00001
00002 #ifndef CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H
00003 #define CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "calibration_msgs/CalibrationPattern.h"
00019 #include "sensor_msgs/CameraInfo.h"
00020
00021 namespace camera_pose_calibration
00022 {
00023 template <class ContainerAllocator>
00024 struct CameraMeasurement_ {
00025 typedef CameraMeasurement_<ContainerAllocator> Type;
00026
00027 CameraMeasurement_()
00028 : header()
00029 , camera_id()
00030 , features()
00031 , cam_info()
00032 {
00033 }
00034
00035 CameraMeasurement_(const ContainerAllocator& _alloc)
00036 : header(_alloc)
00037 , camera_id(_alloc)
00038 , features(_alloc)
00039 , cam_info(_alloc)
00040 {
00041 }
00042
00043 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00044 ::std_msgs::Header_<ContainerAllocator> header;
00045
00046 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _camera_id_type;
00047 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > camera_id;
00048
00049 typedef ::calibration_msgs::CalibrationPattern_<ContainerAllocator> _features_type;
00050 ::calibration_msgs::CalibrationPattern_<ContainerAllocator> features;
00051
00052 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type;
00053 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info;
00054
00055
00056 private:
00057 static const char* __s_getDataType_() { return "camera_pose_calibration/CameraMeasurement"; }
00058 public:
00059 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00060
00061 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00062
00063 private:
00064 static const char* __s_getMD5Sum_() { return "4c0854cdc23435e88220144133a1c813"; }
00065 public:
00066 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00067
00068 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00069
00070 private:
00071 static const char* __s_getMessageDefinition_() { return "Header header\n\
00072 string camera_id\n\
00073 calibration_msgs/CalibrationPattern features\n\
00074 sensor_msgs/CameraInfo cam_info\n\
00075 \n\
00076 ================================================================================\n\
00077 MSG: std_msgs/Header\n\
00078 # Standard metadata for higher-level stamped data types.\n\
00079 # This is generally used to communicate timestamped data \n\
00080 # in a particular coordinate frame.\n\
00081 # \n\
00082 # sequence ID: consecutively increasing ID \n\
00083 uint32 seq\n\
00084 #Two-integer timestamp that is expressed as:\n\
00085 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00086 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00087 # time-handling sugar is provided by the client library\n\
00088 time stamp\n\
00089 #Frame this data is associated with\n\
00090 # 0: no frame\n\
00091 # 1: global frame\n\
00092 string frame_id\n\
00093 \n\
00094 ================================================================================\n\
00095 MSG: calibration_msgs/CalibrationPattern\n\
00096 Header header\n\
00097 geometry_msgs/Point32[] object_points\n\
00098 ImagePoint[] image_points\n\
00099 uint8 success\n\
00100 \n\
00101 ================================================================================\n\
00102 MSG: geometry_msgs/Point32\n\
00103 # This contains the position of a point in free space(with 32 bits of precision).\n\
00104 # It is recommeded to use Point wherever possible instead of Point32. \n\
00105 # \n\
00106 # This recommendation is to promote interoperability. \n\
00107 #\n\
00108 # This message is designed to take up less space when sending\n\
00109 # lots of points at once, as in the case of a PointCloud. \n\
00110 \n\
00111 float32 x\n\
00112 float32 y\n\
00113 float32 z\n\
00114 ================================================================================\n\
00115 MSG: calibration_msgs/ImagePoint\n\
00116 float32 x\n\
00117 float32 y\n\
00118 \n\
00119 ================================================================================\n\
00120 MSG: sensor_msgs/CameraInfo\n\
00121 # This message defines meta information for a camera. It should be in a\n\
00122 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00123 # image topics named:\n\
00124 #\n\
00125 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00126 # image - monochrome, distorted\n\
00127 # image_color - color, distorted\n\
00128 # image_rect - monochrome, rectified\n\
00129 # image_rect_color - color, rectified\n\
00130 #\n\
00131 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00132 # for producing the four processed image topics from image_raw and\n\
00133 # camera_info. The meaning of the camera parameters are described in\n\
00134 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00135 #\n\
00136 # The image_geometry package provides a user-friendly interface to\n\
00137 # common operations using this meta information. If you want to, e.g.,\n\
00138 # project a 3d point into image coordinates, we strongly recommend\n\
00139 # using image_geometry.\n\
00140 #\n\
00141 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00142 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00143 # indicates an uncalibrated camera.\n\
00144 \n\
00145 #######################################################################\n\
00146 # Image acquisition info #\n\
