$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-graspit_simulator/doc_stacks/2013-03-01_15-39-02.698757/graspit_simulator/graspit_ros_planning_msgs/srv/TestGrasp.srv */ 00002 #ifndef GRASPIT_ROS_PLANNING_MSGS_SERVICE_TESTGRASP_H 00003 #define GRASPIT_ROS_PLANNING_MSGS_SERVICE_TESTGRASP_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "object_manipulation_msgs/Grasp.h" 00020 00021 00022 00023 namespace graspit_ros_planning_msgs 00024 { 00025 template <class ContainerAllocator> 00026 struct TestGraspRequest_ { 00027 typedef TestGraspRequest_<ContainerAllocator> Type; 00028 00029 TestGraspRequest_() 00030 : grasp() 00031 , test_type(0) 00032 { 00033 } 00034 00035 TestGraspRequest_(const ContainerAllocator& _alloc) 00036 : grasp(_alloc) 00037 , test_type(0) 00038 { 00039 } 00040 00041 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type; 00042 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp; 00043 00044 typedef int32_t _test_type_type; 00045 int32_t test_type; 00046 00047 enum { DIRECT = 0 }; 00048 enum { COMPLIANT_CLOSE = 1 }; 00049 enum { REACTIVE_GRASP = 2 }; 00050 enum { ROBUST_REACTIVE_GRASP = 3 }; 00051 00052 private: 00053 static const char* __s_getDataType_() { return "graspit_ros_planning_msgs/TestGraspRequest"; } 00054 public: 00055 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00056 00057 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00058 00059 private: 00060 static const char* __s_getMD5Sum_() { return "b01170c5ead03e9e35c4ea61365f4a97"; } 00061 public: 00062 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00063 00064 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00065 00066 private: 00067 static const char* __s_getServerMD5Sum_() { return "9e86d6b70500334e7ac6ed512d72ea5e"; } 00068 public: 00069 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00070 00071 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00072 00073 private: 00074 static const char* __s_getMessageDefinition_() { return "\n\ 00075 \n\ 00076 \n\ 00077 \n\ 00078 \n\ 00079 object_manipulation_msgs/Grasp grasp\n\ 00080 \n\ 00081 \n\ 00082 \n\ 00083 int32 DIRECT = 0\n\ 00084 \n\ 00085 int32 COMPLIANT_CLOSE = 1\n\ 00086 \n\ 00087 int32 REACTIVE_GRASP = 2\n\ 00088 \n\ 00089 int32 ROBUST_REACTIVE_GRASP = 3\n\ 00090 int32 test_type\n\ 00091 \n\ 00092 \n\ 00093 ================================================================================\n\ 00094 MSG: object_manipulation_msgs/Grasp\n\ 00095 \n\ 00096 # The internal posture of the hand for the pre-grasp\n\ 00097 # only positions are used\n\ 00098 sensor_msgs/JointState pre_grasp_posture\n\ 00099 \n\ 00100 # The internal posture of the hand for the grasp\n\ 00101 # positions and efforts are used\n\ 00102 sensor_msgs/JointState grasp_posture\n\ 00103 \n\ 00104 # The position of the end-effector for the grasp relative to a reference frame \n\ 00105 # (that is always specified elsewhere, not in this message)\n\ 00106 geometry_msgs/Pose grasp_pose\n\ 00107 \n\ 00108 # The estimated probability of success for this grasp\n\ 00109 float64 success_probability\n\ 00110 \n\ 00111 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00112 bool cluster_rep\n\ 00113 \n\ 00114 # how far the pre-grasp should ideally be away from the grasp\n\ 00115 float32 desired_approach_distance\n\ 00116 \n\ 00117 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00118 # for the grasp not to be rejected\n\ 00119 float32 min_approach_distance\n\ 00120 \n\ 00121 # an optional list of obstacles that we have semantic information about\n\ 00122 # and that we expect might move in the course of executing this grasp\n\ 00123 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00124 # execution, grasp executors will not check for collisions against these objects\n\ 00125 GraspableObject[] moved_obstacles\n\ 00126 \n\ 00127 ================================================================================\n\ 00128 MSG: sensor_msgs/JointState\n\ 00129 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00130 #\n\ 00131 # The state of each joint (revolute or prismatic) is defined by:\n\ 00132 # * the position of the joint (rad or m),\n\ 00133 # * the velocity of the joint (rad/s or m/s) and \n\ 00134 # * the effort that is applied in the joint (Nm or N).\n\ 00135 #\n\ 00136 # Each joint is uniquely identified by its name\n\ 00137 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00138 # in one message have to be recorded at the same time.\n\ 00139 #\n\ 00140 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00141 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00142 # effort associated with them, you can leave the effort array empty. \n\ 00143 #\n\ 00144 # All arrays in this message should have the same size, or be empty.\n\ 00145 # This is the only way to uniquely associate the joint name with the correct\n\ 00146 # states.\n\ 00147 \n\ 00148 \n\ 00149 Header header\n\ 00150 \n\ 00151 string[] name\n\ 00152 float64[] position\n\ 00153 float64[] velocity\n\ 00154 float64[] effort\n\ 00155 \n\ 00156 ================================================================================\n\ 00157 MSG: std_msgs/Header\n\ 00158 # Standard metadata for higher-level stamped data types.\n\ 00159 # This is generally used to communicate timestamped data \n\ 00160 # in a particular coordinate frame.\n\ 00161 # \n\ 00162 # sequence ID: consecutively increasing ID \n\ 00163 uint32 seq\n\ 00164 #Two-integer timestamp that is expressed as:\n\ 00165 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00166 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00167 # time-handling sugar is provided by the client library\n\ 00168 time stamp\n\ 00169 #Frame this data is associated with\n\ 00170 # 0: no frame\n\ 00171 # 1: global frame\n\ 00172 string frame_id\n\ 00173 \n\ 00174 ================================================================================\n\ 00175 MSG: geometry_msgs/Pose\n\ 00176 # A representation of pose in free space, composed of postion and orientation. \n\ 00177 Point position\n\ 00178 Quaternion orientation\n\ 00179 \n\ 00180 ================================================================================\n\ 00181 MSG: geometry_msgs/Point\n\ 00182 # This contains the position of a point in free space\n\ 00183 float64 x\n\ 00184 float64 y\n\ 00185 float64 z\n\ 00186 \n\ 00187 ================================================================================\n\ 00188 MSG: geometry_msgs/Quaternion\n\ 00189 # This represents an orientation in free space in quaternion form.\n\ 00190 \n\ 00191 float64 x\n\ 00192 float64 y\n\ 00193 float64 z\n\ 00194 float64 w\n\ 00195 \n\ 00196 ================================================================================\n\ 00197 MSG: object_manipulation_msgs/GraspableObject\n\ 00198 # an object that the object_manipulator can work on\n\ 00199 \n\ 00200 # a graspable object can be represented in multiple ways. This message\n\ 00201 # can contain all of them. Which one is actually used is up to the receiver\n\ 00202 # of this message. When adding new representations, one must be careful that\n\ 00203 # they have reasonable lightweight defaults indicating that that particular\n\ 00204 # representation is not available.