00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/ManipulationResult.h"
00018 #include "object_manipulation_msgs/Grasp.h"
00019 #include "object_manipulation_msgs/Grasp.h"
00020 #include "object_manipulation_msgs/GraspResult.h"
00021
00022 namespace object_manipulation_msgs
00023 {
00024 template <class ContainerAllocator>
00025 struct PickupResult_ {
00026 typedef PickupResult_<ContainerAllocator> Type;
00027
00028 PickupResult_()
00029 : manipulation_result()
00030 , grasp()
00031 , attempted_grasps()
00032 , attempted_grasp_results()
00033 {
00034 }
00035
00036 PickupResult_(const ContainerAllocator& _alloc)
00037 : manipulation_result(_alloc)
00038 , grasp(_alloc)
00039 , attempted_grasps(_alloc)
00040 , attempted_grasp_results(_alloc)
00041 {
00042 }
00043
00044 typedef ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> _manipulation_result_type;
00045 ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> manipulation_result;
00046
00047 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00048 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00049
00050 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _attempted_grasps_type;
00051 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > attempted_grasps;
00052
00053 typedef std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > _attempted_grasp_results_type;
00054 std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > attempted_grasp_results;
00055
00056
00057 ROS_DEPRECATED uint32_t get_attempted_grasps_size() const { return (uint32_t)attempted_grasps.size(); }
00058 ROS_DEPRECATED void set_attempted_grasps_size(uint32_t size) { attempted_grasps.resize((size_t)size); }
00059 ROS_DEPRECATED void get_attempted_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->attempted_grasps; }
00060 ROS_DEPRECATED void set_attempted_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->attempted_grasps = vec; }
00061 ROS_DEPRECATED uint32_t get_attempted_grasp_results_size() const { return (uint32_t)attempted_grasp_results.size(); }
00062 ROS_DEPRECATED void set_attempted_grasp_results_size(uint32_t size) { attempted_grasp_results.resize((size_t)size); }
00063 ROS_DEPRECATED void get_attempted_grasp_results_vec(std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > & vec) const { vec = this->attempted_grasp_results; }
00064 ROS_DEPRECATED void set_attempted_grasp_results_vec(const std::vector< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::other > & vec) { this->attempted_grasp_results = vec; }
00065 private:
00066 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupResult"; }
00067 public:
00068 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00069
00070 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00071
00072 private:
00073 static const char* __s_getMD5Sum_() { return "e37faa4bc17adb31e87f0a21276cde44"; }
00074 public:
00075 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00076
00077 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00078
00079 private:
00080 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00081 \n\
00082 # The overall result of the pickup attempt\n\
00083 ManipulationResult manipulation_result\n\
00084 \n\
00085 # The performed grasp, if attempt was successful\n\
00086 Grasp grasp\n\
00087 \n\
00088 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00089 # the successful one should be the last one in this list\n\
00090 Grasp[] attempted_grasps\n\
00091 \n\
00092 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00093 GraspResult[] attempted_grasp_results\n\
00094 \n\
00095 \n\
00096 ================================================================================\n\
00097 MSG: object_manipulation_msgs/ManipulationResult\n\
00098 # Result codes for manipulation tasks\n\
00099 \n\
00100 # task completed as expected\n\
00101 # generally means you can proceed as planned\n\
00102 int32 SUCCESS = 1\n\
00103 \n\
00104 # task not possible (e.g. out of reach or obstacles in the way)\n\
00105 # generally means that the world was not disturbed, so you can try another task\n\
00106 int32 UNFEASIBLE = -1\n\
00107 \n\
00108 # task was thought possible, but failed due to unexpected events during execution\n\
00109 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00110 # your sensed world model before proceeding to another task\n\
00111 int32 FAILED = -2\n\
00112 \n\
00113 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00114 # generally requires human attention\n\
00115 int32 ERROR = -3\n\
00116 \n\
00117 # means that at some point during execution we ended up in a state that the collision-aware\n\
00118 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00119 # probably need a new collision map to move the arm out of the stuck position\n\
00120 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00121 \n\
00122 # specific to grasp actions\n\
00123 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00124 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00125 int32 LIFT_FAILED = -5\n\
00126 \n\
00127 # specific to place actions\n\
00128 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00129 # it is likely that the collision environment will see collisions between the hand and the object\n\
00130 int32 RETREAT_FAILED = -6\n\
00131 \n\
00132 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00133 int32 CANCELLED = -7\n\
00134 \n\
00135 # the actual value of this error code\n\
00136 int32 value\n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/Grasp\n\
00140 \n\
00141 # The internal posture of the hand for the pre-grasp\n\
00142 # only positions are used\n\
00143 sensor_msgs/JointState pre_grasp_posture\n\
00144 \n\
00145 # The internal posture of the hand for the grasp\n\
00146 # positions and efforts are used\n\
00147 sensor_msgs/JointState grasp_posture\n\
00148 \n\
00149 # The position of the end-effector for the grasp relative to a reference frame \n\
00150 # (that is always specified elsewhere, not in this message)\n\
00151 geometry_msgs/Pose grasp_pose\n\
00152 \n\
00153 # The estimated probability of success for this grasp\n\
00154 float64 success_probability\n\
00155 \n\
00156 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00157 bool cluster_rep\n\
00158 \n\
00159 # how far the pre-grasp should ideally be away from the grasp\n\
00160 float32 desired_approach_distance\n\
00161 \n\
00162 # how much distance between pre-grasp and grasp must actually be feasible \n\
00163 # for the grasp not to be rejected\n\
00164 float32 min_approach_distance\n\
00165 \n\
00166 # an optional list of obstacles that we have semantic information about\n\
00167 # and that we expect might move in the course of executing this grasp\n\
00168 # the grasp planner is expected to make sure they move in an OK way; during\n\
00169 # execution, grasp executors will not check for collisions against these objects\n\
00170 GraspableObject[] moved_obstacles\n\
00171 \n\
00172 ================================================================================\n\
00173 MSG: sensor_msgs/JointState\n\
00174 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00175 #\n\
00176 # The state of each joint (revolute or prismatic) is defined by:\n\
00177 # * the position of the joint (rad or m),\n\