00147 #######################################################################\n\
00148 \n\
00149 # Time of image acquisition, camera coordinate frame ID\n\
00150 Header header # Header timestamp should be acquisition time of image\n\
00151 # Header frame_id should be optical frame of camera\n\
00152 # origin of frame should be optical center of camera\n\
00153 # +x should point to the right in the image\n\
00154 # +y should point down in the image\n\
00155 # +z should point into the plane of the image\n\
00156 \n\
00157 \n\
00158 #######################################################################\n\
00159 # Calibration Parameters #\n\
00160 #######################################################################\n\
00161 # These are fixed during camera calibration. Their values will be the #\n\
00162 # same in all messages until the camera is recalibrated. Note that #\n\
00163 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00164 # #\n\
00165 # The internal parameters can be used to warp a raw (distorted) image #\n\
00166 # to: #\n\
00167 # 1. An undistorted image (requires D and K) #\n\
00168 # 2. A rectified image (requires D, K, R) #\n\
00169 # The projection matrix P projects 3D points into the rectified image.#\n\
00170 #######################################################################\n\
00171 \n\
00172 # The image dimensions with which the camera was calibrated. Normally\n\
00173 # this will be the full camera resolution in pixels.\n\
00174 uint32 height\n\
00175 uint32 width\n\
00176 \n\
00177 # The distortion model used. Supported models are listed in\n\
00178 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00179 # simple model of radial and tangential distortion - is sufficent.\n\
00180 string distortion_model\n\
00181 \n\
00182 # The distortion parameters, size depending on the distortion model.\n\
00183 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00184 float64[] D\n\
00185 \n\
00186 # Intrinsic camera matrix for the raw (distorted) images.\n\
00187 # [fx 0 cx]\n\
00188 # K = [ 0 fy cy]\n\
00189 # [ 0 0 1]\n\
00190 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00191 # coordinates using the focal lengths (fx, fy) and principal point\n\
00192 # (cx, cy).\n\
00193 float64[9] K # 3x3 row-major matrix\n\
00194 \n\
00195 # Rectification matrix (stereo cameras only)\n\
00196 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00197 # stereo image plane so that epipolar lines in both stereo images are\n\
00198 # parallel.\n\
00199 float64[9] R # 3x3 row-major matrix\n\
00200 \n\
00201 # Projection/camera matrix\n\
00202 # [fx' 0 cx' Tx]\n\
00203 # P = [ 0 fy' cy' Ty]\n\
00204 # [ 0 0 1 0]\n\
00205 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00206 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00207 # is the normal camera intrinsic matrix for the rectified image.\n\
00208 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00209 # coordinates using the focal lengths (fx', fy') and principal point\n\
00210 # (cx', cy') - these may differ from the values in K.\n\
00211 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00212 # also have R = the identity and P[1:3,1:3] = K.\n\
00213 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00214 # position of the optical center of the second camera in the first\n\
00215 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00216 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00217 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00218 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00219 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00220 # the rectified image is given by:\n\
00221 # [u v w]' = P * [X Y Z 1]'\n\
00222 # x = u / w\n\
00223 # y = v / w\n\
00224 # This holds for both images of a stereo pair.\n\
00225 float64[12] P # 3x4 row-major matrix\n\
00226 \n\
00227 \n\
00228 #######################################################################\n\
00229 # Operational Parameters #\n\
00230 #######################################################################\n\
00231 # These define the image region actually captured by the camera #\n\
00232 # driver. Although they affect the geometry of the output image, they #\n\
00233 # may be changed freely without recalibrating the camera. #\n\
00234 #######################################################################\n\
00235 \n\
00236 # Binning refers here to any camera setting which combines rectangular\n\
00237 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00238 # resolution of the output image to\n\
00239 # (width / binning_x) x (height / binning_y).\n\
00240 # The default values binning_x = binning_y = 0 is considered the same\n\
00241 # as binning_x = binning_y = 1 (no subsampling).\n\
00242 uint32 binning_x\n\
00243 uint32 binning_y\n\
00244 \n\
00245 # Region of interest (subwindow of full camera resolution), given in\n\
00246 # full resolution (unbinned) image coordinates. A particular ROI\n\
00247 # always denotes the same window of pixels on the camera sensor,\n\
00248 # regardless of binning settings.\n\
00249 # The default setting of roi (all values 0) is considered the same as\n\
00250 # full resolution (roi.width = width, roi.height = height).\n\
00251 RegionOfInterest roi\n\
00252 \n\