\n\ 00205 \n\ 00206 # the tf frame to be used as a reference frame when combining information from\n\ 00207 # the different representations below\n\ 00208 string reference_frame_id\n\ 00209 \n\ 00210 # potential recognition results from a database of models\n\ 00211 # all poses are relative to the object reference pose\n\ 00212 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00213 \n\ 00214 # the point cloud itself\n\ 00215 sensor_msgs/PointCloud cluster\n\ 00216 \n\ 00217 # a region of a PointCloud2 of interest\n\ 00218 object_manipulation_msgs/SceneRegion region\n\ 00219 \n\ 00220 # the name that this object has in the collision environment\n\ 00221 string collision_name\n\ 00222 ================================================================================\n\ 00223 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00224 # Informs that a specific model from the Model Database has been \n\ 00225 # identified at a certain location\n\ 00226 \n\ 00227 # the database id of the model\n\ 00228 int32 model_id\n\ 00229 \n\ 00230 # the pose that it can be found in\n\ 00231 geometry_msgs/PoseStamped pose\n\ 00232 \n\ 00233 # a measure of the confidence level in this detection result\n\ 00234 float32 confidence\n\ 00235 \n\ 00236 # the name of the object detector that generated this detection result\n\ 00237 string detector_name\n\ 00238 \n\ 00239 ================================================================================\n\ 00240 MSG: geometry_msgs/PoseStamped\n\ 00241 # A Pose with reference coordinate frame and timestamp\n\ 00242 Header header\n\ 00243 Pose pose\n\ 00244 \n\ 00245 ================================================================================\n\ 00246 MSG: sensor_msgs/PointCloud\n\ 00247 # This message holds a collection of 3d points, plus optional additional\n\ 00248 # information about each point.\n\ 00249 \n\ 00250 # Time of sensor data acquisition, coordinate frame ID.\n\ 00251 Header header\n\ 00252 \n\ 00253 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00254 # in the frame given in the header.\n\ 00255 geometry_msgs/Point32[] points\n\ 00256 \n\ 00257 # Each channel should have the same number of elements as points array,\n\ 00258 # and the data in each channel should correspond 1:1 with each point.\n\ 00259 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00260 ChannelFloat32[] channels\n\ 00261 \n\ 00262 ================================================================================\n\ 00263 MSG: geometry_msgs/Point32\n\ 00264 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00265 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00266 # \n\ 00267 # This recommendation is to promote interoperability. \n\ 00268 #\n\ 00269 # This message is designed to take up less space when sending\n\ 00270 # lots of points at once, as in the case of a PointCloud. \n\ 00271 \n\ 00272 float32 x\n\ 00273 float32 y\n\ 00274 float32 z\n\ 00275 ================================================================================\n\ 00276 MSG: sensor_msgs/ChannelFloat32\n\ 00277 # This message is used by the PointCloud message to hold optional data\n\ 00278 # associated with each point in the cloud. The length of the values\n\ 00279 # array should be the same as the length of the points array in the\n\ 00280 # PointCloud, and each value should be associated with the corresponding\n\ 00281 # point.\n\ 00282 \n\ 00283 # Channel names in existing practice include:\n\ 00284 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00285 # This is opposite to usual conventions but remains for\n\ 00286 # historical reasons. The newer PointCloud2 message has no\n\ 00287 # such problem.\n\ 00288 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00289 # (R,G,B) values packed into the least significant 24 bits,\n\ 00290 # in order.\n\ 00291 # \"intensity\" - laser or pixel intensity.\n\ 00292 # \"distance\"\n\ 00293 \n\ 00294 # The channel name should give semantics of the channel (e.g.\n\ 00295 # \"intensity\" instead of \"value\").\n\ 00296 string name\n\ 00297 \n\ 00298 # The values array should be 1-1 with the elements of the associated\n\ 00299 # PointCloud.\n\ 00300 float32[] values\n\ 00301 \n\ 00302 ================================================================================\n\ 00303 MSG: object_manipulation_msgs/SceneRegion\n\ 00304 # Point cloud\n\ 00305 sensor_msgs/PointCloud2 cloud\n\ 00306 \n\ 00307 # Indices for the region of interest\n\ 00308 int32[] mask\n\ 00309 \n\ 00310 # One of the corresponding 2D images, if applicable\n\ 00311 sensor_msgs/Image image\n\ 00312 \n\ 00313 # The disparity image, if applicable\n\ 00314 sensor_msgs/Image disparity_image\n\ 00315 \n\ 00316 # Camera info for the camera that took the image\n\ 00317 sensor_msgs/CameraInfo cam_info\n\ 00318 \n\ 00319 # a 3D region of interest for grasp planning\n\ 00320 geometry_msgs/PoseStamped roi_box_pose\n\ 00321 geometry_msgs/Vector3 roi_box_dims\n\ 00322 \n\ 00323 ================================================================================\n\ 00324 MSG: sensor_msgs/PointCloud2\n\ 00325 # This message holds a collection of N-dimensional points, which may\n\ 00326 # contain additional information such as normals, intensity, etc. The\n\ 00327 # point data is stored as a binary blob, its layout described by the\n\ 00328 # contents of the \"fields\" array.\n\ 00329 \n\ 00330 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00331 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00332 # camera depth sensors such as stereo or time-of-flight.\n\ 00333 \n\ 00334 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00335 # points).\n\ 00336 Header header\n\ 00337 \n\ 00338 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00339 # 1 and width is the length of the point cloud.\n\ 00340 uint32 height\n\ 00341 uint32 width\n\ 00342 \n\ 00343 # Describes the channels and their layout in the binary data blob.\n\ 00344 PointField[] fields\n\ 00345 \n\ 00346 bool is_bigendian # Is this data bigendian?\n\ 00347 uint32 point_step # Length of a point in bytes\n\ 00348 uint32 row_step # Length of a row in bytes\n\ 00349 uint8[] data # Actual point data, size is (row_step*height)\n\ 00350 \n\ 00351 bool is_dense # True if there are no invalid points\n\ 00352 \n\ 00353 ================================================================================\n\ 00354 MSG: sensor_msgs/PointField\n\ 00355 # This message holds the description of one point entry in the\n\ 00356 # PointCloud2 message format.\n\ 00357 uint8 INT8 = 1\n\ 00358 uint8 UINT8 = 2\n\ 00359 uint8 INT16 = 3\n\ 00360 uint8 UINT16 = 4\n\ 00361 uint8 INT32 = 5\n\ 00362 uint8 UINT32 = 6\n\ 00363 uint8 FLOAT32 = 7\n\ 00364 uint8 FLOAT64 = 8\n\ 00365 \n\ 00366 string name # Name of field\n\ 00367 uint32 offset # Offset from start of point struct\n\ 00368 uint8 datatype # Datatype enumeration, see above\n\ 00369 uint32 count # How many elements in the field\n\ 00370 \n\ 00371 ================================================================================\n\ 00372 MSG: sensor_msgs/Image\n\ 00373 # This message contains an uncompressed image\n\ 00374 # (0, 0) is at top-left corner of image\n\ 00375 #\n\ 00376 \n\ 00377 Header header # Header timestamp should be acquisition time of image\n\ 00378 # Header frame_id should be optical frame of camera\n\ 00379 # origin of frame should be optical center of cameara\n\ 00380 # +x should point to the right in the image\n\ 00381 # +y should point down in the image\n\ 00382 # +z should point into to plane of the image\n\ 00383 # If the frame_id here and the frame_id of the CameraInfo\n\ 00384 # message associated with the image conflict\n\ 00385 # the behavior is undefined\n\ 00386 \n\ 00387 uint32 height # image height, that is, number of rows\n\ 00388 uint32 width # image width, that is, number of columns\n\ 00389 \n\ 00390 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00391 # If you want to standardize a new string format, join\n\ 00392 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00393 \n\ 00394 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00395 # taken from the list of strings in src/image_encodings.cpp\n\ 00396 \n\ 00397 uint8 is_bigendian # is this data bigendian?