$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pal-ros-pkg/doc_stacks/2013-03-01_16-20-37.495693/perception_blort/blort_ros/srv/SetCameraInfo.srv */ 00002 #ifndef BLORT_ROS_SERVICE_SETCAMERAINFO_H 00003 #define BLORT_ROS_SERVICE_SETCAMERAINFO_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "sensor_msgs/CameraInfo.h" 00020 00021 00022 00023 namespace blort_ros 00024 { 00025 template <class ContainerAllocator> 00026 struct SetCameraInfoRequest_ { 00027 typedef SetCameraInfoRequest_<ContainerAllocator> Type; 00028 00029 SetCameraInfoRequest_() 00030 : CameraInfo() 00031 { 00032 } 00033 00034 SetCameraInfoRequest_(const ContainerAllocator& _alloc) 00035 : CameraInfo(_alloc) 00036 { 00037 } 00038 00039 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _CameraInfo_type; 00040 ::sensor_msgs::CameraInfo_<ContainerAllocator> CameraInfo; 00041 00042 00043 private: 00044 static const char* __s_getDataType_() { return "blort_ros/SetCameraInfoRequest"; } 00045 public: 00046 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00047 00048 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00049 00050 private: 00051 static const char* __s_getMD5Sum_() { return "390ddee7feaa14c13062ed91af56953a"; } 00052 public: 00053 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00054 00055 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00056 00057 private: 00058 static const char* __s_getServerMD5Sum_() { return "390ddee7feaa14c13062ed91af56953a"; } 00059 public: 00060 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00061 00062 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00063 00064 private: 00065 static const char* __s_getMessageDefinition_() { return "sensor_msgs/CameraInfo CameraInfo\n\ 00066 \n\ 00067 ================================================================================\n\ 00068 MSG: sensor_msgs/CameraInfo\n\ 00069 # This message defines meta information for a camera. It should be in a\n\ 00070 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00071 # image topics named:\n\ 00072 #\n\ 00073 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00074 # image - monochrome, distorted\n\ 00075 # image_color - color, distorted\n\ 00076 # image_rect - monochrome, rectified\n\ 00077 # image_rect_color - color, rectified\n\ 00078 #\n\ 00079 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00080 # for producing the four processed image topics from image_raw and\n\ 00081 # camera_info. The meaning of the camera parameters are described in\n\ 00082 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00083 #\n\ 00084 # The image_geometry package provides a user-friendly interface to\n\ 00085 # common operations using this meta information. If you want to, e.g.,\n\ 00086 # project a 3d point into image coordinates, we strongly recommend\n\ 00087 # using image_geometry.\n\ 00088 #\n\ 00089 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00090 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00091 # indicates an uncalibrated camera.\n\ 00092 \n\ 00093 #######################################################################\n\ 00094 # Image acquisition info #\n\ 00095 #######################################################################\n\ 00096 \n\ 00097 # Time of image acquisition, camera coordinate frame ID\n\ 00098 Header header # Header timestamp should be acquisition time of image\n\ 00099 # Header frame_id should be optical frame of camera\n\ 00100 # origin of frame should be optical center of camera\n\ 00101 # +x should point to the right in the image\n\ 00102 # +y should point down in the image\n\ 00103 # +z should point into the plane of the image\n\ 00104 \n\ 00105 \n\ 00106 #######################################################################\n\ 00107 # Calibration Parameters #\n\ 00108 #######################################################################\n\ 00109 # These are fixed during camera calibration. Their values will be the #\n\ 00110 # same in all messages until the camera is recalibrated. Note that #\n\ 00111 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00112 # #\n\ 00113 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00114 # to: #\n\ 00115 # 1. An undistorted image (requires D and K) #\n\ 00116 # 2. A rectified image (requires D, K, R) #\n\ 00117 # The projection matrix P projects 3D points into the rectified image.#\n\ 00118 #######################################################################\n\ 00119 \n\ 00120 # The image dimensions with which the camera was calibrated. Normally\n\ 00121 # this will be the full camera resolution in pixels.