$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-camera_pose/doc_stacks/2013-03-01_14-27-38.801509/camera_pose/camera_pose_calibration/msg/CameraMeasurement.msg */ 00002 #ifndef CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H 00003 #define CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "calibration_msgs/CalibrationPattern.h" 00019 #include "sensor_msgs/CameraInfo.h" 00020 00021 namespace camera_pose_calibration 00022 { 00023 template <class ContainerAllocator> 00024 struct CameraMeasurement_ { 00025 typedef CameraMeasurement_<ContainerAllocator> Type; 00026 00027 CameraMeasurement_() 00028 : header() 00029 , camera_id() 00030 , features() 00031 , cam_info() 00032 { 00033 } 00034 00035 CameraMeasurement_(const ContainerAllocator& _alloc) 00036 : header(_alloc) 00037 , camera_id(_alloc) 00038 , features(_alloc) 00039 , cam_info(_alloc) 00040 { 00041 } 00042 00043 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00044 ::std_msgs::Header_<ContainerAllocator> header; 00045 00046 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _camera_id_type; 00047 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > camera_id; 00048 00049 typedef ::calibration_msgs::CalibrationPattern_<ContainerAllocator> _features_type; 00050 ::calibration_msgs::CalibrationPattern_<ContainerAllocator> features; 00051 00052 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type; 00053 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info; 00054 00055 00056 private: 00057 static const char* __s_getDataType_() { return "camera_pose_calibration/CameraMeasurement"; } 00058 public: 00059 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00060 00061 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00062 00063 private: 00064 static const char* __s_getMD5Sum_() { return "4c0854cdc23435e88220144133a1c813"; } 00065 public: 00066 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00067 00068 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00069 00070 private: 00071 static const char* __s_getMessageDefinition_() { return "Header header\n\ 00072 string camera_id\n\ 00073 calibration_msgs/CalibrationPattern features\n\ 00074 sensor_msgs/CameraInfo cam_info\n\ 00075 \n\ 00076 ================================================================================\n\ 00077 MSG: std_msgs/Header\n\ 00078 # Standard metadata for higher-level stamped data types.\n\ 00079 # This is generally used to communicate timestamped data \n\ 00080 # in a particular coordinate frame.\n\ 00081 # \n\ 00082 # sequence ID: consecutively increasing ID \n\ 00083 uint32 seq\n\ 00084 #Two-integer timestamp that is expressed as:\n\ 00085 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00086 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00087 # time-handling sugar is provided by the client library\n\ 00088 time stamp\n\ 00089 #Frame this data is associated with\n\ 00090 # 0: no frame\n\ 00091 # 1: global frame\n\ 00092 string frame_id\n\ 00093 \n\ 00094 ================================================================================\n\ 00095 MSG: calibration_msgs/CalibrationPattern\n\ 00096 Header header\n\ 00097 geometry_msgs/Point32[] object_points\n\ 00098 ImagePoint[] image_points\n\ 00099 uint8 success\n\ 00100 \n\ 00101 ================================================================================\n\ 00102 MSG: geometry_msgs/Point32\n\ 00103 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00104 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00105 # \n\ 00106 # This recommendation is to promote interoperability. \n\ 00107 #\n\ 00108 # This message is designed to take up less space when sending\n\ 00109 # lots of points at once, as in the case of a PointCloud. \n\ 00110 \n\ 00111 float32 x\n\ 00112 float32 y\n\ 00113 float32 z\n\ 00114 ================================================================================\n\ 00115 MSG: calibration_msgs/ImagePoint\n\ 00116 float32 x\n\ 00117 float32 y\n\ 00118 \n\ 00119 ================================================================================\n\ 00120 MSG: sensor_msgs/CameraInfo\n\ 00121 # This message defines meta information for a camera. It should be in a\n\ 00122 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00123 # image topics named:\n\ 00124 #\n\ 00125 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00126 # image - monochrome, distorted\n\ 00127 # image_color - color, distorted\n\ 00128 # image_rect - monochrome, rectified\n\ 00129 # image_rect_color - color, rectified\n\ 00130 #\n\ 00131 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00132 # for producing the four processed image topics from image_raw and\n\ 00133 # camera_info. The meaning of the camera parameters are described in\n\ 00134 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00135 #\n\ 00136 # The image_geometry package provides a user-friendly interface to\n\ 00137 # common operations using this meta information. If you want to, e.g.,\n\ 00138 # project a 3d point into image coordinates, we strongly recommend\n\ 00139 # using image_geometry.\n\ 00140 #\n\ 00141 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00142 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00143 # indicates an uncalibrated camera.