\n\ 00398 uint32 step # Full row length in bytes\n\ 00399 uint8[] data # actual matrix data, size is (step * rows)\n\ 00400 \n\ 00401 ================================================================================\n\ 00402 MSG: sensor_msgs/CameraInfo\n\ 00403 # This message defines meta information for a camera. It should be in a\n\ 00404 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00405 # image topics named:\n\ 00406 #\n\ 00407 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00408 # image - monochrome, distorted\n\ 00409 # image_color - color, distorted\n\ 00410 # image_rect - monochrome, rectified\n\ 00411 # image_rect_color - color, rectified\n\ 00412 #\n\ 00413 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00414 # for producing the four processed image topics from image_raw and\n\ 00415 # camera_info. The meaning of the camera parameters are described in\n\ 00416 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00417 #\n\ 00418 # The image_geometry package provides a user-friendly interface to\n\ 00419 # common operations using this meta information. If you want to, e.g.,\n\ 00420 # project a 3d point into image coordinates, we strongly recommend\n\ 00421 # using image_geometry.\n\ 00422 #\n\ 00423 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00424 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00425 # indicates an uncalibrated camera.\n\ 00426 \n\ 00427 #######################################################################\n\ 00428 # Image acquisition info #\n\ 00429 #######################################################################\n\ 00430 \n\ 00431 # Time of image acquisition, camera coordinate frame ID\n\ 00432 Header header # Header timestamp should be acquisition time of image\n\ 00433 # Header frame_id should be optical frame of camera\n\ 00434 # origin of frame should be optical center of camera\n\ 00435 # +x should point to the right in the image\n\ 00436 # +y should point down in the image\n\ 00437 # +z should point into the plane of the image\n\ 00438 \n\ 00439 \n\ 00440 #######################################################################\n\ 00441 # Calibration Parameters #\n\ 00442 #######################################################################\n\ 00443 # These are fixed during camera calibration. Their values will be the #\n\ 00444 # same in all messages until the camera is recalibrated. Note that #\n\ 00445 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00446 # #\n\ 00447 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00448 # to: #\n\ 00449 # 1. An undistorted image (requires D and K) #\n\ 00450 # 2. A rectified image (requires D, K, R) #\n\ 00451 # The projection matrix P projects 3D points into the rectified image.#\n\ 00452 #######################################################################\n\ 00453 \n\ 00454 # The image dimensions with which the camera was calibrated. Normally\n\ 00455 # this will be the full camera resolution in pixels.\n\ 00456 uint32 height\n\ 00457 uint32 width\n\ 00458 \n\ 00459 # The distortion model used. Supported models are listed in\n\ 00460 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00461 # simple model of radial and tangential distortion - is sufficent.\n\ 00462 string distortion_model\n\ 00463 \n\ 00464 # The distortion parameters, size depending on the distortion model.\n\ 00465 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00466 float64[] D\n\ 00467 \n\ 00468 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00469 # [fx 0 cx]\n\ 00470 # K = [ 0 fy cy]\n\ 00471 # [ 0 0 1]\n\ 00472 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00473 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00474 # (cx, cy).\n\ 00475 float64[9] K # 3x3 row-major matrix\n\ 00476 \n\ 00477 # Rectification matrix (stereo cameras only)\n\ 00478 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00479 # stereo image plane so that epipolar lines in both stereo images are\n\ 00480 # parallel.\n\ 00481 float64[9] R # 3x3 row-major matrix\n\ 00482 \n\ 00483 # Projection/camera matrix\n\ 00484 # [fx' 0 cx' Tx]\n\ 00485 # P = [ 0 fy' cy' Ty]\n\ 00486 # [ 0 0 1 0]\n\ 00487 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00488 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00489 # is the normal camera intrinsic matrix for the rectified image.\n\ 00490 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00491 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00492 # (cx', cy') - these may differ from the values in K.\n\ 00493 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00494 # also have R = the identity and P[1:3,1:3] = K.\n\ 00495 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00496 # position of the optical center of the second camera in the first\n\ 00497 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00498 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00499 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00500 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00501 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00502 # the rectified image is given by:\n\ 00503 # [u v w]' = P * [X Y Z 1]'\n\ 00504 # x = u / w\n\ 00505 # y = v / w\n\ 00506 # This holds for both images of a stereo pair.\n\ 00507 float64[12] P # 3x4 row-major matrix\n\ 00508 \n\ 00509 \n\ 00510 #######################################################################\n\ 00511 # Operational Parameters #\n\ 00512 #######################################################################\n\ 00513 # These define the image region actually captured by the camera #\n\ 00514 # driver. Although they affect the geometry of the output image, they #\n\ 00515 # may be changed freely without recalibrating the camera. #\n\ 00516 #######################################################################\n\ 00517 \n\ 00518 # Binning refers here to any camera setting which combines rectangular\n\ 00519 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00520 # resolution of the output image to\n\ 00521 # (width / binning_x) x (height / binning_y).\n\ 00522 # The default values binning_x = binning_y = 0 is considered the same\n\ 00523 # as binning_x = binning_y = 1 (no subsampling).\n\ 00524 uint32 binning_x\n\ 00525 uint32 binning_y\n\ 00526 \n\ 00527 # Region of interest (subwindow of full camera resolution), given in\n\ 00528 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00529 # always denotes the same window of pixels on the camera sensor,\n\ 00530 # regardless of binning settings.\n\ 00531 # The default setting of roi (all values 0) is considered the same as\n\ 00532 # full resolution (roi.width = width, roi.height = height).\n\ 00533 RegionOfInterest roi\n\ 00534 \n\ 00535 ================================================================================\n\ 00536 MSG: sensor_msgs/RegionOfInterest\n\ 00537 # This message is used to specify a region of interest within an image.