00253 ================================================================================\n\
00254 MSG: sensor_msgs/RegionOfInterest\n\
00255 # This message is used to specify a region of interest within an image.\n\
00256 #\n\
00257 # When used to specify the ROI setting of the camera when the image was\n\
00258 # taken, the height and width fields should either match the height and\n\
00259 # width fields for the associated image; or height = width = 0\n\
00260 # indicates that the full resolution image was captured.\n\
00261 \n\
00262 uint32 x_offset # Leftmost pixel of the ROI\n\
00263 # (0 if the ROI includes the left edge of the image)\n\
00264 uint32 y_offset # Topmost pixel of the ROI\n\
00265 # (0 if the ROI includes the top edge of the image)\n\
00266 uint32 height # Height of ROI\n\
00267 uint32 width # Width of ROI\n\
00268 \n\
00269 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00270 # ROI in this message. Typically this should be False if the full image\n\
00271 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00272 # used).\n\
00273 bool do_rectify\n\
00274 \n\
00275 "; }
00276 public:
00277 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00278
00279 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00280
00281 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00282 {
00283 ros::serialization::OStream stream(write_ptr, 1000000000);
00284 ros::serialization::serialize(stream, header);
00285 ros::serialization::serialize(stream, camera_id);
00286 ros::serialization::serialize(stream, features);
00287 ros::serialization::serialize(stream, cam_info);
00288 return stream.getData();
00289 }
00290
00291 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00292 {
00293 ros::serialization::IStream stream(read_ptr, 1000000000);
00294 ros::serialization::deserialize(stream, header);
00295 ros::serialization::deserialize(stream, camera_id);
00296 ros::serialization::deserialize(stream, features);
00297 ros::serialization::deserialize(stream, cam_info);
00298 return stream.getData();
00299 }
00300
00301 ROS_DEPRECATED virtual uint32_t serializationLength() const
00302 {
00303 uint32_t size = 0;
00304 size += ros::serialization::serializationLength(header);
00305 size += ros::serialization::serializationLength(camera_id);
00306 size += ros::serialization::serializationLength(features);
00307 size += ros::serialization::serializationLength(cam_info);
00308 return size;
00309 }
00310
00311 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > Ptr;
00312 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> const> ConstPtr;
00313 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00314 };
00315 typedef ::camera_pose_calibration::CameraMeasurement_<std::allocator<void> > CameraMeasurement;
00316
00317 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement> CameraMeasurementPtr;
00318 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement const> CameraMeasurementConstPtr;
00319
00320
00321 template<typename ContainerAllocator>
00322 std::ostream& operator<<(std::ostream& s, const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> & v)
00323 {
00324 ros::message_operations::Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::stream(s, "", v);
00325 return s;}
00326
00327 }
00328
00329 namespace ros
00330 {
00331 namespace message_traits
00332 {
00333 template<class ContainerAllocator> struct IsMessage< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00334 template<class ContainerAllocator> struct IsMessage< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> const> : public TrueType {};
00335 template<class ContainerAllocator>
00336 struct MD5Sum< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > {
00337 static const char* value()
00338 {
00339 return "4c0854cdc23435e88220144133a1c813";
00340 }
00341
00342 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00343 static const uint64_t static_value1 = 0x4c0854cdc23435e8ULL;
00344 static const uint64_t static_value2 = 0x8220144133a1c813ULL;
00345 };
00346
00347 template<class ContainerAllocator>
00348 struct DataType< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > {
00349 static const char* value()
00350 {
00351 return "camera_pose_calibration/CameraMeasurement";
00352 }
00353
00354 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00355 };
00356
00357 template<class ContainerAllocator>
00358 struct Definition< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > {
00359 static const char* value()
00360 {
00361 return "Header header\n\
00362 string camera_id\n\
00363 calibration_msgs/CalibrationPattern features\n\
00364 sensor_msgs/CameraInfo cam_info\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: std_msgs/Header\n\
00368 # Standard metadata for higher-level stamped data types.\n\
00369 # This is generally used to communicate timestamped data \n\
00370 # in a particular coordinate frame.\n\
00371 # \n\
00372 # sequence ID: consecutively increasing ID \n\
00373 uint32 seq\n\
00374 #Two-integer timestamp that is expressed as:\n\
00375 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00376 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00377 # time-handling sugar is provided by the client library\n\
00378 time stamp\n\
00379 #Frame this data is associated with\n\
00380 # 0: no frame\n\