\n\ 00122 uint32 height\n\ 00123 uint32 width\n\ 00124 \n\ 00125 # The distortion model used. Supported models are listed in\n\ 00126 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00127 # simple model of radial and tangential distortion - is sufficent.\n\ 00128 string distortion_model\n\ 00129 \n\ 00130 # The distortion parameters, size depending on the distortion model.\n\ 00131 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00132 float64[] D\n\ 00133 \n\ 00134 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00135 # [fx 0 cx]\n\ 00136 # K = [ 0 fy cy]\n\ 00137 # [ 0 0 1]\n\ 00138 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00139 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00140 # (cx, cy).\n\ 00141 float64[9] K # 3x3 row-major matrix\n\ 00142 \n\ 00143 # Rectification matrix (stereo cameras only)\n\ 00144 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00145 # stereo image plane so that epipolar lines in both stereo images are\n\ 00146 # parallel.\n\ 00147 float64[9] R # 3x3 row-major matrix\n\ 00148 \n\ 00149 # Projection/camera matrix\n\ 00150 # [fx' 0 cx' Tx]\n\ 00151 # P = [ 0 fy' cy' Ty]\n\ 00152 # [ 0 0 1 0]\n\ 00153 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00154 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00155 # is the normal camera intrinsic matrix for the rectified image.\n\ 00156 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00157 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00158 # (cx', cy') - these may differ from the values in K.\n\ 00159 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00160 # also have R = the identity and P[1:3,1:3] = K.\n\ 00161 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00162 # position of the optical center of the second camera in the first\n\ 00163 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00164 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00165 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00166 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00167 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00168 # the rectified image is given by:\n\ 00169 # [u v w]' = P * [X Y Z 1]'\n\ 00170 # x = u / w\n\ 00171 # y = v / w\n\ 00172 # This holds for both images of a stereo pair.\n\ 00173 float64[12] P # 3x4 row-major matrix\n\ 00174 \n\ 00175 \n\ 00176 #######################################################################\n\ 00177 # Operational Parameters #\n\ 00178 #######################################################################\n\ 00179 # These define the image region actually captured by the camera #\n\ 00180 # driver. Although they affect the geometry of the output image, they #\n\ 00181 # may be changed freely without recalibrating the camera. #\n\ 00182 #######################################################################\n\ 00183 \n\ 00184 # Binning refers here to any camera setting which combines rectangular\n\ 00185 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00186 # resolution of the output image to\n\ 00187 # (width / binning_x) x (height / binning_y).\n\ 00188 # The default values binning_x = binning_y = 0 is considered the same\n\ 00189 # as binning_x = binning_y = 1 (no subsampling).\n\ 00190 uint32 binning_x\n\ 00191 uint32 binning_y\n\ 00192 \n\ 00193 # Region of interest (subwindow of full camera resolution), given in\n\ 00194 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00195 # always denotes the same window of pixels on the camera sensor,\n\ 00196 # regardless of binning settings.\n\ 00197 # The default setting of roi (all values 0) is considered the same as\n\ 00198 # full resolution (roi.width = width, roi.height = height).\n\ 00199 RegionOfInterest roi\n\ 00200 \n\ 00201 ================================================================================\n\ 00202 MSG: std_msgs/Header\n\ 00203 # Standard metadata for higher-level stamped data types.\n\ 00204 # This is generally used to communicate timestamped data \n\ 00205 # in a particular coordinate frame.\n\ 00206 # \n\ 00207 # sequence ID: consecutively increasing ID \n\ 00208 uint32 seq\n\ 00209 #Two-integer timestamp that is expressed as:\n\ 00210 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00211 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00212 # time-handling sugar is provided by the client library\n\ 00213 time stamp\n\ 00214 #Frame this data is associated with\n\ 00215 # 0: no frame\n\ 00216 # 1: global frame\n\ 00217 string frame_id\n\ 00218 \n\ 00219 ================================================================================\n\ 00220 MSG: sensor_msgs/RegionOfInterest\n\ 00221 # This message is used to specify a region of interest within an image.