\n\ 00538 #\n\ 00539 # When used to specify the ROI setting of the camera when the image was\n\ 00540 # taken, the height and width fields should either match the height and\n\ 00541 # width fields for the associated image; or height = width = 0\n\ 00542 # indicates that the full resolution image was captured.\n\ 00543 \n\ 00544 uint32 x_offset # Leftmost pixel of the ROI\n\ 00545 # (0 if the ROI includes the left edge of the image)\n\ 00546 uint32 y_offset # Topmost pixel of the ROI\n\ 00547 # (0 if the ROI includes the top edge of the image)\n\ 00548 uint32 height # Height of ROI\n\ 00549 uint32 width # Width of ROI\n\ 00550 \n\ 00551 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00552 # ROI in this message. Typically this should be False if the full image\n\ 00553 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00554 # used).\n\ 00555 bool do_rectify\n\ 00556 \n\ 00557 ================================================================================\n\ 00558 MSG: geometry_msgs/Vector3\n\ 00559 # This represents a vector in free space. \n\ 00560 \n\ 00561 float64 x\n\ 00562 float64 y\n\ 00563 float64 z\n\ 00564 "; } 00565 public: 00566 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00567 00568 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00569 00570 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00571 { 00572 ros::serialization::OStream stream(write_ptr, 1000000000); 00573 ros::serialization::serialize(stream, grasp); 00574 ros::serialization::serialize(stream, test_type); 00575 return stream.getData(); 00576 } 00577 00578 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00579 { 00580 ros::serialization::IStream stream(read_ptr, 1000000000); 00581 ros::serialization::deserialize(stream, grasp); 00582 ros::serialization::deserialize(stream, test_type); 00583 return stream.getData(); 00584 } 00585 00586 ROS_DEPRECATED virtual uint32_t serializationLength() const 00587 { 00588 uint32_t size = 0; 00589 size += ros::serialization::serializationLength(grasp); 00590 size += ros::serialization::serializationLength(test_type); 00591 return size; 00592 } 00593 00594 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > Ptr; 00595 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> const> ConstPtr; 00596 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00597 }; // struct TestGraspRequest 00598 typedef ::graspit_ros_planning_msgs::TestGraspRequest_<std::allocator<void> > TestGraspRequest; 00599 00600 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspRequest> TestGraspRequestPtr; 00601 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspRequest const> TestGraspRequestConstPtr; 00602 00603 00604 template <class ContainerAllocator> 00605 struct TestGraspResponse_ { 00606 typedef TestGraspResponse_<ContainerAllocator> Type; 00607 00608 TestGraspResponse_() 00609 : test_performed(0) 00610 , test_result(0) 00611 , hand_object_collision(false) 00612 , hand_environment_collision(false) 00613 , energy_value(0.0) 00614 , energy_value_list() 00615 { 00616 } 00617 00618 TestGraspResponse_(const ContainerAllocator& _alloc) 00619 : test_performed(0) 00620 , test_result(0) 00621 , hand_object_collision(false) 00622 , hand_environment_collision(false) 00623 , energy_value(0.0) 00624 , energy_value_list(_alloc) 00625 { 00626 } 00627 00628 typedef int32_t _test_performed_type; 00629 int32_t test_performed; 00630 00631 typedef int32_t _test_result_type; 00632 int32_t test_result; 00633 00634 typedef uint8_t _hand_object_collision_type; 00635 uint8_t hand_object_collision; 00636 00637 typedef uint8_t _hand_environment_collision_type; 00638 uint8_t hand_environment_collision; 00639 00640 typedef float _energy_value_type; 00641 float energy_value; 00642 00643 typedef std::vector<float, typename ContainerAllocator::template rebind<float>::other > _energy_value_list_type; 00644 std::vector<float, typename ContainerAllocator::template rebind<float>::other > energy_value_list; 00645 00646 enum { TEST_WAS_PERFORMED = 0 }; 00647 enum { TEST_WAS_NOT_PERFORMED = 1 }; 00648 enum { HAND_COLLISION = 0 }; 00649 enum { GRASP_FAILURE = 1 }; 00650 enum { GRASP_SUCCESS = 2 }; 00651 00652 ROS_DEPRECATED uint32_t get_energy_value_list_size() const { return (uint32_t)energy_value_list.size(); } 00653 ROS_DEPRECATED void set_energy_value_list_size(uint32_t size) { energy_value_list.resize((size_t)size); } 00654 ROS_DEPRECATED void get_energy_value_list_vec(std::vector<float, typename ContainerAllocator::template rebind<float>::other > & vec) const { vec = this->energy_value_list; } 00655 ROS_DEPRECATED void set_energy_value_list_vec(const std::vector<float, typename ContainerAllocator::template rebind<float>::other > & vec) { this->energy_value_list = vec; } 00656 private: 00657 static const char* __s_getDataType_() { return "graspit_ros_planning_msgs/TestGraspResponse"; } 00658 public: 00659 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00660 00661 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00662 00663 private: 00664 static const char* __s_getMD5Sum_() { return "745239a222da348b3e36561caeefd73b"; } 00665 public: 00666 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00667 00668 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00669 00670 private: 00671 static const char* __s_getServerMD5Sum_() { return "9e86d6b70500334e7ac6ed512d72ea5e"; } 00672 public: 00673 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00674 00675 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00676 00677 private: 00678 static const char* __s_getMessageDefinition_() { return "\n\ 00679 \n\ 00680 int32 TEST_WAS_PERFORMED = 0\n\ 00681 int32 TEST_WAS_NOT_PERFORMED = 1\n\ 00682 int32 test_performed\n\ 00683 \n\ 00684 \n\ 00685 int32 HAND_COLLISION = 0\n\ 00686 int32 GRASP_FAILURE = 1\n\ 00687 int32 GRASP_SUCCESS = 2\n\ 00688 int32 test_result\n\ 00689 \n\ 00690 \n\ 00691 bool hand_object_collision\n\ 00692 bool hand_environment_collision\n\ 00693 \n\ 00694 \n\ 00695 \n\ 00696 float32 energy_value\n\ 00697 \n\ 00698 float32[] energy_value_list\n\ 00699 \n\ 00700 "; } 00701 public: 00702 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00703 00704 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00705 00706 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00707 { 00708 ros::serialization::OStream stream(write_ptr, 1000000000); 00709 ros::serialization::serialize(stream, test_performed); 00710 ros::serialization::serialize(stream, test_result); 00711 ros::serialization::serialize(stream, hand_object_collision); 00712 ros::serialization::serialize(stream, hand_environment_collision); 00713 ros::serialization::serialize(stream, energy_value); 00714 ros::serialization::serialize(stream, energy_value_list); 00715 return stream.getData(); 00716 } 00717 00718 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00719 { 00720 ros::serialization::IStream stream(read_ptr, 1000000000); 00721 ros::serialization::deserialize(stream, test_performed); 00722 ros::serialization::deserialize(stream, test_result); 00723 ros::serialization::deserialize(stream, hand_object_collision); 00724 ros::serialization::deserialize(stream, hand_environment_collision); 00725 ros::serialization::deserialize(stream, energy_value); 00726 ros::serialization::deserialize(stream, energy_value_list); 00727 return stream.getData(); 00728 } 00729 00730 ROS_DEPRECATED virtual uint32_t serializationLength() const 00731 { 00732 