00381 # 1: global frame\n\
00382 string frame_id\n\
00383 \n\
00384 ================================================================================\n\
00385 MSG: calibration_msgs/CalibrationPattern\n\
00386 Header header\n\
00387 geometry_msgs/Point32[] object_points\n\
00388 ImagePoint[] image_points\n\
00389 uint8 success\n\
00390 \n\
00391 ================================================================================\n\
00392 MSG: geometry_msgs/Point32\n\
00393 # This contains the position of a point in free space(with 32 bits of precision).\n\
00394 # It is recommeded to use Point wherever possible instead of Point32. \n\
00395 # \n\
00396 # This recommendation is to promote interoperability. \n\
00397 #\n\
00398 # This message is designed to take up less space when sending\n\
00399 # lots of points at once, as in the case of a PointCloud. \n\
00400 \n\
00401 float32 x\n\
00402 float32 y\n\
00403 float32 z\n\
00404 ================================================================================\n\
00405 MSG: calibration_msgs/ImagePoint\n\
00406 float32 x\n\
00407 float32 y\n\
00408 \n\
00409 ================================================================================\n\
00410 MSG: sensor_msgs/CameraInfo\n\
00411 # This message defines meta information for a camera. It should be in a\n\
00412 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00413 # image topics named:\n\
00414 #\n\
00415 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00416 # image - monochrome, distorted\n\
00417 # image_color - color, distorted\n\
00418 # image_rect - monochrome, rectified\n\
00419 # image_rect_color - color, rectified\n\
00420 #\n\
00421 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00422 # for producing the four processed image topics from image_raw and\n\
00423 # camera_info. The meaning of the camera parameters are described in\n\
00424 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00425 #\n\
00426 # The image_geometry package provides a user-friendly interface to\n\
00427 # common operations using this meta information. If you want to, e.g.,\n\
00428 # project a 3d point into image coordinates, we strongly recommend\n\
00429 # using image_geometry.\n\
00430 #\n\
00431 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00432 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00433 # indicates an uncalibrated camera.\n\
00434 \n\
00435 #######################################################################\n\
00436 # Image acquisition info #\n\
00437 #######################################################################\n\
00438 \n\
00439 # Time of image acquisition, camera coordinate frame ID\n\
00440 Header header # Header timestamp should be acquisition time of image\n\
00441 # Header frame_id should be optical frame of camera\n\
00442 # origin of frame should be optical center of camera\n\
00443 # +x should point to the right in the image\n\
00444 # +y should point down in the image\n\
00445 # +z should point into the plane of the image\n\
00446 \n\
00447 \n\
00448 #######################################################################\n\
00449 # Calibration Parameters #\n\
00450 #######################################################################\n\
00451 # These are fixed during camera calibration. Their values will be the #\n\
00452 # same in all messages until the camera is recalibrated. Note that #\n\
00453 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00454 # #\n\
00455 # The internal parameters can be used to warp a raw (distorted) image #\n\
00456 # to: #\n\
00457 # 1. An undistorted image (requires D and K) #\n\
00458 # 2. A rectified image (requires D, K, R) #\n\
00459 # The projection matrix P projects 3D points into the rectified image.#\n\
00460 #######################################################################\n\
00461 \n\
00462 # The image dimensions with which the camera was calibrated. Normally\n\
00463 # this will be the full camera resolution in pixels.\n\
00464 uint32 height\n\
00465 uint32 width\n\
00466 \n\
00467 # The distortion model used. Supported models are listed in\n\
00468 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00469 # simple model of radial and tangential distortion - is sufficent.\n\
00470 string distortion_model\n\
00471 \n\
00472 # The distortion parameters, size depending on the distortion model.\n\
00473 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00474 float64[] D\n\
00475 \n\
00476 # Intrinsic camera matrix for the raw (distorted) images.\n\
00477 # [fx 0 cx]\n\
00478 # K = [ 0 fy cy]\n\
00479 # [ 0 0 1]\n\
00480 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00481 # coordinates using the focal lengths (fx, fy) and principal point\n\
00482 # (cx, cy).\n\
00483 float64[9] K # 3x3 row-major matrix\n\
00484 \n\
00485 # Rectification matrix (stereo cameras only)\n\
00486 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00487 # stereo image plane so that epipolar lines in both stereo images are\n\
00488 # parallel.\n\
00489 float64[9] R # 3x3 row-major matrix\n\
00490 \n\
00491 # Projection/camera matrix\n\
00492 # [fx' 0 cx' Tx]\n\
00493 # P = [ 0 fy' cy' Ty]\n\
00494 # [ 0 0 1 0]\n\