\n\ 00144 \n\ 00145 #######################################################################\n\ 00146 # Image acquisition info #\n\ 00147 #######################################################################\n\ 00148 \n\ 00149 # Time of image acquisition, camera coordinate frame ID\n\ 00150 Header header # Header timestamp should be acquisition time of image\n\ 00151 # Header frame_id should be optical frame of camera\n\ 00152 # origin of frame should be optical center of camera\n\ 00153 # +x should point to the right in the image\n\ 00154 # +y should point down in the image\n\ 00155 # +z should point into the plane of the image\n\ 00156 \n\ 00157 \n\ 00158 #######################################################################\n\ 00159 # Calibration Parameters #\n\ 00160 #######################################################################\n\ 00161 # These are fixed during camera calibration. Their values will be the #\n\ 00162 # same in all messages until the camera is recalibrated. Note that #\n\ 00163 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00164 # #\n\ 00165 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00166 # to: #\n\ 00167 # 1. An undistorted image (requires D and K) #\n\ 00168 # 2. A rectified image (requires D, K, R) #\n\ 00169 # The projection matrix P projects 3D points into the rectified image.#\n\ 00170 #######################################################################\n\ 00171 \n\ 00172 # The image dimensions with which the camera was calibrated. Normally\n\ 00173 # this will be the full camera resolution in pixels.\n\ 00174 uint32 height\n\ 00175 uint32 width\n\ 00176 \n\ 00177 # The distortion model used. Supported models are listed in\n\ 00178 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00179 # simple model of radial and tangential distortion - is sufficent.\n\ 00180 string distortion_model\n\ 00181 \n\ 00182 # The distortion parameters, size depending on the distortion model.\n\ 00183 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00184 float64[] D\n\ 00185 \n\ 00186 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00187 # [fx 0 cx]\n\ 00188 # K = [ 0 fy cy]\n\ 00189 # [ 0 0 1]\n\ 00190 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00191 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00192 # (cx, cy).\n\ 00193 float64[9] K # 3x3 row-major matrix\n\ 00194 \n\ 00195 # Rectification matrix (stereo cameras only)\n\ 00196 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00197 # stereo image plane so that epipolar lines in both stereo images are\n\ 00198 # parallel.\n\ 00199 float64[9] R # 3x3 row-major matrix\n\ 00200 \n\ 00201 # Projection/camera matrix\n\ 00202 # [fx' 0 cx' Tx]\n\ 00203 # P = [ 0 fy' cy' Ty]\n\ 00204 # [ 0 0 1 0]\n\ 00205 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00206 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00207 # is the normal camera intrinsic matrix for the rectified image.\n\ 00208 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00209 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00210 # (cx', cy') - these may differ from the values in K.\n\ 00211 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00212 # also have R = the identity and P[1:3,1:3] = K.\n\ 00213 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00214 # position of the optical center of the second camera in the first\n\ 00215 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00216 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00217 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00218 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00219 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00220 # the rectified image is given by:\n\ 00221 # [u v w]' = P * [X Y Z 1]'\n\ 00222 # x = u / w\n\ 00223 # y = v / w\n\ 00224 # This holds for both images of a stereo pair.\n\ 00225 float64[12] P # 3x4 row-major matrix\n\ 00226 \n\ 00227 \n\ 00228 #######################################################################\n\ 00229 # Operational Parameters #\n\ 00230 #######################################################################\n\ 00231 # These define the image region actually captured by the camera #\n\ 00232 # driver. Although they affect the geometry of the output image, they #\n\ 00233 # may be changed freely without recalibrating the camera. #\n\ 00234 #######################################################################\n\ 00235 \n\ 00236 # Binning refers here to any camera setting which combines rectangular\n\ 00237 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00238 # resolution of the output image to\n\ 00239 # (width / binning_x) x (height / binning_y).\n\ 00240 # The default values binning_x = binning_y = 0 is considered the same\n\ 00241 # as binning_x = binning_y = 1 (no subsampling).\n\ 00242 uint32 binning_x\n\ 00243 uint32 binning_y\n\ 00244 \n\ 00245 # Region of interest (subwindow of full camera resolution), given in\n\ 00246 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00247 # always denotes the same window of pixels on the camera sensor,\n\ 00248 # regardless of binning settings.\n\ 00249 # The default setting of roi (all values 0) is considered the same as\n\ 00250 # full resolution (roi.width = width, roi.height = height).\n\ 00251 RegionOfInterest roi\n\ 00252 \n\ 00253 ================================================================================\n\ 00254 MSG: sensor_msgs/RegionOfInterest\n\ 00255 # This message is used to specify a region of interest within an image.