uint32_t size = 0; 00733 size += ros::serialization::serializationLength(test_performed); 00734 size += ros::serialization::serializationLength(test_result); 00735 size += ros::serialization::serializationLength(hand_object_collision); 00736 size += ros::serialization::serializationLength(hand_environment_collision); 00737 size += ros::serialization::serializationLength(energy_value); 00738 size += ros::serialization::serializationLength(energy_value_list); 00739 return size; 00740 } 00741 00742 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > Ptr; 00743 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> const> ConstPtr; 00744 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00745 }; // struct TestGraspResponse 00746 typedef ::graspit_ros_planning_msgs::TestGraspResponse_<std::allocator<void> > TestGraspResponse; 00747 00748 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspResponse> TestGraspResponsePtr; 00749 typedef boost::shared_ptr< ::graspit_ros_planning_msgs::TestGraspResponse const> TestGraspResponseConstPtr; 00750 00751 struct TestGrasp 00752 { 00753 00754 typedef TestGraspRequest Request; 00755 typedef TestGraspResponse Response; 00756 Request request; 00757 Response response; 00758 00759 typedef Request RequestType; 00760 typedef Response ResponseType; 00761 }; // struct TestGrasp 00762 } // namespace graspit_ros_planning_msgs 00763 00764 namespace ros 00765 { 00766 namespace message_traits 00767 { 00768 template<class ContainerAllocator> struct IsMessage< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > : public TrueType {}; 00769 template<class ContainerAllocator> struct IsMessage< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> const> : public TrueType {}; 00770 template<class ContainerAllocator> 00771 struct MD5Sum< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > { 00772 static const char* value() 00773 { 00774 return "b01170c5ead03e9e35c4ea61365f4a97"; 00775 } 00776 00777 static const char* value(const ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); } 00778 static const uint64_t static_value1 = 0xb01170c5ead03e9eULL; 00779 static const uint64_t static_value2 = 0x35c4ea61365f4a97ULL; 00780 }; 00781 00782 template<class ContainerAllocator> 00783 struct DataType< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > { 00784 static const char* value() 00785 { 00786 return "graspit_ros_planning_msgs/TestGraspRequest"; 00787 } 00788 00789 static const char* value(const ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); } 00790 }; 00791 00792 template<class ContainerAllocator> 00793 struct Definition< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > { 00794 static const char* value() 00795 { 00796 return "\n\ 00797 \n\ 00798 \n\ 00799 \n\ 00800 \n\ 00801 object_manipulation_msgs/Grasp grasp\n\ 00802 \n\ 00803 \n\ 00804 \n\ 00805 int32 DIRECT = 0\n\ 00806 \n\ 00807 int32 COMPLIANT_CLOSE = 1\n\ 00808 \n\ 00809 int32 REACTIVE_GRASP = 2\n\ 00810 \n\ 00811 int32 ROBUST_REACTIVE_GRASP = 3\n\ 00812 int32 test_type\n\ 00813 \n\ 00814 \n\ 00815 ================================================================================\n\ 00816 MSG: object_manipulation_msgs/Grasp\n\ 00817 \n\ 00818 # The internal posture of the hand for the pre-grasp\n\ 00819 # only positions are used\n\ 00820 sensor_msgs/JointState pre_grasp_posture\n\ 00821 \n\ 00822 # The internal posture of the hand for the grasp\n\ 00823 # positions and efforts are used\n\ 00824 sensor_msgs/JointState grasp_posture\n\ 00825 \n\ 00826 # The position of the end-effector for the grasp relative to a reference frame \n\ 00827 # (that is always specified elsewhere, not in this message)\n\ 00828 geometry_msgs/Pose grasp_pose\n\ 00829 \n\ 00830 # The estimated probability of success for this grasp\n\ 00831 float64 success_probability\n\ 00832 \n\ 00833 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00834 bool cluster_rep\n\ 00835 \n\ 00836 # how far the pre-grasp should ideally be away from the grasp\n\ 00837 float32 desired_approach_distance\n\ 00838 \n\ 00839 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00840 # for the grasp not to be rejected\n\ 00841 float32 min_approach_distance\n\ 00842 \n\ 00843 # an optional list of obstacles that we have semantic information about\n\ 00844 # and that we expect might move in the course of executing this grasp\n\ 00845 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00846 # execution, grasp executors will not check for collisions against these objects\n\ 00847 GraspableObject[] moved_obstacles\n\ 00848 \n\ 00849 ================================================================================\n\ 00850 MSG: sensor_msgs/JointState\n\ 00851 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00852 #\n\ 00853 # The state of each joint (revolute or prismatic) is defined by:\n\ 00854 # * the position of the joint (rad or m),\n\ 00855 # * the velocity of the joint (rad/s or m/s) and \n\ 00856 # * the effort that is applied in the joint (Nm or N).\n\ 00857 #\n\ 00858 # Each joint is uniquely identified by its name\n\ 00859 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00860 # in one message have to be recorded at the same time.\n\ 00861 #\n\ 00862 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00863 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00864 # effort associated with them, you can leave the effort array empty. \n\ 00865 #\n\ 00866 # All arrays in this message should have the same size, or be empty.\n\ 00867 # This is the only way to uniquely associate the joint name with the correct\n\ 00868 # states.\n\ 00869 \n\ 00870 \n\ 00871 Header header\n\ 00872 \n\ 00873 string[] name\n\ 00874 float64[] position\n\ 00875 float64[] velocity\n\ 00876 float64[] effort\n\ 00877 \n\ 00878 ================================================================================\n\ 00879 MSG: std_msgs/Header\n\ 00880 # Standard metadata for higher-level stamped data types.\n\ 00881 # This is generally used to communicate timestamped data \n\ 00882 # in a particular coordinate frame.\n\ 00883 # \n\ 00884 # sequence ID: consecutively increasing ID \n\ 00885 uint32 seq\n\ 00886 #Two-integer timestamp that is expressed as:\n\ 00887 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00888 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00889 # time-handling sugar is provided by the client library\n\ 00890 time stamp\n\ 00891 #Frame this data is associated with\n\ 00892 # 0: no frame\n\ 00893 # 1: global frame\n\ 00894 string frame_id\n\ 00895 \n\ 00896 ================================================================================\n\ 00897 MSG: geometry_msgs/Pose\n\ 00898 # A representation of pose in free space, composed of postion and orientation. \n\ 00899 Point position\n\ 00900 Quaternion orientation\n\ 00901 \n\ 00902 ================================================================================\n\ 00903 MSG: geometry_msgs/Point\n\ 00904 # This contains the position of a point in free space\n\ 00905 float64 x\n\ 00906 float64 y\n\ 00907 float64 z\n\ 00908 \n\ 00909 ================================================================================\n\ 00910 MSG: geometry_msgs/Quaternion\n\ 00911 # This represents an orientation in free space in quaternion form.