00495 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00496 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00497 # is the normal camera intrinsic matrix for the rectified image.\n\
00498 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00499 # coordinates using the focal lengths (fx', fy') and principal point\n\
00500 # (cx', cy') - these may differ from the values in K.\n\
00501 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00502 # also have R = the identity and P[1:3,1:3] = K.\n\
00503 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00504 # position of the optical center of the second camera in the first\n\
00505 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00506 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00507 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00508 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00509 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00510 # the rectified image is given by:\n\
00511 # [u v w]' = P * [X Y Z 1]'\n\
00512 # x = u / w\n\
00513 # y = v / w\n\
00514 # This holds for both images of a stereo pair.\n\
00515 float64[12] P # 3x4 row-major matrix\n\
00516 \n\
00517 \n\
00518 #######################################################################\n\
00519 # Operational Parameters #\n\
00520 #######################################################################\n\
00521 # These define the image region actually captured by the camera #\n\
00522 # driver. Although they affect the geometry of the output image, they #\n\
00523 # may be changed freely without recalibrating the camera. #\n\
00524 #######################################################################\n\
00525 \n\
00526 # Binning refers here to any camera setting which combines rectangular\n\
00527 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00528 # resolution of the output image to\n\
00529 # (width / binning_x) x (height / binning_y).\n\
00530 # The default values binning_x = binning_y = 0 is considered the same\n\
00531 # as binning_x = binning_y = 1 (no subsampling).\n\
00532 uint32 binning_x\n\
00533 uint32 binning_y\n\
00534 \n\
00535 # Region of interest (subwindow of full camera resolution), given in\n\
00536 # full resolution (unbinned) image coordinates. A particular ROI\n\
00537 # always denotes the same window of pixels on the camera sensor,\n\
00538 # regardless of binning settings.\n\
00539 # The default setting of roi (all values 0) is considered the same as\n\
00540 # full resolution (roi.width = width, roi.height = height).\n\
00541 RegionOfInterest roi\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: sensor_msgs/RegionOfInterest\n\
00545 # This message is used to specify a region of interest within an image.\n\
00546 #\n\
00547 # When used to specify the ROI setting of the camera when the image was\n\
00548 # taken, the height and width fields should either match the height and\n\
00549 # width fields for the associated image; or height = width = 0\n\
00550 # indicates that the full resolution image was captured.\n\
00551 \n\
00552 uint32 x_offset # Leftmost pixel of the ROI\n\
00553 # (0 if the ROI includes the left edge of the image)\n\
00554 uint32 y_offset # Topmost pixel of the ROI\n\
00555 # (0 if the ROI includes the top edge of the image)\n\
00556 uint32 height # Height of ROI\n\
00557 uint32 width # Width of ROI\n\
00558 \n\
00559 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00560 # ROI in this message. Typically this should be False if the full image\n\
00561 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00562 # used).\n\
00563 bool do_rectify\n\
00564 \n\
00565 ";
00566 }
00567
00568 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00569 };
00570
00571 template<class ContainerAllocator> struct HasHeader< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00572 template<class ContainerAllocator> struct HasHeader< const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00573 }
00574 }
00575
00576 namespace ros
00577 {
00578 namespace serialization
00579 {
00580
00581 template<class ContainerAllocator> struct Serializer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >
00582 {
00583 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00584 {
00585 stream.next(m.header);
00586 stream.next(m.camera_id);
00587 stream.next(m.features);
00588 stream.next(m.cam_info);
00589 }
00590
00591 ROS_DECLARE_ALLINONE_SERIALIZER;
00592 };
00593 }
00594 }
00595
00596 namespace ros
00597 {
00598 namespace message_operations
00599 {
00600
00601 template<class ContainerAllocator>
00602 struct Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >
00603 {
00604 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> & v)
00605 {
00606 s << indent << "header: ";
00607 s << std::endl;
00608 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00609 s << indent << "camera_id: ";
00610 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.camera_id);
00611 s << indent << "features: ";
00612 s << std::endl;
00613 Printer< ::calibration_msgs::CalibrationPattern_<ContainerAllocator> >::stream(s, indent + " ", v.features);
00614 s << indent << "cam_info: ";
00615 s << std::endl;
00616 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info);
00617 }
00618 };
00619
00620
00621 }
00622 }
00623
00624 #endif // CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H
00625