00178 # * the velocity of the joint (rad/s or m/s) and \n\
00179 # * the effort that is applied in the joint (Nm or N).\n\
00180 #\n\
00181 # Each joint is uniquely identified by its name\n\
00182 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00183 # in one message have to be recorded at the same time.\n\
00184 #\n\
00185 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00186 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00187 # effort associated with them, you can leave the effort array empty. \n\
00188 #\n\
00189 # All arrays in this message should have the same size, or be empty.\n\
00190 # This is the only way to uniquely associate the joint name with the correct\n\
00191 # states.\n\
00192 \n\
00193 \n\
00194 Header header\n\
00195 \n\
00196 string[] name\n\
00197 float64[] position\n\
00198 float64[] velocity\n\
00199 float64[] effort\n\
00200 \n\
00201 ================================================================================\n\
00202 MSG: std_msgs/Header\n\
00203 # Standard metadata for higher-level stamped data types.\n\
00204 # This is generally used to communicate timestamped data \n\
00205 # in a particular coordinate frame.\n\
00206 # \n\
00207 # sequence ID: consecutively increasing ID \n\
00208 uint32 seq\n\
00209 #Two-integer timestamp that is expressed as:\n\
00210 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00211 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00212 # time-handling sugar is provided by the client library\n\
00213 time stamp\n\
00214 #Frame this data is associated with\n\
00215 # 0: no frame\n\
00216 # 1: global frame\n\
00217 string frame_id\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: geometry_msgs/Pose\n\
00221 # A representation of pose in free space, composed of postion and orientation. \n\
00222 Point position\n\
00223 Quaternion orientation\n\
00224 \n\
00225 ================================================================================\n\
00226 MSG: geometry_msgs/Point\n\
00227 # This contains the position of a point in free space\n\
00228 float64 x\n\
00229 float64 y\n\
00230 float64 z\n\
00231 \n\
00232 ================================================================================\n\
00233 MSG: geometry_msgs/Quaternion\n\
00234 # This represents an orientation in free space in quaternion form.\n\
00235 \n\
00236 float64 x\n\
00237 float64 y\n\
00238 float64 z\n\
00239 float64 w\n\
00240 \n\
00241 ================================================================================\n\
00242 MSG: object_manipulation_msgs/GraspableObject\n\
00243 # an object that the object_manipulator can work on\n\
00244 \n\
00245 # a graspable object can be represented in multiple ways. This message\n\
00246 # can contain all of them. Which one is actually used is up to the receiver\n\
00247 # of this message. When adding new representations, one must be careful that\n\
00248 # they have reasonable lightweight defaults indicating that that particular\n\
00249 # representation is not available.\n\
00250 \n\
00251 # the tf frame to be used as a reference frame when combining information from\n\
00252 # the different representations below\n\
00253 string reference_frame_id\n\
00254 \n\
00255 # potential recognition results from a database of models\n\
00256 # all poses are relative to the object reference pose\n\
00257 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00258 \n\
00259 # the point cloud itself\n\
00260 sensor_msgs/PointCloud cluster\n\
00261 \n\
00262 # a region of a PointCloud2 of interest\n\
00263 object_manipulation_msgs/SceneRegion region\n\
00264 \n\
00265 # the name that this object has in the collision environment\n\
00266 string collision_name\n\
00267 ================================================================================\n\
00268 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00269 # Informs that a specific model from the Model Database has been \n\
00270 # identified at a certain location\n\
00271 \n\
00272 # the database id of the model\n\
00273 int32 model_id\n\
00274 \n\
00275 # the pose that it can be found in\n\
00276 geometry_msgs/PoseStamped pose\n\
00277 \n\
00278 # a measure of the confidence level in this detection result\n\
00279 float32 confidence\n\
00280 \n\
00281 # the name of the object detector that generated this detection result\n\
00282 string detector_name\n\
00283 \n\
00284 ================================================================================\n\
00285 MSG: geometry_msgs/PoseStamped\n\
00286 # A Pose with reference coordinate frame and timestamp\n\
00287 Header header\n\
00288 Pose pose\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: sensor_msgs/PointCloud\n\
00292 # This message holds a collection of 3d points, plus optional additional\n\
00293 # information about each point.\n\
00294 \n\
00295 # Time of sensor data acquisition, coordinate frame ID.\n\
00296 Header header\n\
00297 \n\
00298 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00299 # in the frame given in the header.\n\
00300 geometry_msgs/Point32[] points\n\
00301 \n\
00302 # Each channel should have the same number of elements as points array,\n\
00303 # and the data in each channel should correspond 1:1 with each point.\n\
00304 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00305 ChannelFloat32[] channels\n\
00306 \n\
00307 ================================================================================\n\
00308 MSG: geometry_msgs/Point32\n\
00309 # This contains the position of a point in free space(with 32 bits of precision).\n\
00310 # It is recommeded to use Point wherever possible instead of Point32. \n\
00311 # \n\
00312 # This recommendation is to promote interoperability. \n\
00313 #\n\
00314 # This message is designed to take up less space when sending\n\
00315 # lots of points at once, as in the case of a PointCloud. \n\
00316 \n\
00317 float32 x\n\
00318 float32 y\n\
00319 float32 z\n\
00320 ================================================================================\n\
00321 MSG: sensor_msgs/ChannelFloat32\n\
00322 # This message is used by the PointCloud message to hold optional data\n\
00323 # associated with each point in the cloud. The length of the values\n\
00324 # array should be the same as the length of the points array in the\n\
00325 # PointCloud, and each value should be associated with the corresponding\n\
00326 # point.\n\
00327 \n\
00328 # Channel names in existing practice include:\n\
00329 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00330 # This is opposite to usual conventions but remains for\n\
00331 # historical reasons. The newer PointCloud2 message has no\n\
00332 # such problem.\n\
00333 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00334 # (R,G,B) values packed into the least significant 24 bits,\n\
00335 # in order.\n\
00336 # \"intensity\" - laser or pixel intensity.\n\
00337 # \"distance\"\n\
00338 \n\
00339 # The channel name should give semantics of the channel (e.g.\n\
00340 # \"intensity\" instead of \"value\").\n\
00341 string name\n\
00342 \n\
00343 # The values array should be 1-1 with the elements of the associated\n\
00344 # PointCloud.\n\
00345 float32[] values\n\
00346 \n\