\n\ 00222 #\n\ 00223 # When used to specify the ROI setting of the camera when the image was\n\ 00224 # taken, the height and width fields should either match the height and\n\ 00225 # width fields for the associated image; or height = width = 0\n\ 00226 # indicates that the full resolution image was captured.\n\ 00227 \n\ 00228 uint32 x_offset # Leftmost pixel of the ROI\n\ 00229 # (0 if the ROI includes the left edge of the image)\n\ 00230 uint32 y_offset # Topmost pixel of the ROI\n\ 00231 # (0 if the ROI includes the top edge of the image)\n\ 00232 uint32 height # Height of ROI\n\ 00233 uint32 width # Width of ROI\n\ 00234 \n\ 00235 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00236 # ROI in this message. Typically this should be False if the full image\n\ 00237 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00238 # used).\n\ 00239 bool do_rectify\n\ 00240 \n\ 00241 "; } 00242 public: 00243 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00244 00245 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00246 00247 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00248 { 00249 ros::serialization::OStream stream(write_ptr, 1000000000); 00250 ros::serialization::serialize(stream, CameraInfo); 00251 return stream.getData(); 00252 } 00253 00254 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00255 { 00256 ros::serialization::IStream stream(read_ptr, 1000000000); 00257 ros::serialization::deserialize(stream, CameraInfo); 00258 return stream.getData(); 00259 } 00260 00261 ROS_DEPRECATED virtual uint32_t serializationLength() const 00262 { 00263 uint32_t size = 0; 00264 size += ros::serialization::serializationLength(CameraInfo); 00265 return size; 00266 } 00267 00268 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > Ptr; 00269 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> const> ConstPtr; 00270 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00271 }; // struct SetCameraInfoRequest 00272 typedef ::blort_ros::SetCameraInfoRequest_<std::allocator<void> > SetCameraInfoRequest; 00273 00274 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest> SetCameraInfoRequestPtr; 00275 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest const> SetCameraInfoRequestConstPtr; 00276 00277 00278 template <class ContainerAllocator> 00279 struct SetCameraInfoResponse_ { 00280 typedef SetCameraInfoResponse_<ContainerAllocator> Type; 00281 00282 SetCameraInfoResponse_() 00283 { 00284 } 00285 00286 SetCameraInfoResponse_(const ContainerAllocator& _alloc) 00287 { 00288 } 00289 00290 00291 private: 00292 static const char* __s_getDataType_() { return "blort_ros/SetCameraInfoResponse"; } 00293 public: 00294 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00295 00296 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00297 00298 private: 00299 static const char* __s_getMD5Sum_() { return "d41d8cd98f00b204e9800998ecf8427e"; } 00300 public: 00301 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00302 00303 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00304 00305 private: 00306 static const char* __s_getServerMD5Sum_() { return "390ddee7feaa14c13062ed91af56953a"; } 00307 public: 00308 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00309 00310 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00311 00312 private: 00313 static const char* __s_getMessageDefinition_() { return "\n\ 00314 \n\ 00315 "; } 00316 public: 00317 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00318 00319 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00320 00321 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00322 { 00323 ros::serialization::OStream stream(write_ptr, 1000000000); 00324 return stream.getData(); 00325 } 00326 00327 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00328 { 00329 ros::serialization::IStream stream(read_ptr, 1000000000); 00330 return stream.getData(); 00331 } 00332 00333 ROS_DEPRECATED virtual uint32_t serializationLength() const 00334 { 00335 uint32_t size = 0; 00336 return size; 00337 } 00338 00339 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > Ptr; 00340 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> const> ConstPtr; 00341 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00342 }; // struct SetCameraInfoResponse 00343 typedef ::blort_ros::SetCameraInfoResponse_<std::allocator<void> > SetCameraInfoResponse; 00344 00345 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse> SetCameraInfoResponsePtr; 00346 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse const> SetCameraInfoResponseConstPtr; 00347 00348 struct SetCameraInfo 00349 { 00350 00351 typedef SetCameraInfoRequest