements of the associated\n\ 00982 # PointCloud.\n\ 00983 float32[] values\n\ 00984 \n\ 00985 ================================================================================\n\ 00986 MSG: object_manipulation_msgs/SceneRegion\n\ 00987 # Point cloud\n\ 00988 sensor_msgs/PointCloud2 cloud\n\ 00989 \n\ 00990 # Indices for the region of interest\n\ 00991 int32[] mask\n\ 00992 \n\ 00993 # One of the corresponding 2D images, if applicable\n\ 00994 sensor_msgs/Image image\n\ 00995 \n\ 00996 # The disparity image, if applicable\n\ 00997 sensor_msgs/Image disparity_image\n\ 00998 \n\ 00999 # Camera info for the camera that took the image\n\ 01000 sensor_msgs/CameraInfo cam_info\n\ 01001 \n\ 01002 # a 3D region of interest for grasp planning\n\ 01003 geometry_msgs/PoseStamped roi_box_pose\n\ 01004 geometry_msgs/Vector3 roi_box_dims\n\ 01005 \n\ 01006 ================================================================================\n\ 01007 MSG: sensor_msgs/PointCloud2\n\ 01008 # This message holds a collection of N-dimensional points, which may\n\ 01009 # contain additional information such as normals, intensity, etc. The\n\ 01010 # point data is stored as a binary blob, its layout described by the\n\ 01011 # contents of the \"fields\" array.\n\ 01012 \n\ 01013 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01014 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01015 # camera depth sensors such as stereo or time-of-flight.\n\ 01016 \n\ 01017 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01018 # points).\n\ 01019 Header header\n\ 01020 \n\ 01021 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01022 # 1 and width is the length of the point cloud.\n\ 01023 uint32 height\n\ 01024 uint32 width\n\ 01025 \n\ 01026 # Describes the channels and their layout in the binary data blob.\n\ 01027 PointField[] fields\n\ 01028 \n\ 01029 bool is_bigendian # Is this data bigendian?\n\ 01030 uint32 point_step # Length of a point in bytes\n\ 01031 uint32 row_step # Length of a row in bytes\n\ 01032 uint8[] data # Actual point data, size is (row_step*height)\n\ 01033 \n\ 01034 bool is_dense # True if there are no invalid points\n\ 01035 \n\ 01036 ================================================================================\n\ 01037 MSG: sensor_msgs/PointField\n\ 01038 # This message holds the description of one point entry in the\n\ 01039 # PointCloud2 message format.\n\ 01040 uint8 INT8 = 1\n\ 01041 uint8 UINT8 = 2\n\ 01042 uint8 INT16 = 3\n\ 01043 uint8 UINT16 = 4\n\ 01044 uint8 INT32 = 5\n\ 01045 uint8 UINT32 = 6\n\ 01046 uint8 FLOAT32 = 7\n\ 01047 uint8 FLOAT64 = 8\n\ 01048 \n\ 01049 string name # Name of field\n\ 01050 uint32 offset # Offset from start of point struct\n\ 01051 uint8 datatype # Datatype enumeration, see above\n\ 01052 uint32 count # How many elements in the field\n\ 01053 \n\ 01054 ================================================================================\n\ 01055 MSG: sensor_msgs/Image\n\ 01056 # This message contains an uncompressed image\n\ 01057 # (0, 0) is at top-left corner of image\n\ 01058 #\n\ 01059 \n\ 01060 Header header # Header timestamp should be acquisition time of image\n\ 01061 # Header frame_id should be optical frame of camera\n\ 01062 # origin of frame should be optical center of cameara\n\ 01063 # +x should point to the right in the image\n\ 01064 # +y should point down in the image\n\ 01065 # +z should point into to plane of the image\n\ 01066 # If the frame_id here and the frame_id of the CameraInfo\n\ 01067 # message associated with the image conflict\n\ 01068 # the behavior is undefined\n\ 01069 \n\ 01070 uint32 height # image height, that is, number of rows\n\ 01071 uint32 width # image width, that is, number of columns\n\ 01072 \n\ 01073 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01074 # If you want to standardize a new string format, join\n\ 01075 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01076 \n\ 01077 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01078 # taken from the list of strings in src/image_encodings.cpp\n\ 01079 \n\ 01080 uint8 is_bigendian # is this data bigendian?\n\ 01081 uint32 step # Full row length in bytes\n\ 01082 uint8[] data # actual matrix data, size is (step * rows)\n\ 01083 \n\ 01084 ================================================================================\n\ 01085 MSG: sensor_msgs/CameraInfo\n\ 01086 # This message defines meta information for a camera. It should be in a\n\ 01087 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01088 # image topics named:\n\ 01089 #\n\ 01090 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01091 # image - monochrome, distorted\n\ 01092 # image_color - color, distorted\n\ 01093 # image_rect - monochrome, rectified\n\ 01094 # image_rect_color - color, rectified\n\ 01095 #\n\ 01096 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01097 # for producing the four processed image topics from image_raw and\n\ 01098 # camera_info. The meaning of the camera parameters are described in\n\ 01099 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01100 #\n\ 01101 # The image_geometry package provides a user-friendly interface to\n\ 01102 # common operations using this meta information. If you want to, e.g.,\n\ 01103 # project a 3d point into image coordinates, we strongly recommend\n\ 01104 # using image_geometry.