\n\ 00256 #\n\ 00257 # When used to specify the ROI setting of the camera when the image was\n\ 00258 # taken, the height and width fields should either match the height and\n\ 00259 # width fields for the associated image; or height = width = 0\n\ 00260 # indicates that the full resolution image was captured.\n\ 00261 \n\ 00262 uint32 x_offset # Leftmost pixel of the ROI\n\ 00263 # (0 if the ROI includes the left edge of the image)\n\ 00264 uint32 y_offset # Topmost pixel of the ROI\n\ 00265 # (0 if the ROI includes the top edge of the image)\n\ 00266 uint32 height # Height of ROI\n\ 00267 uint32 width # Width of ROI\n\ 00268 \n\ 00269 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00270 # ROI in this message. Typically this should be False if the full image\n\ 00271 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00272 # used).\n\ 00273 bool do_rectify\n\ 00274 \n\ 00275 "; } 00276 public: 00277 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00278 00279 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00280 00281 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00282 { 00283 ros::serialization::OStream stream(write_ptr, 1000000000); 00284 ros::serialization::serialize(stream, header); 00285 ros::serialization::serialize(stream, camera_id); 00286 ros::serialization::serialize(stream, features); 00287 ros::serialization::serialize(stream, cam_info); 00288 return stream.getData(); 00289 } 00290 00291 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00292 { 00293 ros::serialization::IStream stream(read_ptr, 1000000000); 00294 ros::serialization::deserialize(stream, header); 00295 ros::serialization::deserialize(stream, camera_id); 00296 ros::serialization::deserialize(stream, features); 00297 ros::serialization::deserialize(stream, cam_info); 00298 return stream.getData(); 00299 } 00300 00301 ROS_DEPRECATED virtual uint32_t serializationLength() const 00302 { 00303 uint32_t size = 0; 00304 size += ros::serialization::serializationLength(header); 00305 size += ros::serialization::serializationLength(camera_id); 00306 size += ros::serialization::serializationLength(features); 00307 size += ros::serialization::serializationLength(cam_info); 00308 return size; 00309 } 00310 00311 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > Ptr; 00312 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> const> ConstPtr; 00313 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00314 }; // struct CameraMeasurement 00315 typedef ::camera_pose_calibration::CameraMeasurement_<std::allocator<void> > CameraMeasurement; 00316 00317 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement> CameraMeasurementPtr; 00318 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement const> CameraMeasurementConstPtr; 00319 00320 00321 template<typename ContainerAllocator> 00322 std::ostream& operator<<(std::ostream& s, const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> & v) 00323 { 00324 ros::message_operations::Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::stream(s, "", v); 00325 return s;} 00326 00327 } // namespace camera_pose_calibration 00328 00329 namespace ros 00330 { 00331 namespace message_traits 00332 { 00333 template<class ContainerAllocator> struct IsMessage< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {}; 00334 template<class ContainerAllocator> struct IsMessage< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> const> : public TrueType {}; 00335 template<class ContainerAllocator> 00336 struct MD5Sum< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > { 00337 static const char* value() 00338 { 00339 return "4c0854cdc23435e88220144133a1c813"; 00340 } 00341 00342 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); } 00343 static const uint64_t static_value1 = 0x4c0854cdc23435e8ULL; 00344 static const uint64_t static_value2 = 0x8220144133a1c813ULL; 00345 }; 00346 00347 template<class ContainerAllocator> 00348 struct DataType< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > { 00349 static const char* value() 00350 { 00351 return "camera_pose_calibration/CameraMeasurement"; 00352 } 00353 00354 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); } 00355 }; 00356 00357 template<class ContainerAllocator> 00358 struct Definition< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > { 00359 static const char* value() 00360 { 00361 return "Header header\n\ 00362 string camera_id\n\ 00363 calibration_msgs/CalibrationPattern features\n\ 00364 sensor_msgs/CameraInfo cam_info\n\ 00365 \n\ 00366 ================================================================================\n\ 00367 MSG: std_msgs/Header\n\ 00368 # Standard metadata for higher-level stamped data types.\n\ 00369 # This is generally used to communicate timestamped data \n\ 00370 # in a particular coordinate frame.