Request; 00352 typedef SetCameraInfoResponse Response; 00353 Request request; 00354 Response response; 00355 00356 typedef Request RequestType; 00357 typedef Response ResponseType; 00358 }; // struct SetCameraInfo 00359 } // namespace blort_ros 00360 00361 namespace ros 00362 { 00363 namespace message_traits 00364 { 00365 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > : public TrueType {}; 00366 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> const> : public TrueType {}; 00367 template<class ContainerAllocator> 00368 struct MD5Sum< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > { 00369 static const char* value() 00370 { 00371 return "390ddee7feaa14c13062ed91af56953a"; 00372 } 00373 00374 static const char* value(const ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); } 00375 static const uint64_t static_value1 = 0x390ddee7feaa14c1ULL; 00376 static const uint64_t static_value2 = 0x3062ed91af56953aULL; 00377 }; 00378 00379 template<class ContainerAllocator> 00380 struct DataType< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > { 00381 static const char* value() 00382 { 00383 return "blort_ros/SetCameraInfoRequest"; 00384 } 00385 00386 static const char* value(const ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); } 00387 }; 00388 00389 template<class ContainerAllocator> 00390 struct Definition< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > { 00391 static const char* value() 00392 { 00393 return "sensor_msgs/CameraInfo CameraInfo\n\ 00394 \n\ 00395 ================================================================================\n\ 00396 MSG: sensor_msgs/CameraInfo\n\ 00397 # This message defines meta information for a camera. It should be in a\n\ 00398 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00399 # image topics named:\n\ 00400 #\n\ 00401 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00402 # image - monochrome, distorted\n\ 00403 # image_color - color, distorted\n\ 00404 # image_rect - monochrome, rectified\n\ 00405 # image_rect_color - color, rectified\n\ 00406 #\n\ 00407 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00408 # for producing the four processed image topics from image_raw and\n\ 00409 # camera_info. The meaning of the camera parameters are described in\n\ 00410 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00411 #\n\ 00412 # The image_geometry package provides a user-friendly interface to\n\ 00413 # common operations using this meta information. If you want to, e.g.,\n\ 00414 # project a 3d point into image coordinates, we strongly recommend\n\ 00415 # using image_geometry.\n\ 00416 #\n\ 00417 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00418 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00419 # indicates an uncalibrated camera.\n\ 00420 \n\ 00421 #######################################################################\n\ 00422 # Image acquisition info #\n\ 00423 #######################################################################\n\ 00424 \n\ 00425 # Time of image acquisition, camera coordinate frame ID\n\ 00426 Header header # Header timestamp should be acquisition time of image\n\ 00427 # Header frame_id should be optical frame of camera\n\ 00428 # origin of frame should be optical center of camera\n\ 00429 # +x should point to the right in the image\n\ 00430 # +y should point down in the image\n\ 00431 # +z should point into the plane of the image\n\ 00432 \n\ 00433 \n\ 00434 #######################################################################\n\ 00435 # Calibration Parameters #\n\ 00436 #######################################################################\n\ 00437 # These are fixed during camera calibration. Their values will be the #\n\ 00438 # same in all messages until the camera is recalibrated. Note that #\n\ 00439 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00440 # #\n\ 00441 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00442 # to: #\n\ 00443 # 1. An undistorted image (requires D and K) #\n\ 00444 # 2. A rectified image (requires D, K, R) #\n\ 00445 # The projection matrix P projects 3D points into the rectified image.#\n\ 00446 #######################################################################\n\ 00447 \n\ 00448 # The image dimensions with which the camera was calibrated. Normally\n\ 00449 # this will be the full camera resolution in pixels.\n\ 00450 uint32 height\n\ 00451 uint32 width\n\ 00452 \n\ 00453 # The distortion model used. Supported models are listed in\n\ 00454 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00455 # simple model of radial and tangential distortion - is sufficent.