00347 ================================================================================\n\
00348 MSG: object_manipulation_msgs/SceneRegion\n\
00349 # Point cloud\n\
00350 sensor_msgs/PointCloud2 cloud\n\
00351 \n\
00352 # Indices for the region of interest\n\
00353 int32[] mask\n\
00354 \n\
00355 # One of the corresponding 2D images, if applicable\n\
00356 sensor_msgs/Image image\n\
00357 \n\
00358 # The disparity image, if applicable\n\
00359 sensor_msgs/Image disparity_image\n\
00360 \n\
00361 # Camera info for the camera that took the image\n\
00362 sensor_msgs/CameraInfo cam_info\n\
00363 \n\
00364 # a 3D region of interest for grasp planning\n\
00365 geometry_msgs/PoseStamped roi_box_pose\n\
00366 geometry_msgs/Vector3 roi_box_dims\n\
00367 \n\
00368 ================================================================================\n\
00369 MSG: sensor_msgs/PointCloud2\n\
00370 # This message holds a collection of N-dimensional points, which may\n\
00371 # contain additional information such as normals, intensity, etc. The\n\
00372 # point data is stored as a binary blob, its layout described by the\n\
00373 # contents of the \"fields\" array.\n\
00374 \n\
00375 # The point cloud data may be organized 2d (image-like) or 1d\n\
00376 # (unordered). Point clouds organized as 2d images may be produced by\n\
00377 # camera depth sensors such as stereo or time-of-flight.\n\
00378 \n\
00379 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00380 # points).\n\
00381 Header header\n\
00382 \n\
00383 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00384 # 1 and width is the length of the point cloud.\n\
00385 uint32 height\n\
00386 uint32 width\n\
00387 \n\
00388 # Describes the channels and their layout in the binary data blob.\n\
00389 PointField[] fields\n\
00390 \n\
00391 bool is_bigendian # Is this data bigendian?\n\
00392 uint32 point_step # Length of a point in bytes\n\
00393 uint32 row_step # Length of a row in bytes\n\
00394 uint8[] data # Actual point data, size is (row_step*height)\n\
00395 \n\
00396 bool is_dense # True if there are no invalid points\n\
00397 \n\
00398 ================================================================================\n\
00399 MSG: sensor_msgs/PointField\n\
00400 # This message holds the description of one point entry in the\n\
00401 # PointCloud2 message format.\n\
00402 uint8 INT8 = 1\n\
00403 uint8 UINT8 = 2\n\
00404 uint8 INT16 = 3\n\
00405 uint8 UINT16 = 4\n\
00406 uint8 INT32 = 5\n\
00407 uint8 UINT32 = 6\n\
00408 uint8 FLOAT32 = 7\n\
00409 uint8 FLOAT64 = 8\n\
00410 \n\
00411 string name # Name of field\n\
00412 uint32 offset # Offset from start of point struct\n\
00413 uint8 datatype # Datatype enumeration, see above\n\
00414 uint32 count # How many elements in the field\n\
00415 \n\
00416 ================================================================================\n\
00417 MSG: sensor_msgs/Image\n\
00418 # This message contains an uncompressed image\n\
00419 # (0, 0) is at top-left corner of image\n\
00420 #\n\
00421 \n\
00422 Header header # Header timestamp should be acquisition time of image\n\
00423 # Header frame_id should be optical frame of camera\n\
00424 # origin of frame should be optical center of cameara\n\
00425 # +x should point to the right in the image\n\
00426 # +y should point down in the image\n\
00427 # +z should point into to plane of the image\n\
00428 # If the frame_id here and the frame_id of the CameraInfo\n\
00429 # message associated with the image conflict\n\
00430 # the behavior is undefined\n\
00431 \n\
00432 uint32 height # image height, that is, number of rows\n\
00433 uint32 width # image width, that is, number of columns\n\
00434 \n\
00435 # The legal values for encoding are in file src/image_encodings.cpp\n\
00436 # If you want to standardize a new string format, join\n\
00437 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00438 \n\
00439 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00440 # taken from the list of strings in src/image_encodings.cpp\n\
00441 \n\
00442 uint8 is_bigendian # is this data bigendian?\n\
00443 uint32 step # Full row length in bytes\n\
00444 uint8[] data # actual matrix data, size is (step * rows)\n\
00445 \n\
00446 ================================================================================\n\
00447 MSG: sensor_msgs/CameraInfo\n\
00448 # This message defines meta information for a camera. It should be in a\n\
00449 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00450 # image topics named:\n\
00451 #\n\
00452 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00453 # image - monochrome, distorted\n\
00454 # image_color - color, distorted\n\
00455 # image_rect - monochrome, rectified\n\
00456 # image_rect_color - color, rectified\n\
00457 #\n\
00458 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00459 # for producing the four processed image topics from image_raw and\n\
00460 # camera_info. The meaning of the camera parameters are described in\n\
00461 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00462 #\n\
00463 # The image_geometry package provides a user-friendly interface to\n\
00464 # common operations using this meta information. If you want to, e.g.,\n\
00465 # project a 3d point into image coordinates, we strongly recommend\n\
00466 # using image_geometry.\n\
00467 #\n\
00468 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00469 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00470 # indicates an uncalibrated camera.\n\
00471 \n\
00472 #######################################################################\n\
00473 # Image acquisition info #\n\
00474 #######################################################################\n\
00475 \n\
00476 # Time of image acquisition, camera coordinate frame ID\n\
00477 Header header # Header timestamp should be acquisition time of image\n\
00478 # Header frame_id should be optical frame of camera\n\
00479 # origin of frame should be optical center of camera\n\
00480 # +x should point to the right in the image\n\
00481 # +y should point down in the image\n\
00482 # +z should point into the plane of the image\n\
00483 \n\
00484 \n\
00485 #######################################################################\n\
00486 # Calibration Parameters #\n\
00487 #######################################################################\n\
00488 # These are fixed during camera calibration. Their values will be the #\n\
00489 # same in all messages until the camera is recalibrated. Note that #\n\
00490 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00491 # #\n\
00492 # The internal parameters can be used to warp a raw (distorted) image #\n\
00493 # to: #\n\
00494 # 1. An undistorted image (requires D and K) #\n\
00495 # 2. A rectified image (requires D, K, R) #\n\
00496 # The projection matrix P projects 3D points into the rectified image.#\n\
00497 #######################################################################\n\
00498 \n\
00499 # The image dimensions with which the camera was calibrated. Normally\n\
00500 # this will be the full camera resolution in pixels.\n\
00501 uint32 height\n\
00502 uint32 width\n\
00503 \n\
00504 # The distortion model used. Supported models are listed in\n\