\n\ 00371 # \n\ 00372 # sequence ID: consecutively increasing ID \n\ 00373 uint32 seq\n\ 00374 #Two-integer timestamp that is expressed as:\n\ 00375 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00376 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00377 # time-handling sugar is provided by the client library\n\ 00378 time stamp\n\ 00379 #Frame this data is associated with\n\ 00380 # 0: no frame\n\ 00381 # 1: global frame\n\ 00382 string frame_id\n\ 00383 \n\ 00384 ================================================================================\n\ 00385 MSG: calibration_msgs/CalibrationPattern\n\ 00386 Header header\n\ 00387 geometry_msgs/Point32[] object_points\n\ 00388 ImagePoint[] image_points\n\ 00389 uint8 success\n\ 00390 \n\ 00391 ================================================================================\n\ 00392 MSG: geometry_msgs/Point32\n\ 00393 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00394 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00395 # \n\ 00396 # This recommendation is to promote interoperability. \n\ 00397 #\n\ 00398 # This message is designed to take up less space when sending\n\ 00399 # lots of points at once, as in the case of a PointCloud. \n\ 00400 \n\ 00401 float32 x\n\ 00402 float32 y\n\ 00403 float32 z\n\ 00404 ================================================================================\n\ 00405 MSG: calibration_msgs/ImagePoint\n\ 00406 float32 x\n\ 00407 float32 y\n\ 00408 \n\ 00409 ================================================================================\n\ 00410 MSG: sensor_msgs/CameraInfo\n\ 00411 # This message defines meta information for a camera. It should be in a\n\ 00412 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00413 # image topics named:\n\ 00414 #\n\ 00415 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00416 # image - monochrome, distorted\n\ 00417 # image_color - color, distorted\n\ 00418 # image_rect - monochrome, rectified\n\ 00419 # image_rect_color - color, rectified\n\ 00420 #\n\ 00421 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00422 # for producing the four processed image topics from image_raw and\n\ 00423 # camera_info. The meaning of the camera parameters are described in\n\ 00424 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00425 #\n\ 00426 # The image_geometry package provides a user-friendly interface to\n\ 00427 # common operations using this meta information. If you want to, e.g.,\n\ 00428 # project a 3d point into image coordinates, we strongly recommend\n\ 00429 # using image_geometry.\n\ 00430 #\n\ 00431 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00432 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00433 # indicates an uncalibrated camera.\n\ 00434 \n\ 00435 #######################################################################\n\ 00436 # Image acquisition info #\n\ 00437 #######################################################################\n\ 00438 \n\ 00439 # Time of image acquisition, camera coordinate frame ID\n\ 00440 Header header # Header timestamp should be acquisition time of image\n\ 00441 # Header frame_id should be optical frame of camera\n\ 00442 # origin of frame should be optical center of camera\n\ 00443 # +x should point to the right in the image\n\ 00444 # +y should point down in the image\n\ 00445 # +z should point into the plane of the image\n\ 00446 \n\ 00447 \n\ 00448 #######################################################################\n\ 00449 # Calibration Parameters #\n\ 00450 #######################################################################\n\ 00451 # These are fixed during camera calibration. Their values will be the #\n\ 00452 # same in all messages until the camera is recalibrated. Note that #\n\ 00453 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00454 # #\n\ 00455 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00456 # to: #\n\ 00457 # 1. An undistorted image (requires D and K) #\n\ 00458 # 2. A rectified image (requires D, K, R) #\n\ 00459 # The projection matrix P projects 3D points into the rectified image.#\n\ 00460 #######################################################################\n\ 00461 \n\ 00462 # The image dimensions with which the camera was calibrated. Normally\n\ 00463 # this will be the full camera resolution in pixels.\n\ 00464 uint32 height\n\ 00465 uint32 width\n\ 00466 \n\ 00467 # The distortion model used. Supported models are listed in\n\ 00468 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00469 # simple model of radial and tangential distortion - is sufficent.\n\ 00470 string distortion_model\n\ 00471 \n\ 00472 # The distortion parameters, size depending on the distortion model.\n\ 00473 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00474 float64[] D\n\ 00475 \n\ 00476 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00477 # [fx 0 cx]\n\ 00478 # K = [ 0 fy cy]\n\ 00479 # [ 0 0 1]\n\ 00480 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00481 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00482 # (cx, cy).\n\ 00483 float64[9] K # 3x3 row-major matrix\n\ 00484 \n\ 00485 # Rectification matrix (stereo cameras only)\n\ 00486 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00487 # stereo image plane so that epipolar lines in both stereo images are\n\ 00488 # parallel.\n\ 00489 float64[9] R # 3x3 row-major matrix\n\ 00490 \n\ 00491 # Projection/camera matrix\n\ 00492 # [fx' 0 cx' Tx]\n\ 00493 # P = [ 0 fy' cy' Ty]\n\ 00494 # [ 0 0 1 0]\n\ 00495 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00496 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00497 # is the normal camera intrinsic matrix for the rectified image.