\n\ 00456 string distortion_model\n\ 00457 \n\ 00458 # The distortion parameters, size depending on the distortion model.\n\ 00459 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00460 float64[] D\n\ 00461 \n\ 00462 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00463 # [fx 0 cx]\n\ 00464 # K = [ 0 fy cy]\n\ 00465 # [ 0 0 1]\n\ 00466 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00467 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00468 # (cx, cy).\n\ 00469 float64[9] K # 3x3 row-major matrix\n\ 00470 \n\ 00471 # Rectification matrix (stereo cameras only)\n\ 00472 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00473 # stereo image plane so that epipolar lines in both stereo images are\n\ 00474 # parallel.\n\ 00475 float64[9] R # 3x3 row-major matrix\n\ 00476 \n\ 00477 # Projection/camera matrix\n\ 00478 # [fx' 0 cx' Tx]\n\ 00479 # P = [ 0 fy' cy' Ty]\n\ 00480 # [ 0 0 1 0]\n\ 00481 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00482 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00483 # is the normal camera intrinsic matrix for the rectified image.\n\ 00484 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00485 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00486 # (cx', cy') - these may differ from the values in K.\n\ 00487 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00488 # also have R = the identity and P[1:3,1:3] = K.\n\ 00489 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00490 # position of the optical center of the second camera in the first\n\ 00491 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00492 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00493 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00494 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00495 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00496 # the rectified image is given by:\n\ 00497 # [u v w]' = P * [X Y Z 1]'\n\ 00498 # x = u / w\n\ 00499 # y = v / w\n\ 00500 # This holds for both images of a stereo pair.\n\ 00501 float64[12] P # 3x4 row-major matrix\n\ 00502 \n\ 00503 \n\ 00504 #######################################################################\n\ 00505 # Operational Parameters #\n\ 00506 #######################################################################\n\ 00507 # These define the image region actually captured by the camera #\n\ 00508 # driver. Although they affect the geometry of the output image, they #\n\ 00509 # may be changed freely without recalibrating the camera. #\n\ 00510 #######################################################################\n\ 00511 \n\ 00512 # Binning refers here to any camera setting which combines rectangular\n\ 00513 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00514 # resolution of the output image to\n\ 00515 # (width / binning_x) x (height / binning_y).\n\ 00516 # The default values binning_x = binning_y = 0 is considered the same\n\ 00517 # as binning_x = binning_y = 1 (no subsampling).\n\ 00518 uint32 binning_x\n\ 00519 uint32 binning_y\n\ 00520 \n\ 00521 # Region of interest (subwindow of full camera resolution), given in\n\ 00522 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00523 # always denotes the same window of pixels on the camera sensor,\n\ 00524 # regardless of binning settings.\n\ 00525 # The default setting of roi (all values 0) is considered the same as\n\ 00526 # full resolution (roi.width = width, roi.height = height).\n\ 00527 RegionOfInterest roi\n\ 00528 \n\ 00529 ================================================================================\n\ 00530 MSG: std_msgs/Header\n\ 00531 # Standard metadata for higher-level stamped data types.\n\ 00532 # This is generally used to communicate timestamped data \n\ 00533 # in a particular coordinate frame.\n\ 00534 # \n\ 00535 # sequence ID: consecutively increasing ID \n\ 00536 uint32 seq\n\ 00537 #Two-integer timestamp that is expressed as:\n\ 00538 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00539 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00540 # time-handling sugar is provided by the client library\n\ 00541 time stamp\n\ 00542 #Frame this data is associated with\n\ 00543 # 0: no frame\n\ 00544 # 1: global frame\n\ 00545 string frame_id\n\ 00546 \n\ 00547 ================================================================================\n\ 00548 MSG: sensor_msgs/RegionOfInterest\n\ 00549 # This message is used to specify a region of interest within an image.\n\ 00550 #\n\ 00551 # When used to specify the ROI setting of the camera when the image was\n\ 00552 # taken, the height and width fields should either match the height and\n\ 00553 # width fields for the associated image; or height = width = 0\n\ 00554 # indicates that the full resolution image was captured.