00505 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00506 # simple model of radial and tangential distortion - is sufficent.\n\
00507 string distortion_model\n\
00508 \n\
00509 # The distortion parameters, size depending on the distortion model.\n\
00510 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00511 float64[] D\n\
00512 \n\
00513 # Intrinsic camera matrix for the raw (distorted) images.\n\
00514 # [fx 0 cx]\n\
00515 # K = [ 0 fy cy]\n\
00516 # [ 0 0 1]\n\
00517 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00518 # coordinates using the focal lengths (fx, fy) and principal point\n\
00519 # (cx, cy).\n\
00520 float64[9] K # 3x3 row-major matrix\n\
00521 \n\
00522 # Rectification matrix (stereo cameras only)\n\
00523 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00524 # stereo image plane so that epipolar lines in both stereo images are\n\
00525 # parallel.\n\
00526 float64[9] R # 3x3 row-major matrix\n\
00527 \n\
00528 # Projection/camera matrix\n\
00529 # [fx' 0 cx' Tx]\n\
00530 # P = [ 0 fy' cy' Ty]\n\
00531 # [ 0 0 1 0]\n\
00532 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00533 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00534 # is the normal camera intrinsic matrix for the rectified image.\n\
00535 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00536 # coordinates using the focal lengths (fx', fy') and principal point\n\
00537 # (cx', cy') - these may differ from the values in K.\n\
00538 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00539 # also have R = the identity and P[1:3,1:3] = K.\n\
00540 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00541 # position of the optical center of the second camera in the first\n\
00542 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00543 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00544 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00545 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00546 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00547 # the rectified image is given by:\n\
00548 # [u v w]' = P * [X Y Z 1]'\n\
00549 # x = u / w\n\
00550 # y = v / w\n\
00551 # This holds for both images of a stereo pair.\n\
00552 float64[12] P # 3x4 row-major matrix\n\
00553 \n\
00554 \n\
00555 #######################################################################\n\
00556 # Operational Parameters #\n\
00557 #######################################################################\n\
00558 # These define the image region actually captured by the camera #\n\
00559 # driver. Although they affect the geometry of the output image, they #\n\
00560 # may be changed freely without recalibrating the camera. #\n\
00561 #######################################################################\n\
00562 \n\
00563 # Binning refers here to any camera setting which combines rectangular\n\
00564 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00565 # resolution of the output image to\n\
00566 # (width / binning_x) x (height / binning_y).\n\
00567 # The default values binning_x = binning_y = 0 is considered the same\n\
00568 # as binning_x = binning_y = 1 (no subsampling).\n\
00569 uint32 binning_x\n\
00570 uint32 binning_y\n\
00571 \n\
00572 # Region of interest (subwindow of full camera resolution), given in\n\
00573 # full resolution (unbinned) image coordinates. A particular ROI\n\
00574 # always denotes the same window of pixels on the camera sensor,\n\
00575 # regardless of binning settings.\n\
00576 # The default setting of roi (all values 0) is considered the same as\n\
00577 # full resolution (roi.width = width, roi.height = height).\n\
00578 RegionOfInterest roi\n\
00579 \n\
00580 ================================================================================\n\
00581 MSG: sensor_msgs/RegionOfInterest\n\
00582 # This message is used to specify a region of interest within an image.\n\
00583 #\n\
00584 # When used to specify the ROI setting of the camera when the image was\n\
00585 # taken, the height and width fields should either match the height and\n\
00586 # width fields for the associated image; or height = width = 0\n\
00587 # indicates that the full resolution image was captured.\n\
00588 \n\
00589 uint32 x_offset # Leftmost pixel of the ROI\n\
00590 # (0 if the ROI includes the left edge of the image)\n\
00591 uint32 y_offset # Topmost pixel of the ROI\n\
00592 # (0 if the ROI includes the top edge of the image)\n\
00593 uint32 height # Height of ROI\n\
00594 uint32 width # Width of ROI\n\
00595 \n\
00596 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00597 # ROI in this message. Typically this should be False if the full image\n\
00598 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00599 # used).\n\
00600 bool do_rectify\n\
00601 \n\
00602 ================================================================================\n\
00603 MSG: geometry_msgs/Vector3\n\
00604 # This represents a vector in free space. \n\
00605 \n\
00606 float64 x\n\
00607 float64 y\n\
00608 float64 z\n\
00609 ================================================================================\n\
00610 MSG: object_manipulation_msgs/GraspResult\n\
00611 int32 SUCCESS = 1\n\
00612 int32 GRASP_OUT_OF_REACH = 2\n\
00613 int32 GRASP_IN_COLLISION = 3\n\
00614 int32 GRASP_UNFEASIBLE = 4\n\
00615 int32 PREGRASP_OUT_OF_REACH = 5\n\
00616 int32 PREGRASP_IN_COLLISION = 6\n\
00617 int32 PREGRASP_UNFEASIBLE = 7\n\
00618 int32 LIFT_OUT_OF_REACH = 8\n\
00619 int32 LIFT_IN_COLLISION = 9\n\
00620 int32 LIFT_UNFEASIBLE = 10\n\
00621 int32 MOVE_ARM_FAILED = 11\n\
00622 int32 GRASP_FAILED = 12\n\
00623 int32 LIFT_FAILED = 13\n\
00624 int32 RETREAT_FAILED = 14\n\
00625 int32 result_code\n\
00626 \n\
00627 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
00628 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
00629 # before proceeding\n\
00630 bool continuation_possible\n\
00631 \n\
00632 "; }
00633 public:
00634 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00635
00636 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00637
00638 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00639 {
00640 ros::serialization::OStream stream(write_ptr, 1000000000);
00641 ros::serialization::serialize(stream, manipulation_result);
00642 ros::serialization::serialize(stream, grasp);
00643 ros::serialization::serialize(stream, attempted_grasps);
00644 ros::serialization::serialize(stream, attempted_grasp_results);
00645 return stream.getData();
00646 }
00647
00648 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00649 {
00650 ros::serialization::IStream stream(read_ptr, 1000000000);
00651 ros::serialization::deserialize(stream, manipulation_result);
00652 ros::serialization::deserialize(stream, grasp);
00653 ros::serialization::deserialize(stream, attempted_grasps);
00654 ros::serialization::deserialize(stream, attempted_grasp_results);
00655 return stream.getData();
00656 }
00657
00658 ROS_DEPRECATED virtual uint32_t serializationLength() const
00659 {
00660 uint32_t size = 0;
00661 size += ros::serialization::serializationLength(manipulation_result);
00662 size += ros::serialization::serializationLength(grasp);
00663 size += ros::serialization::serializationLength(attempted_grasps);