\n\ 00912 \n\ 00913 float64 x\n\ 00914 float64 y\n\ 00915 float64 z\n\ 00916 float64 w\n\ 00917 \n\ 00918 ================================================================================\n\ 00919 MSG: object_manipulation_msgs/GraspableObject\n\ 00920 # an object that the object_manipulator can work on\n\ 00921 \n\ 00922 # a graspable object can be represented in multiple ways. This message\n\ 00923 # can contain all of them. Which one is actually used is up to the receiver\n\ 00924 # of this message. When adding new representations, one must be careful that\n\ 00925 # they have reasonable lightweight defaults indicating that that particular\n\ 00926 # representation is not available.\n\ 00927 \n\ 00928 # the tf frame to be used as a reference frame when combining information from\n\ 00929 # the different representations below\n\ 00930 string reference_frame_id\n\ 00931 \n\ 00932 # potential recognition results from a database of models\n\ 00933 # all poses are relative to the object reference pose\n\ 00934 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00935 \n\ 00936 # the point cloud itself\n\ 00937 sensor_msgs/PointCloud cluster\n\ 00938 \n\ 00939 # a region of a PointCloud2 of interest\n\ 00940 object_manipulation_msgs/SceneRegion region\n\ 00941 \n\ 00942 # the name that this object has in the collision environment\n\ 00943 string collision_name\n\ 00944 ================================================================================\n\ 00945 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00946 # Informs that a specific model from the Model Database has been \n\ 00947 # identified at a certain location\n\ 00948 \n\ 00949 # the database id of the model\n\ 00950 int32 model_id\n\ 00951 \n\ 00952 # the pose that it can be found in\n\ 00953 geometry_msgs/PoseStamped pose\n\ 00954 \n\ 00955 # a measure of the confidence level in this detection result\n\ 00956 float32 confidence\n\ 00957 \n\ 00958 # the name of the object detector that generated this detection result\n\ 00959 string detector_name\n\ 00960 \n\ 00961 ================================================================================\n\ 00962 MSG: geometry_msgs/PoseStamped\n\ 00963 # A Pose with reference coordinate frame and timestamp\n\ 00964 Header header\n\ 00965 Pose pose\n\ 00966 \n\ 00967 ================================================================================\n\ 00968 MSG: sensor_msgs/PointCloud\n\ 00969 # This message holds a collection of 3d points, plus optional additional\n\ 00970 # information about each point.\n\ 00971 \n\ 00972 # Time of sensor data acquisition, coordinate frame ID.\n\ 00973 Header header\n\ 00974 \n\ 00975 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00976 # in the frame given in the header.\n\ 00977 geometry_msgs/Point32[] points\n\ 00978 \n\ 00979 # Each channel should have the same number of elements as points array,\n\ 00980 # and the data in each channel should correspond 1:1 with each point.\n\ 00981 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00982 ChannelFloat32[] channels\n\ 00983 \n\ 00984 ================================================================================\n\ 00985 MSG: geometry_msgs/Point32\n\ 00986 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00987 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00988 # \n\ 00989 # This recommendation is to promote interoperability. \n\ 00990 #\n\ 00991 # This message is designed to take up less space when sending\n\ 00992 # lots of points at once, as in the case of a PointCloud. \n\ 00993 \n\ 00994 float32 x\n\ 00995 float32 y\n\ 00996 float32 z\n\ 00997 ================================================================================\n\ 00998 MSG: sensor_msgs/ChannelFloat32\n\ 00999 # This message is used by the PointCloud message to hold optional data\n\ 01000 # associated with each point in the cloud. The length of the values\n\ 01001 # array should be the same as the length of the points array in the\n\ 01002 # PointCloud, and each value should be associated with the corresponding\n\ 01003 # point.\n\ 01004 \n\ 01005 # Channel names in existing practice include:\n\ 01006 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01007 # This is opposite to usual conventions but remains for\n\ 01008 # historical reasons. The newer PointCloud2 message has no\n\ 01009 # such problem.\n\ 01010 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01011 # (R,G,B) values packed into the least significant 24 bits,\n\ 01012 # in order.\n\ 01013 # \"intensity\" - laser or pixel intensity.\n\ 01014 # \"distance\"\n\ 01015 \n\ 01016 # The channel name should give semantics of the channel (e.g.\n\ 01017 # \"intensity\" instead of \"value\").\n\ 01018 string name\n\ 01019 \n\ 01020 # The values array should be 1-1 with the elements of the associated\n\ 01021 # PointCloud.\n\ 01022 float32[] values\n\ 01023 \n\ 01024 ================================================================================\n\ 01025 MSG: object_manipulation_msgs/SceneRegion\n\ 01026 # Point cloud\n\ 01027 sensor_msgs/PointCloud2 cloud\n\ 01028 \n\ 01029 # Indices for the region of interest\n\ 01030 int32[] mask\n\ 01031 \n\ 01032 # One of the corresponding 2D images, if applicable\n\ 01033 sensor_msgs/Image image\n\ 01034 \n\ 01035 # The disparity image, if applicable\n\ 01036 sensor_msgs/Image disparity_image\n\ 01037 \n\ 01038 # Camera info for the camera that took the image\n\ 01039 sensor_msgs/CameraInfo cam_info\n\ 01040 \n\ 01041 # a 3D region of interest for grasp planning\n\ 01042 geometry_msgs/PoseStamped roi_box_pose\n\ 01043 geometry_msgs/Vector3 roi_box_dims\n\ 01044 \n\ 01045 ================================================================================\n\ 01046 MSG: sensor_msgs/PointCloud2\n\ 01047 # This message holds a collection of N-dimensional points, which may\n\ 01048 # contain additional information such as normals, intensity, etc. The\n\ 01049 # point data is stored as a binary blob, its layout described by the\n\ 01050 # contents of the \"fields\" array.\n\ 01051 \n\ 01052 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01053 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01054 # camera depth sensors such as stereo or time-of-flight.\n\ 01055 \n\ 01056 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01057 # points).\n\ 01058 Header header\n\ 01059 \n\ 01060 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01061 # 1 and width is the length of the point cloud.\n\ 01062 uint32 height\n\ 01063 uint32 width\n\ 01064 \n\ 01065 # Describes the channels and their layout in the binary data blob.\n\ 01066 PointField[] fields\n\ 01067 \n\ 01068 bool is_bigendian # Is this data bigendian?\n\ 01069 uint32 point_step # Length of a point in bytes\n\ 01070 uint32 row_step # Length of a row in bytes\n\ 01071 uint8[] data # Actual point data, size is (row_step*height)\n\ 01072 \n\ 01073 bool is_dense # True if there are no invalid points\n\ 01074 \n\ 01075 ================================================================================\n\ 01076 MSG: sensor_msgs/PointField\n\ 01077 # This message holds the description of one point entry in the\n\ 01078 # PointCloud2 message format.