\n\ 01105 #\n\ 01106 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01107 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01108 # indicates an uncalibrated camera.\n\ 01109 \n\ 01110 #######################################################################\n\ 01111 # Image acquisition info #\n\ 01112 #######################################################################\n\ 01113 \n\ 01114 # Time of image acquisition, camera coordinate frame ID\n\ 01115 Header header # Header timestamp should be acquisition time of image\n\ 01116 # Header frame_id should be optical frame of camera\n\ 01117 # origin of frame should be optical center of camera\n\ 01118 # +x should point to the right in the image\n\ 01119 # +y should point down in the image\n\ 01120 # +z should point into the plane of the image\n\ 01121 \n\ 01122 \n\ 01123 #######################################################################\n\ 01124 # Calibration Parameters #\n\ 01125 #######################################################################\n\ 01126 # These are fixed during camera calibration. Their values will be the #\n\ 01127 # same in all messages until the camera is recalibrated. Note that #\n\ 01128 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01129 # #\n\ 01130 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01131 # to: #\n\ 01132 # 1. An undistorted image (requires D and K) #\n\ 01133 # 2. A rectified image (requires D, K, R) #\n\ 01134 # The projection matrix P projects 3D points into the rectified image.#\n\ 01135 #######################################################################\n\ 01136 \n\ 01137 # The image dimensions with which the camera was calibrated. Normally\n\ 01138 # this will be the full camera resolution in pixels.\n\ 01139 uint32 height\n\ 01140 uint32 width\n\ 01141 \n\ 01142 # The distortion model used. Supported models are listed in\n\ 01143 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01144 # simple model of radial and tangential distortion - is sufficent.\n\ 01145 string distortion_model\n\ 01146 \n\ 01147 # The distortion parameters, size depending on the distortion model.\n\ 01148 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01149 float64[] D\n\ 01150 \n\ 01151 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01152 # [fx 0 cx]\n\ 01153 # K = [ 0 fy cy]\n\ 01154 # [ 0 0 1]\n\ 01155 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01156 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01157 # (cx, cy).\n\ 01158 float64[9] K # 3x3 row-major matrix\n\ 01159 \n\ 01160 # Rectification matrix (stereo cameras only)\n\ 01161 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01162 # stereo image plane so that epipolar lines in both stereo images are\n\ 01163 # parallel.\n\ 01164 float64[9] R # 3x3 row-major matrix\n\ 01165 \n\ 01166 # Projection/camera matrix\n\ 01167 # [fx' 0 cx' Tx]\n\ 01168 # P = [ 0 fy' cy' Ty]\n\ 01169 # [ 0 0 1 0]\n\ 01170 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01171 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01172 # is the normal camera intrinsic matrix for the rectified image.\n\ 01173 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01174 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01175 # (cx', cy') - these may differ from the values in K.\n\ 01176 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01177 # also have R = the identity and P[1:3,1:3] = K.\n\ 01178 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01179 # position of the optical center of the second camera in the first\n\ 01180 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01181 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01182 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01183 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01184 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01185 # the rectified image is given by:\n\ 01186 # [u v w]' = P * [X Y Z 1]'\n\ 01187 # x = u / w\n\ 01188 # y = v / w\n\ 01189 # This holds for both images of a stereo pair.\n\ 01190 float64[12] P # 3x4 row-major matrix\n\ 01191 \n\ 01192 \n\ 01193 #######################################################################\n\ 01194 # Operational Parameters #\n\ 01195 #######################################################################\n\ 01196 # These define the image region actually captured by the camera #\n\ 01197 # driver. Although they affect the geometry of the output image, they #\n\ 01198 # may be changed freely without recalibrating the camera. #\n\ 01199 #######################################################################\n\ 01200 \n\ 01201 # Binning refers here to any camera setting which combines rectangular\n\ 01202 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01203 # resolution of the output image to\n\ 01204 # (width / binning_x) x (height / binning_y).