00664 size += ros::serialization::serializationLength(attempted_grasp_results);
00665 return size;
00666 }
00667
00668 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > Ptr;
00669 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> const> ConstPtr;
00670 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00671 };
00672 typedef ::object_manipulation_msgs::PickupResult_<std::allocator<void> > PickupResult;
00673
00674 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult> PickupResultPtr;
00675 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupResult const> PickupResultConstPtr;
00676
00677
00678 template<typename ContainerAllocator>
00679 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> & v)
00680 {
00681 ros::message_operations::Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >::stream(s, "", v);
00682 return s;}
00683
00684 }
00685
00686 namespace ros
00687 {
00688 namespace message_traits
00689 {
00690 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > : public TrueType {};
00691 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> const> : public TrueType {};
00692 template<class ContainerAllocator>
00693 struct MD5Sum< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > {
00694 static const char* value()
00695 {
00696 return "e37faa4bc17adb31e87f0a21276cde44";
00697 }
00698
00699 static const char* value(const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); }
00700 static const uint64_t static_value1 = 0xe37faa4bc17adb31ULL;
00701 static const uint64_t static_value2 = 0xe87f0a21276cde44ULL;
00702 };
00703
00704 template<class ContainerAllocator>
00705 struct DataType< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > {
00706 static const char* value()
00707 {
00708 return "object_manipulation_msgs/PickupResult";
00709 }
00710
00711 static const char* value(const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); }
00712 };
00713
00714 template<class ContainerAllocator>
00715 struct Definition< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> > {
00716 static const char* value()
00717 {
00718 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00719 \n\
00720 # The overall result of the pickup attempt\n\
00721 ManipulationResult manipulation_result\n\
00722 \n\
00723 # The performed grasp, if attempt was successful\n\
00724 Grasp grasp\n\
00725 \n\
00726 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00727 # the successful one should be the last one in this list\n\
00728 Grasp[] attempted_grasps\n\
00729 \n\
00730 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00731 GraspResult[] attempted_grasp_results\n\
00732 \n\
00733 \n\
00734 ================================================================================\n\
00735 MSG: object_manipulation_msgs/ManipulationResult\n\
00736 # Result codes for manipulation tasks\n\
00737 \n\
00738 # task completed as expected\n\
00739 # generally means you can proceed as planned\n\
00740 int32 SUCCESS = 1\n\
00741 \n\
00742 # task not possible (e.g. out of reach or obstacles in the way)\n\
00743 # generally means that the world was not disturbed, so you can try another task\n\
00744 int32 UNFEASIBLE = -1\n\
00745 \n\
00746 # task was thought possible, but failed due to unexpected events during execution\n\
00747 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00748 # your sensed world model before proceeding to another task\n\
00749 int32 FAILED = -2\n\
00750 \n\
00751 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00752 # generally requires human attention\n\
00753 int32 ERROR = -3\n\
00754 \n\
00755 # means that at some point during execution we ended up in a state that the collision-aware\n\
00756 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00757 # probably need a new collision map to move the arm out of the stuck position\n\
00758 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00759 \n\
00760 # specific to grasp actions\n\
00761 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00762 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00763 int32 LIFT_FAILED = -5\n\
00764 \n\
00765 # specific to place actions\n\
00766 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00767 # it is likely that the collision environment will see collisions between the hand and the object\n\
00768 int32 RETREAT_FAILED = -6\n\
00769 \n\
00770 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00771 int32 CANCELLED = -7\n\
00772 \n\
00773 # the actual value of this error code\n\
00774 int32 value\n\
00775 \n\
00776 ================================================================================\n\
00777 MSG: object_manipulation_msgs/Grasp\n\
00778 \n\
00779 # The internal posture of the hand for the pre-grasp\n\
00780 # only positions are used\n\
00781 sensor_msgs/JointState pre_grasp_posture\n\
00782 \n\
00783 # The internal posture of the hand for the grasp\n\
00784 # positions and efforts are used\n\
00785 sensor_msgs/JointState grasp_posture\n\
00786 \n\
00787 # The position of the end-effector for the grasp relative to a reference frame \n\
00788 # (that is always specified elsewhere, not in this message)\n\
00789 geometry_msgs/Pose grasp_pose\n\
00790 \n\
00791 # The estimated probability of success for this grasp\n\
00792 float64 success_probability\n\
00793 \n\
00794 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00795 bool cluster_rep\n\
00796 \n\
00797 # how far the pre-grasp should ideally be away from the grasp\n\
00798 float32 desired_approach_distance\n\
00799 \n\
00800 # how much distance between pre-grasp and grasp must actually be feasible \n\
00801 # for the grasp not to be rejected\n\
00802 float32 min_approach_distance\n\
00803 \n\
00804 # an optional list of obstacles that we have semantic information about\n\
00805 # and that we expect might move in the course of executing this grasp\n\
00806 # the grasp planner is expected to make sure they move in an OK way; during\n\
00807 # execution, grasp executors will not check for collisions against these objects\n\
00808 GraspableObject[] moved_obstacles\n\
00809 \n\
00810 ================================================================================\n\
00811 MSG: sensor_msgs/JointState\n\
00812 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00813 #\n\
00814 # The state of each joint (revolute or prismatic) is defined by:\n\
00815 # * the position of the joint (rad or m),\n\
00816 # * the velocity of the joint (rad/s or m/s) and \n\
00817 # * the effort that is applied in the joint (Nm or N).\n\
00818 #\n\
00819 # Each joint is uniquely identified by its name\n\
00820 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00821 # in one message have to be recorded at the same time.\n\
00822 #\n\
00823 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00824 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00825 # effort associated with them, you can leave the effort array empty. \n\
00826 #\n\
00827 # All arrays in this message should have the same size, or be empty.\n\
00828 # This is the only way to uniquely associate the joint name with the correct\n\
00829 # states.\n\
00830 \n\
00831 \n\
00832 Header header\n\
00833 \n\
00834 string[] name\n\
00835 float64[] position\n\