\n\ 00498 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00499 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00500 # (cx', cy') - these may differ from the values in K.\n\ 00501 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00502 # also have R = the identity and P[1:3,1:3] = K.\n\ 00503 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00504 # position of the optical center of the second camera in the first\n\ 00505 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00506 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00507 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00508 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00509 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00510 # the rectified image is given by:\n\ 00511 # [u v w]' = P * [X Y Z 1]'\n\ 00512 # x = u / w\n\ 00513 # y = v / w\n\ 00514 # This holds for both images of a stereo pair.\n\ 00515 float64[12] P # 3x4 row-major matrix\n\ 00516 \n\ 00517 \n\ 00518 #######################################################################\n\ 00519 # Operational Parameters #\n\ 00520 #######################################################################\n\ 00521 # These define the image region actually captured by the camera #\n\ 00522 # driver. Although they affect the geometry of the output image, they #\n\ 00523 # may be changed freely without recalibrating the camera. #\n\ 00524 #######################################################################\n\ 00525 \n\ 00526 # Binning refers here to any camera setting which combines rectangular\n\ 00527 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00528 # resolution of the output image to\n\ 00529 # (width / binning_x) x (height / binning_y).\n\ 00530 # The default values binning_x = binning_y = 0 is considered the same\n\ 00531 # as binning_x = binning_y = 1 (no subsampling).\n\ 00532 uint32 binning_x\n\ 00533 uint32 binning_y\n\ 00534 \n\ 00535 # Region of interest (subwindow of full camera resolution), given in\n\ 00536 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00537 # always denotes the same window of pixels on the camera sensor,\n\ 00538 # regardless of binning settings.\n\ 00539 # The default setting of roi (all values 0) is considered the same as\n\ 00540 # full resolution (roi.width = width, roi.height = height).\n\ 00541 RegionOfInterest roi\n\ 00542 \n\ 00543 ================================================================================\n\ 00544 MSG: sensor_msgs/RegionOfInterest\n\ 00545 # This message is used to specify a region of interest within an image.\n\ 00546 #\n\ 00547 # When used to specify the ROI setting of the camera when the image was\n\ 00548 # taken, the height and width fields should either match the height and\n\ 00549 # width fields for the associated image; or height = width = 0\n\ 00550 # indicates that the full resolution image was captured.\n\ 00551 \n\ 00552 uint32 x_offset # Leftmost pixel of the ROI\n\ 00553 # (0 if the ROI includes the left edge of the image)\n\ 00554 uint32 y_offset # Topmost pixel of the ROI\n\ 00555 # (0 if the ROI includes the top edge of the image)\n\ 00556 uint32 height # Height of ROI\n\ 00557 uint32 width # Width of ROI\n\ 00558 \n\ 00559 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00560 # ROI in this message. Typically this should be False if the full image\n\ 00561 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00562 # used).\n\ 00563 bool do_rectify\n\ 00564 \n\ 00565 "; 00566 } 00567 00568 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); } 00569 }; 00570 00571 template<class ContainerAllocator> struct HasHeader< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {}; 00572 template<class ContainerAllocator> struct HasHeader< const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {}; 00573 } // namespace message_traits 00574 } // namespace ros 00575 00576 namespace ros 00577 { 00578 namespace serialization 00579 { 00580 00581 template<class ContainerAllocator> struct Serializer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > 00582 { 00583 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00584 { 00585 stream.next(m.header); 00586 stream.next(m.camera_id); 00587 stream.next(m.features); 00588 stream.next(m.cam_info); 00589 } 00590 00591 ROS_DECLARE_ALLINONE_SERIALIZER; 00592 }; // struct CameraMeasurement_ 00593 } // namespace serialization 00594 } // namespace ros 00595 00596 namespace ros 00597 { 00598 namespace message_operations 00599 { 00600 00601 template<class ContainerAllocator> 00602 struct Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > 00603 { 00604 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> & v) 00605 { 00606 s << indent << "header: "; 00607 s << std::endl; 00608 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00609 s << indent << "camera_id: "; 00610 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.camera_id); 00611 s << indent << "features: "; 00612 s << std::endl; 00613 Printer< ::calibration_msgs::CalibrationPattern_<ContainerAllocator> >::stream(s, indent + " ", v.features); 00614 s << indent << "cam_info: "; 00615 s << std::endl; 00616 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info); 00617 } 00618 }; 00619 00620 00621 } // namespace message_operations 00622 } // namespace ros 00623 00624 #endif // CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H 00625