\n\ 01079 uint8 INT8 = 1\n\ 01080 uint8 UINT8 = 2\n\ 01081 uint8 INT16 = 3\n\ 01082 uint8 UINT16 = 4\n\ 01083 uint8 INT32 = 5\n\ 01084 uint8 UINT32 = 6\n\ 01085 uint8 FLOAT32 = 7\n\ 01086 uint8 FLOAT64 = 8\n\ 01087 \n\ 01088 string name # Name of field\n\ 01089 uint32 offset # Offset from start of point struct\n\ 01090 uint8 datatype # Datatype enumeration, see above\n\ 01091 uint32 count # How many elements in the field\n\ 01092 \n\ 01093 ================================================================================\n\ 01094 MSG: sensor_msgs/Image\n\ 01095 # This message contains an uncompressed image\n\ 01096 # (0, 0) is at top-left corner of image\n\ 01097 #\n\ 01098 \n\ 01099 Header header # Header timestamp should be acquisition time of image\n\ 01100 # Header frame_id should be optical frame of camera\n\ 01101 # origin of frame should be optical center of cameara\n\ 01102 # +x should point to the right in the image\n\ 01103 # +y should point down in the image\n\ 01104 # +z should point into to plane of the image\n\ 01105 # If the frame_id here and the frame_id of the CameraInfo\n\ 01106 # message associated with the image conflict\n\ 01107 # the behavior is undefined\n\ 01108 \n\ 01109 uint32 height # image height, that is, number of rows\n\ 01110 uint32 width # image width, that is, number of columns\n\ 01111 \n\ 01112 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01113 # If you want to standardize a new string format, join\n\ 01114 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01115 \n\ 01116 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01117 # taken from the list of strings in src/image_encodings.cpp\n\ 01118 \n\ 01119 uint8 is_bigendian # is this data bigendian?\n\ 01120 uint32 step # Full row length in bytes\n\ 01121 uint8[] data # actual matrix data, size is (step * rows)\n\ 01122 \n\ 01123 ================================================================================\n\ 01124 MSG: sensor_msgs/CameraInfo\n\ 01125 # This message defines meta information for a camera. It should be in a\n\ 01126 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01127 # image topics named:\n\ 01128 #\n\ 01129 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01130 # image - monochrome, distorted\n\ 01131 # image_color - color, distorted\n\ 01132 # image_rect - monochrome, rectified\n\ 01133 # image_rect_color - color, rectified\n\ 01134 #\n\ 01135 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01136 # for producing the four processed image topics from image_raw and\n\ 01137 # camera_info. The meaning of the camera parameters are described in\n\ 01138 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01139 #\n\ 01140 # The image_geometry package provides a user-friendly interface to\n\ 01141 # common operations using this meta information. If you want to, e.g.,\n\ 01142 # project a 3d point into image coordinates, we strongly recommend\n\ 01143 # using image_geometry.\n\ 01144 #\n\ 01145 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01146 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01147 # indicates an uncalibrated camera.\n\ 01148 \n\ 01149 #######################################################################\n\ 01150 # Image acquisition info #\n\ 01151 #######################################################################\n\ 01152 \n\ 01153 # Time of image acquisition, camera coordinate frame ID\n\ 01154 Header header # Header timestamp should be acquisition time of image\n\ 01155 # Header frame_id should be optical frame of camera\n\ 01156 # origin of frame should be optical center of camera\n\ 01157 # +x should point to the right in the image\n\ 01158 # +y should point down in the image\n\ 01159 # +z should point into the plane of the image\n\ 01160 \n\ 01161 \n\ 01162 #######################################################################\n\ 01163 # Calibration Parameters #\n\ 01164 #######################################################################\n\ 01165 # These are fixed during camera calibration. Their values will be the #\n\ 01166 # same in all messages until the camera is recalibrated. Note that #\n\ 01167 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01168 # #\n\ 01169 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01170 # to: #\n\ 01171 # 1. An undistorted image (requires D and K) #\n\ 01172 # 2. A rectified image (requires D, K, R) #\n\ 01173 # The projection matrix P projects 3D points into the rectified image.#\n\ 01174 #######################################################################\n\ 01175 \n\ 01176 # The image dimensions with which the camera was calibrated. Normally\n\ 01177 # this will be the full camera resolution in pixels.\n\ 01178 uint32 height\n\ 01179 uint32 width\n\ 01180 \n\ 01181 # The distortion model used. Supported models are listed in\n\ 01182 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01183 # simple model of radial and tangential distortion - is sufficent.\n\ 01184 string distortion_model\n\ 01185 \n\ 01186 # The distortion parameters, size depending on the distortion model.\n\ 01187 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01188 float64[] D\n\ 01189 \n\ 01190 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01191 # [fx 0 cx]\n\ 01192 # K = [ 0 fy cy]\n\ 01193 # [ 0 0 1]\n\ 01194 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01195 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01196 # (cx, cy).\n\ 01197 float64[9] K # 3x3 row-major matrix\n\ 01198 \n\ 01199 # Rectification matrix (stereo cameras only)\n\ 01200 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01201 # stereo image plane so that epipolar lines in both stereo images are\n\ 01202 # parallel.\n\ 01203 float64[9] R # 3x3 row-major matrix\n\ 01204 \n\ 01205 # Projection/camera matrix\n\ 01206 # [fx' 0 cx' Tx]\n\ 01207 # P = [ 0 fy' cy' Ty]\n\ 01208 # [ 0 0 1 0]\n\ 01209 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01210 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01211 # is the normal camera intrinsic matrix for the rectified image.\n\ 01212 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01213 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01214 # (cx', cy') - these may differ from the values in K.\n\ 01215 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01216 # also have R = the identity and P[1:3,1:3] = K.\n\ 01217 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01218 # position of the optical center of the second camera in the first\n\ 01219 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01220 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01221 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01222 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01223 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01224 # the rectified image is given by:\n\ 01225 # [u v w]' = P * [X Y Z 1]'\n\ 01226 # x = u / w\n\ 01227 # y = v / w\n\ 01228 # This holds for both images of a stereo pair.\n\ 01229 float64[12] P # 3x4 row-major matrix\n\ 01230 \n\ 01231 \n\ 01232 #######################################################################\n\ 01233 # Operational Parameters #\n\ 01234 #######################################################################\n\ 01235 # These define the image region actually captured by the camera #\n\ 01236 # driver. Although they affect the geometry of the output image, they #\n\ 01237 # may be changed freely without recalibrating the camera. #\n\ 01238 #######################################################################\n\ 01239 \n\ 01240 # Binning refers here to any camera setting which combines rectangular\n\ 01241 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01242 # resolution of the output image to\n\ 01243 # (width / binning_x) x (height / binning_y).\n\ 01244 # The default values binning_x = binning_y = 0 is considered the same\n\ 01245 # as binning_x = binning_y = 1 (no subsampling).