00836 float64[] velocity\n\
00837 float64[] effort\n\
00838 \n\
00839 ================================================================================\n\
00840 MSG: std_msgs/Header\n\
00841 # Standard metadata for higher-level stamped data types.\n\
00842 # This is generally used to communicate timestamped data \n\
00843 # in a particular coordinate frame.\n\
00844 # \n\
00845 # sequence ID: consecutively increasing ID \n\
00846 uint32 seq\n\
00847 #Two-integer timestamp that is expressed as:\n\
00848 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00849 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00850 # time-handling sugar is provided by the client library\n\
00851 time stamp\n\
00852 #Frame this data is associated with\n\
00853 # 0: no frame\n\
00854 # 1: global frame\n\
00855 string frame_id\n\
00856 \n\
00857 ================================================================================\n\
00858 MSG: geometry_msgs/Pose\n\
00859 # A representation of pose in free space, composed of postion and orientation. \n\
00860 Point position\n\
00861 Quaternion orientation\n\
00862 \n\
00863 ================================================================================\n\
00864 MSG: geometry_msgs/Point\n\
00865 # This contains the position of a point in free space\n\
00866 float64 x\n\
00867 float64 y\n\
00868 float64 z\n\
00869 \n\
00870 ================================================================================\n\
00871 MSG: geometry_msgs/Quaternion\n\
00872 # This represents an orientation in free space in quaternion form.\n\
00873 \n\
00874 float64 x\n\
00875 float64 y\n\
00876 float64 z\n\
00877 float64 w\n\
00878 \n\
00879 ================================================================================\n\
00880 MSG: object_manipulation_msgs/GraspableObject\n\
00881 # an object that the object_manipulator can work on\n\
00882 \n\
00883 # a graspable object can be represented in multiple ways. This message\n\
00884 # can contain all of them. Which one is actually used is up to the receiver\n\
00885 # of this message. When adding new representations, one must be careful that\n\
00886 # they have reasonable lightweight defaults indicating that that particular\n\
00887 # representation is not available.\n\
00888 \n\
00889 # the tf frame to be used as a reference frame when combining information from\n\
00890 # the different representations below\n\
00891 string reference_frame_id\n\
00892 \n\
00893 # potential recognition results from a database of models\n\
00894 # all poses are relative to the object reference pose\n\
00895 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00896 \n\
00897 # the point cloud itself\n\
00898 sensor_msgs/PointCloud cluster\n\
00899 \n\
00900 # a region of a PointCloud2 of interest\n\
00901 object_manipulation_msgs/SceneRegion region\n\
00902 \n\
00903 # the name that this object has in the collision environment\n\
00904 string collision_name\n\
00905 ================================================================================\n\
00906 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00907 # Informs that a specific model from the Model Database has been \n\
00908 # identified at a certain location\n\
00909 \n\
00910 # the database id of the model\n\
00911 int32 model_id\n\
00912 \n\
00913 # the pose that it can be found in\n\
00914 geometry_msgs/PoseStamped pose\n\
00915 \n\
00916 # a measure of the confidence level in this detection result\n\
00917 float32 confidence\n\
00918 \n\
00919 # the name of the object detector that generated this detection result\n\
00920 string detector_name\n\
00921 \n\
00922 ================================================================================\n\
00923 MSG: geometry_msgs/PoseStamped\n\
00924 # A Pose with reference coordinate frame and timestamp\n\
00925 Header header\n\
00926 Pose pose\n\
00927 \n\
00928 ================================================================================\n\
00929 MSG: sensor_msgs/PointCloud\n\
00930 # This message holds a collection of 3d points, plus optional additional\n\
00931 # information about each point.\n\
00932 \n\
00933 # Time of sensor data acquisition, coordinate frame ID.\n\
00934 Header header\n\
00935 \n\
00936 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00937 # in the frame given in the header.\n\
00938 geometry_msgs/Point32[] points\n\
00939 \n\
00940 # Each channel should have the same number of elements as points array,\n\
00941 # and the data in each channel should correspond 1:1 with each point.\n\
00942 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00943 ChannelFloat32[] channels\n\
00944 \n\
00945 ================================================================================\n\
00946 MSG: geometry_msgs/Point32\n\
00947 # This contains the position of a point in free space(with 32 bits of precision).\n\
00948 # It is recommeded to use Point wherever possible instead of Point32. \n\
00949 # \n\
00950 # This recommendation is to promote interoperability. \n\
00951 #\n\
00952 # This message is designed to take up less space when sending\n\
00953 # lots of points at once, as in the case of a PointCloud. \n\
00954 \n\
00955 float32 x\n\
00956 float32 y\n\
00957 float32 z\n\
00958 ================================================================================\n\
00959 MSG: sensor_msgs/ChannelFloat32\n\
00960 # This message is used by the PointCloud message to hold optional data\n\
00961 # associated with each point in the cloud. The length of the values\n\
00962 # array should be the same as the length of the points array in the\n\
00963 # PointCloud, and each value should be associated with the corresponding\n\
00964 # point.\n\
00965 \n\
00966 # Channel names in existing practice include:\n\
00967 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00968 # This is opposite to usual conventions but remains for\n\
00969 # historical reasons. The newer PointCloud2 message has no\n\
00970 # such problem.\n\
00971 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00972 # (R,G,B) values packed into the least significant 24 bits,\n\
00973 # in order.\n\
00974 # \"intensity\" - laser or pixel intensity.\n\
00975 # \"distance\"\n\
00976 \n\
00977 # The channel name should give semantics of the channel (e.g.\n\
00978 # \"intensity\" instead of \"value\").\n\
00979 string name\n\
00980 \n\
00981 # The values array should be 1-1 with the elements of the associated\n\
00982 # PointCloud.\n\
00983 float32[] values\n\
00984 \n\
00985 ================================================================================\n\
00986 MSG: object_manipulation_msgs/SceneRegion\n\
00987 # Point cloud\n\
00988 sensor_msgs/PointCloud2 cloud\n\
00989 \n\
00990 # Indices for the region of interest\n\
00991 int32[] mask\n\
00992 \n\
00993 # One of the corresponding 2D images, if applicable\n\
00994 sensor_msgs/Image image\n\
00995 \n\
00996 # The disparity image, if applicable\n\
00997 sensor_msgs/Image disparity_image\n\
00998 \n\
00999 # Camera info for the camera that took the image\n\
01000 sensor_msgs/CameraInfo cam_info\n\
01001 \n\
01002 # a 3D region of interest for grasp planning\n\
01003 geometry_msgs/PoseStamped roi_box_pose\n\