\n\ 01205 # The default values binning_x = binning_y = 0 is considered the same\n\ 01206 # as binning_x = binning_y = 1 (no subsampling).\n\ 01207 uint32 binning_x\n\ 01208 uint32 binning_y\n\ 01209 \n\ 01210 # Region of interest (subwindow of full camera resolution), given in\n\ 01211 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01212 # always denotes the same window of pixels on the camera sensor,\n\ 01213 # regardless of binning settings.\n\ 01214 # The default setting of roi (all values 0) is considered the same as\n\ 01215 # full resolution (roi.width = width, roi.height = height).\n\ 01216 RegionOfInterest roi\n\ 01217 \n\ 01218 ================================================================================\n\ 01219 MSG: sensor_msgs/RegionOfInterest\n\ 01220 # This message is used to specify a region of interest within an image.\n\ 01221 #\n\ 01222 # When used to specify the ROI setting of the camera when the image was\n\ 01223 # taken, the height and width fields should either match the height and\n\ 01224 # width fields for the associated image; or height = width = 0\n\ 01225 # indicates that the full resolution image was captured.\n\ 01226 \n\ 01227 uint32 x_offset # Leftmost pixel of the ROI\n\ 01228 # (0 if the ROI includes the left edge of the image)\n\ 01229 uint32 y_offset # Topmost pixel of the ROI\n\ 01230 # (0 if the ROI includes the top edge of the image)\n\ 01231 uint32 height # Height of ROI\n\ 01232 uint32 width # Width of ROI\n\ 01233 \n\ 01234 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01235 # ROI in this message. Typically this should be False if the full image\n\ 01236 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01237 # used).\n\ 01238 bool do_rectify\n\ 01239 \n\ 01240 ================================================================================\n\ 01241 MSG: geometry_msgs/Vector3\n\ 01242 # This represents a vector in free space. \n\ 01243 \n\ 01244 float64 x\n\ 01245 float64 y\n\ 01246 float64 z\n\ 01247 ================================================================================\n\ 01248 MSG: object_manipulation_msgs/GraspResult\n\ 01249 int32 SUCCESS = 1\n\ 01250 int32 GRASP_OUT_OF_REACH = 2\n\ 01251 int32 GRASP_IN_COLLISION = 3\n\ 01252 int32 GRASP_UNFEASIBLE = 4\n\ 01253 int32 PREGRASP_OUT_OF_REACH = 5\n\ 01254 int32 PREGRASP_IN_COLLISION = 6\n\ 01255 int32 PREGRASP_UNFEASIBLE = 7\n\ 01256 int32 LIFT_OUT_OF_REACH = 8\n\ 01257 int32 LIFT_IN_COLLISION = 9\n\ 01258 int32 LIFT_UNFEASIBLE = 10\n\ 01259 int32 MOVE_ARM_FAILED = 11\n\ 01260 int32 GRASP_FAILED = 12\n\ 01261 int32 LIFT_FAILED = 13\n\ 01262 int32 RETREAT_FAILED = 14\n\ 01263 int32 result_code\n\ 01264 \n\ 01265 # whether the state of the world was disturbed by this attempt. generally, this flag\n\ 01266 # shows if another task can be attempted, or a new sensed world model is recommeded\n\ 01267 # before proceeding\n\ 01268 bool continuation_possible\n\ 01269 \n\ 01270 "; 01271 } 01272 01273 static const char* value(const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); } 01274 }; 01275 01276 } // namespace message_traits 01277 } // namespace ros 01278 01279 namespace ros 01280 { 01281 namespace serialization 01282 { 01283 01284 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > 01285 { 01286 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01287 { 01288 stream.next(m.manipulation_result); 01289 stream.next(m.grasp); 01290 stream.next(m.attempted_grasps); 01291 stream.next(m.attempted_grasp_results); 01292 } 01293 01294 ROS_DECLARE_ALLINONE_SERIALIZER; 01295 }; // struct PickupResult_ 01296 } // namespace serialization 01297 } // namespace ros 01298 01299 namespace ros 01300 { 01301 namespace message_operations 01302 { 01303 01304 template<class ContainerAllocator> 01305 struct Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > 01306 { 01307 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> & v) 01308 { 01309 s << indent << "manipulation_result: "; 01310 s << std::endl; 01311 Printer< ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> >::stream(s, indent + " ", v.manipulation_result); 01312 s << indent << "grasp: "; 01313 s << std::endl; 01314 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp); 01315 s << indent << "attempted_grasps[]" << std::endl; 01316 for (size_t i = 0; i < v.attempted_grasps.size(); ++i) 01317 { 01318 s << indent << " attempted_grasps[" << i << "]: "; 01319 s << std::endl; 01320 s << indent; 01321 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.attempted_grasps[i]); 01322 } 01323 s << indent << "attempted_grasp_results[]" << std::endl; 01324 for (size_t i = 0; i < v.attempted_grasp_results.size(); ++i) 01325 { 01326 s << indent << " attempted_grasp_results[" << i << "]: "; 01327 s << std::endl; 01328 s << indent; 01329 Printer< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::stream(s, indent + " ", v.attempted_grasp_results[i]); 01330 } 01331 } 01332 }; 01333 01334 01335 } // namespace message_operations 01336 } // namespace ros 01337 01338 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H 01339