\n\ 01246 uint32 binning_x\n\ 01247 uint32 binning_y\n\ 01248 \n\ 01249 # Region of interest (subwindow of full camera resolution), given in\n\ 01250 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01251 # always denotes the same window of pixels on the camera sensor,\n\ 01252 # regardless of binning settings.\n\ 01253 # The default setting of roi (all values 0) is considered the same as\n\ 01254 # full resolution (roi.width = width, roi.height = height).\n\ 01255 RegionOfInterest roi\n\ 01256 \n\ 01257 ================================================================================\n\ 01258 MSG: sensor_msgs/RegionOfInterest\n\ 01259 # This message is used to specify a region of interest within an image.\n\ 01260 #\n\ 01261 # When used to specify the ROI setting of the camera when the image was\n\ 01262 # taken, the height and width fields should either match the height and\n\ 01263 # width fields for the associated image; or height = width = 0\n\ 01264 # indicates that the full resolution image was captured.\n\ 01265 \n\ 01266 uint32 x_offset # Leftmost pixel of the ROI\n\ 01267 # (0 if the ROI includes the left edge of the image)\n\ 01268 uint32 y_offset # Topmost pixel of the ROI\n\ 01269 # (0 if the ROI includes the top edge of the image)\n\ 01270 uint32 height # Height of ROI\n\ 01271 uint32 width # Width of ROI\n\ 01272 \n\ 01273 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01274 # ROI in this message. Typically this should be False if the full image\n\ 01275 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01276 # used).\n\ 01277 bool do_rectify\n\ 01278 \n\ 01279 ================================================================================\n\ 01280 MSG: geometry_msgs/Vector3\n\ 01281 # This represents a vector in free space. \n\ 01282 \n\ 01283 float64 x\n\ 01284 float64 y\n\ 01285 float64 z\n\ 01286 "; 01287 } 01288 01289 static const char* value(const ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); } 01290 }; 01291 01292 } // namespace message_traits 01293 } // namespace ros 01294 01295 01296 namespace ros 01297 { 01298 namespace message_traits 01299 { 01300 template<class ContainerAllocator> struct IsMessage< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > : public TrueType {}; 01301 template<class ContainerAllocator> struct IsMessage< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> const> : public TrueType {}; 01302 template<class ContainerAllocator> 01303 struct MD5Sum< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > { 01304 static const char* value() 01305 { 01306 return "745239a222da348b3e36561caeefd73b"; 01307 } 01308 01309 static const char* value(const ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); } 01310 static const uint64_t static_value1 = 0x745239a222da348bULL; 01311 static const uint64_t static_value2 = 0x3e36561caeefd73bULL; 01312 }; 01313 01314 template<class ContainerAllocator> 01315 struct DataType< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > { 01316 static const char* value() 01317 { 01318 return "graspit_ros_planning_msgs/TestGraspResponse"; 01319 } 01320 01321 static const char* value(const ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); } 01322 }; 01323 01324 template<class ContainerAllocator> 01325 struct Definition< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > { 01326 static const char* value() 01327 { 01328 return "\n\ 01329 \n\ 01330 int32 TEST_WAS_PERFORMED = 0\n\ 01331 int32 TEST_WAS_NOT_PERFORMED = 1\n\ 01332 int32 test_performed\n\ 01333 \n\ 01334 \n\ 01335 int32 HAND_COLLISION = 0\n\ 01336 int32 GRASP_FAILURE = 1\n\ 01337 int32 GRASP_SUCCESS = 2\n\ 01338 int32 test_result\n\ 01339 \n\ 01340 \n\ 01341 bool hand_object_collision\n\ 01342 bool hand_environment_collision\n\ 01343 \n\ 01344 \n\ 01345 \n\ 01346 float32 energy_value\n\ 01347 \n\ 01348 float32[] energy_value_list\n\ 01349 \n\ 01350 "; 01351 } 01352 01353 static const char* value(const ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); } 01354 }; 01355 01356 } // namespace message_traits 01357 } // namespace ros 01358 01359 namespace ros 01360 { 01361 namespace serialization 01362 { 01363 01364 template<class ContainerAllocator> struct Serializer< ::graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > 01365 { 01366 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01367 { 01368 stream.next(m.grasp); 01369 stream.next(m.test_type); 01370 } 01371 01372 ROS_DECLARE_ALLINONE_SERIALIZER; 01373 }; // struct TestGraspRequest_ 01374 } // namespace serialization 01375 } // namespace ros 01376 01377 01378 namespace ros 01379 { 01380 namespace serialization 01381 { 01382 01383 template<class ContainerAllocator> struct Serializer< ::graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > 01384 { 01385 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01386 { 01387 stream.next(m.test_performed); 01388 stream.next(m.test_result); 01389 stream.next(m.hand_object_collision); 01390 stream.next(m.hand_environment_collision); 01391 stream.next(m.energy_value); 01392 stream.next(m.energy_value_list); 01393 } 01394 01395 ROS_DECLARE_ALLINONE_SERIALIZER; 01396 }; // struct TestGraspResponse_ 01397 } // namespace serialization 01398 } // namespace ros 01399 01400 namespace ros 01401 { 01402 namespace service_traits 01403 { 01404 template<> 01405 struct MD5Sum<graspit_ros_planning_msgs::TestGrasp> { 01406 static const char* value() 01407 { 01408 return "9e86d6b70500334e7ac6ed512d72ea5e"; 01409 } 01410 01411 static const char* value(const graspit_ros_planning_msgs::TestGrasp&) { return value(); } 01412 }; 01413 01414 template<> 01415 struct DataType<graspit_ros_planning_msgs::TestGrasp> { 01416 static const char* value() 01417 { 01418 return "graspit_ros_planning_msgs/TestGrasp"; 01419 } 01420 01421 static const char* value(const graspit_ros_planning_msgs::TestGrasp&) { return value(); } 01422 }; 01423 01424 template<class ContainerAllocator> 01425 struct MD5Sum<graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > { 01426 static const char* value() 01427 { 01428 return "9e86d6b70500334e7ac6ed512d72ea5e"; 01429 } 01430 01431 static const char* value(const graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); } 01432 }; 01433 01434 template<class ContainerAllocator> 01435 struct DataType<graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> > { 01436 static const char* value() 01437 { 01438 return "graspit_ros_planning_msgs/TestGrasp"; 01439 } 01440 01441 static const char* value(const graspit_ros_planning_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); } 01442 }; 01443 01444 template<class ContainerAllocator> 01445 struct MD5Sum<graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > { 01446 static const char* value() 01447 { 01448 return "9e86d6b70500334e7ac6ed512d72ea5e"; 01449 } 01450 01451 static const char* value(const graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); } 01452 }; 01453 01454 template<class ContainerAllocator> 01455 struct DataType<graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> > { 01456 static const char* value() 01457 { 01458 return "graspit_ros_planning_msgs/TestGrasp"; 01459 } 01460 01461 static const char* value(const graspit_ros_planning_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); } 01462 }; 01463 01464 } // namespace service_traits 01465 } // namespace ros 01466 01467 #endif // GRASPIT_ROS_PLANNING_MSGS_SERVICE_TESTGRASP_H 01468