01004 geometry_msgs/Vector3 roi_box_dims\n\
01005 \n\
01006 ================================================================================\n\
01007 MSG: sensor_msgs/PointCloud2\n\
01008 # This message holds a collection of N-dimensional points, which may\n\
01009 # contain additional information such as normals, intensity, etc. The\n\
01010 # point data is stored as a binary blob, its layout described by the\n\
01011 # contents of the \"fields\" array.\n\
01012 \n\
01013 # The point cloud data may be organized 2d (image-like) or 1d\n\
01014 # (unordered). Point clouds organized as 2d images may be produced by\n\
01015 # camera depth sensors such as stereo or time-of-flight.\n\
01016 \n\
01017 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01018 # points).\n\
01019 Header header\n\
01020 \n\
01021 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01022 # 1 and width is the length of the point cloud.\n\
01023 uint32 height\n\
01024 uint32 width\n\
01025 \n\
01026 # Describes the channels and their layout in the binary data blob.\n\
01027 PointField[] fields\n\
01028 \n\
01029 bool is_bigendian # Is this data bigendian?\n\
01030 uint32 point_step # Length of a point in bytes\n\
01031 uint32 row_step # Length of a row in bytes\n\
01032 uint8[] data # Actual point data, size is (row_step*height)\n\
01033 \n\
01034 bool is_dense # True if there are no invalid points\n\
01035 \n\
01036 ================================================================================\n\
01037 MSG: sensor_msgs/PointField\n\
01038 # This message holds the description of one point entry in the\n\
01039 # PointCloud2 message format.\n\
01040 uint8 INT8 = 1\n\
01041 uint8 UINT8 = 2\n\
01042 uint8 INT16 = 3\n\
01043 uint8 UINT16 = 4\n\
01044 uint8 INT32 = 5\n\
01045 uint8 UINT32 = 6\n\
01046 uint8 FLOAT32 = 7\n\
01047 uint8 FLOAT64 = 8\n\
01048 \n\
01049 string name # Name of field\n\
01050 uint32 offset # Offset from start of point struct\n\
01051 uint8 datatype # Datatype enumeration, see above\n\
01052 uint32 count # How many elements in the field\n\
01053 \n\
01054 ================================================================================\n\
01055 MSG: sensor_msgs/Image\n\
01056 # This message contains an uncompressed image\n\
01057 # (0, 0) is at top-left corner of image\n\
01058 #\n\
01059 \n\
01060 Header header # Header timestamp should be acquisition time of image\n\
01061 # Header frame_id should be optical frame of camera\n\
01062 # origin of frame should be optical center of cameara\n\
01063 # +x should point to the right in the image\n\
01064 # +y should point down in the image\n\
01065 # +z should point into to plane of the image\n\
01066 # If the frame_id here and the frame_id of the CameraInfo\n\
01067 # message associated with the image conflict\n\
01068 # the behavior is undefined\n\
01069 \n\
01070 uint32 height # image height, that is, number of rows\n\
01071 uint32 width # image width, that is, number of columns\n\
01072 \n\
01073 # The legal values for encoding are in file src/image_encodings.cpp\n\
01074 # If you want to standardize a new string format, join\n\
01075 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01076 \n\
01077 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01078 # taken from the list of strings in src/image_encodings.cpp\n\
01079 \n\
01080 uint8 is_bigendian # is this data bigendian?\n\
01081 uint32 step # Full row length in bytes\n\
01082 uint8[] data # actual matrix data, size is (step * rows)\n\
01083 \n\
01084 ================================================================================\n\
01085 MSG: sensor_msgs/CameraInfo\n\
01086 # This message defines meta information for a camera. It should be in a\n\
01087 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01088 # image topics named:\n\
01089 #\n\
01090 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01091 # image - monochrome, distorted\n\
01092 # image_color - color, distorted\n\
01093 # image_rect - monochrome, rectified\n\
01094 # image_rect_color - color, rectified\n\
01095 #\n\
01096 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01097 # for producing the four processed image topics from image_raw and\n\
01098 # camera_info. The meaning of the camera parameters are described in\n\
01099 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01100 #\n\
01101 # The image_geometry package provides a user-friendly interface to\n\
01102 # common operations using this meta information. If you want to, e.g.,\n\
01103 # project a 3d point into image coordinates, we strongly recommend\n\
01104 # using image_geometry.\n\
01105 #\n\
01106 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01107 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01108 # indicates an uncalibrated camera.\n\
01109 \n\
01110 #######################################################################\n\
01111 # Image acquisition info #\n\
01112 #######################################################################\n\
01113 \n\
01114 # Time of image acquisition, camera coordinate frame ID\n\
01115 Header header # Header timestamp should be acquisition time of image\n\
01116 # Header frame_id should be optical frame of camera\n\
01117 # origin of frame should be optical center of camera\n\
01118 # +x should point to the right in the image\n\
01119 # +y should point down in the image\n\
01120 # +z should point into the plane of the image\n\
01121 \n\
01122 \n\
01123 #######################################################################\n\
01124 # Calibration Parameters #\n\
01125 #######################################################################\n\
01126 # These are fixed during camera calibration. Their values will be the #\n\
01127 # same in all messages until the camera is recalibrated. Note that #\n\
01128 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01129 # #\n\
01130 # The internal parameters can be used to warp a raw (distorted) image #\n\
01131 # to: #\n\
01132 # 1. An undistorted image (requires D and K) #\n\
01133 # 2. A rectified image (requires D, K, R) #\n\
01134 # The projection matrix P projects 3D points into the rectified image.#\n\
01135 #######################################################################\n\
01136 \n\
01137 # The image dimensions with which the camera was calibrated. Normally\n\
01138 # this will be the full camera resolution in pixels.\n\
01139 uint32 height\n\
01140 uint32 width\n\
01141 \n\
01142 # The distortion model used. Supported models are listed in\n\
01143 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01144 # simple model of radial and tangential distortion - is sufficent.\n\
01145 string distortion_model\n\
01146 \n\
01147 # The distortion parameters, size depending on the distortion model.\n\
01148 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01149 float64[] D\n\
01150 \n\
01151 # Intrinsic camera matrix for the raw (distorted) images.\n\
01152 # [fx 0 cx]\n\
01153 # K = [ 0 fy cy]\n\
01154 # [ 0 0 1]\n\
01155 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01156 # coordinates using the focal lengths (fx, fy) and principal point\n\
01157 # (cx, cy).\n\
01158 float64[9] K # 3x3 row-major matrix\n\
01159 \n\
01160 # Rectification matrix (stereo cameras only)\n\
01161 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01162 # stereo image plane so that epipolar lines in both stereo images are\n\
01163 # parallel.\n\
01164 float64[9] R # 3x3 row-major matrix\n\
01165 \n\
01166 # Projection/camera matrix\n\
01167 # [fx' 0 cx' Tx]\n\
01168 # P = [ 0 fy' cy' Ty]\n\
01169 # [ 0 0 1 0]\n\
01170 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01171 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01172 # is the normal camera intrinsic matrix for the rectified image.\n\
01173 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01174 # coordinates using the focal lengths (fx', fy') and principal point\n\
01175 # (cx', cy') - these may differ from the values in K.\n\
01176 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01177 # also have R = the identity and P[1:3,1:3] = K.\n\
01178 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01179 # position of the optical center of the second camera in the first\n\
01180 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01181 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01182 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01183 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01184 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01185 # the rectified image is given by:\n\
01186 # [u v w]' = P * [X Y Z 1]'\n\
01187 # x = u / w\n\
01188 # y = v / w\n\
01189 # This holds for both images of a stereo pair.\n\
01190 float64[12] P # 3x4 row-major matrix\n\
01191 \n\
01192 \n\
01193 #######################################################################\n\
01194 # Operational Parameters #\n\
01195 #######################################################################\n\
01196 # These define the image region actually captured by the camera #\n\
01197 # driver. Although they affect the geometry of the output image, they #\n\
01198 # may be changed freely without recalibrating the camera. #\n\
01199 #######################################################################\n\
01200 \n\
01201 # Binning refers here to any camera setting which combines rectangular\n\
01202 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01203 # resolution of the output image to\n\
01204 # (width / binning_x) x (height / binning_y).\n\
01205 # The default values binning_x = binning_y = 0 is considered the same\n\
01206 # as binning_x = binning_y = 1 (no subsampling).\n\
01207 uint32 binning_x\n\
01208 uint32 binning_y\n\
01209 \n\
01210 # Region of interest (subwindow of full camera resolution), given in\n\
01211 # full resolution (unbinned) image coordinates. A particular ROI\n\
01212 # always denotes the same window of pixels on the camera sensor,\n\
01213 # regardless of binning settings.\n\
01214 # The default setting of roi (all values 0) is considered the same as\n\
01215 # full resolution (roi.width = width, roi.height = height).\n\
01216 RegionOfInterest roi\n\
01217 \n\
01218 ================================================================================\n\
01219 MSG: sensor_msgs/RegionOfInterest\n\
01220 # This message is used to specify a region of interest within an image.\n\
01221 #\n\
01222 # When used to specify the ROI setting of the camera when the image was\n\
01223 # taken, the height and width fields should either match the height and\n\
01224 # width fields for the associated image; or height = width = 0\n\
01225 # indicates that the full resolution image was captured.\n\
01226 \n\
01227 uint32 x_offset # Leftmost pixel of the ROI\n\
01228 # (0 if the ROI includes the left edge of the image)\n\
01229 uint32 y_offset # Topmost pixel of the ROI\n\
01230 # (0 if the ROI includes the top edge of the image)\n\
01231 uint32 height # Height of ROI\n\
01232 uint32 width # Width of ROI\n\
01233 \n\
01234 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01235 # ROI in this message. Typically this should be False if the full image\n\
01236 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01237 # used).\n\
01238 bool do_rectify\n\
01239 \n\
01240 ================================================================================\n\
01241 MSG: geometry_msgs/Vector3\n\
01242 # This represents a vector in free space. \n\
01243 \n\
01244 float64 x\n\
01245 float64 y\n\
01246 float64 z\n\
01247 ================================================================================\n\
01248 MSG: object_manipulation_msgs/GraspResult\n\
01249 int32 SUCCESS = 1\n\
01250 int32 GRASP_OUT_OF_REACH = 2\n\
01251 int32 GRASP_IN_COLLISION = 3\n\
01252 int32 GRASP_UNFEASIBLE = 4\n\
01253 int32 PREGRASP_OUT_OF_REACH = 5\n\
01254 int32 PREGRASP_IN_COLLISION = 6\n\
01255 int32 PREGRASP_UNFEASIBLE = 7\n\
01256 int32 LIFT_OUT_OF_REACH = 8\n\
01257 int32 LIFT_IN_COLLISION = 9\n\
01258 int32 LIFT_UNFEASIBLE = 10\n\
01259 int32 MOVE_ARM_FAILED = 11\n\
01260 int32 GRASP_FAILED = 12\n\
01261 int32 LIFT_FAILED = 13\n\
01262 int32 RETREAT_FAILED = 14\n\
01263 int32 result_code\n\
01264 \n\
01265 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
01266 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
01267 # before proceeding\n\
01268 bool continuation_possible\n\
01269 \n\
01270 ";
01271 }
01272
01273 static const char* value(const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> &) { return value(); }
01274 };
01275
01276 }
01277 }
01278
01279 namespace ros
01280 {
01281 namespace serialization
01282 {
01283
01284 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >
01285 {
01286 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01287 {
01288 stream.next(m.manipulation_result);
01289 stream.next(m.grasp);
01290 stream.next(m.attempted_grasps);
01291 stream.next(m.attempted_grasp_results);
01292 }
01293
01294 ROS_DECLARE_ALLINONE_SERIALIZER;
01295 };
01296 }
01297 }
01298
01299 namespace ros
01300 {
01301 namespace message_operations
01302 {
01303
01304 template<class ContainerAllocator>
01305 struct Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >
01306 {
01307 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupResult_<ContainerAllocator> & v)
01308 {
01309 s << indent << "manipulation_result: ";
01310 s << std::endl;
01311 Printer< ::object_manipulation_msgs::ManipulationResult_<ContainerAllocator> >::stream(s, indent + " ", v.manipulation_result);
01312 s << indent << "grasp: ";
01313 s << std::endl;
01314 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp);
01315 s << indent << "attempted_grasps[]" << std::endl;
01316 for (size_t i = 0; i < v.attempted_grasps.size(); ++i)
01317 {
01318 s << indent << " attempted_grasps[" << i << "]: ";
01319 s << std::endl;
01320 s << indent;
01321 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.attempted_grasps[i]);
01322 }
01323 s << indent << "attempted_grasp_results[]" << std::endl;
01324 for (size_t i = 0; i < v.attempted_grasp_results.size(); ++i)
01325 {
01326 s << indent << " attempted_grasp_results[" << i << "]: ";
01327 s << std::endl;
01328 s << indent;
01329 Printer< ::object_manipulation_msgs::GraspResult_<ContainerAllocator> >::stream(s, indent + " ", v.attempted_grasp_results[i]);
01330 }
01331 }
01332 };
01333
01334
01335 }
01336 }
01337
01338 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPRESULT_H
01339