\n\ 00555 \n\ 00556 uint32 x_offset # Leftmost pixel of the ROI\n\ 00557 # (0 if the ROI includes the left edge of the image)\n\ 00558 uint32 y_offset # Topmost pixel of the ROI\n\ 00559 # (0 if the ROI includes the top edge of the image)\n\ 00560 uint32 height # Height of ROI\n\ 00561 uint32 width # Width of ROI\n\ 00562 \n\ 00563 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00564 # ROI in this message. Typically this should be False if the full image\n\ 00565 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00566 # used).\n\ 00567 bool do_rectify\n\ 00568 \n\ 00569 "; 00570 } 00571 00572 static const char* value(const ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); } 00573 }; 00574 00575 } // namespace message_traits 00576 } // namespace ros 00577 00578 00579 namespace ros 00580 { 00581 namespace message_traits 00582 { 00583 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > : public TrueType {}; 00584 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> const> : public TrueType {}; 00585 template<class ContainerAllocator> 00586 struct MD5Sum< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > { 00587 static const char* value() 00588 { 00589 return "d41d8cd98f00b204e9800998ecf8427e"; 00590 } 00591 00592 static const char* value(const ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); } 00593 static const uint64_t static_value1 = 0xd41d8cd98f00b204ULL; 00594 static const uint64_t static_value2 = 0xe9800998ecf8427eULL; 00595 }; 00596 00597 template<class ContainerAllocator> 00598 struct DataType< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > { 00599 static const char* value() 00600 { 00601 return "blort_ros/SetCameraInfoResponse"; 00602 } 00603 00604 static const char* value(const ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); } 00605 }; 00606 00607 template<class ContainerAllocator> 00608 struct Definition< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > { 00609 static const char* value() 00610 { 00611 return "\n\ 00612 \n\ 00613 "; 00614 } 00615 00616 static const char* value(const ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); } 00617 }; 00618 00619 template<class ContainerAllocator> struct IsFixedSize< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > : public TrueType {}; 00620 } // namespace message_traits 00621 } // namespace ros 00622 00623 namespace ros 00624 { 00625 namespace serialization 00626 { 00627 00628 template<class ContainerAllocator> struct Serializer< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > 00629 { 00630 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00631 { 00632 stream.next(m.CameraInfo); 00633 } 00634 00635 ROS_DECLARE_ALLINONE_SERIALIZER; 00636 }; // struct SetCameraInfoRequest_ 00637 } // namespace serialization 00638 } // namespace ros 00639 00640 00641 namespace ros 00642 { 00643 namespace serialization 00644 { 00645 00646 template<class ContainerAllocator> struct Serializer< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > 00647 { 00648 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00649 { 00650 } 00651 00652 ROS_DECLARE_ALLINONE_SERIALIZER; 00653 }; // struct SetCameraInfoResponse_ 00654 } // namespace serialization 00655 } // namespace ros 00656 00657 namespace ros 00658 { 00659 namespace service_traits 00660 { 00661 template<> 00662 struct MD5Sum<blort_ros::SetCameraInfo> { 00663 static const char* value() 00664 { 00665 return "390ddee7feaa14c13062ed91af56953a"; 00666 } 00667 00668 static const char* value(const blort_ros::SetCameraInfo&) { return value(); } 00669 }; 00670 00671 template<> 00672 struct DataType<blort_ros::SetCameraInfo> { 00673 static const char* value() 00674 { 00675 return "blort_ros/SetCameraInfo"; 00676 } 00677 00678 static const char* value(const blort_ros::SetCameraInfo&) { return value(); } 00679 }; 00680 00681 template<class ContainerAllocator> 00682 struct MD5Sum<blort_ros::SetCameraInfoRequest_<ContainerAllocator> > { 00683 static const char* value() 00684 { 00685 return "390ddee7feaa14c13062ed91af56953a"; 00686 } 00687 00688 static const char* value(const blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); } 00689 }; 00690 00691 template<class ContainerAllocator> 00692 struct DataType<blort_ros::SetCameraInfoRequest_<ContainerAllocator> > { 00693 static const char* value() 00694 { 00695 return "blort_ros/SetCameraInfo"; 00696 } 00697 00698 static const char* value(const blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); } 00699 }; 00700 00701 template<class ContainerAllocator> 00702 struct MD5Sum<blort_ros::SetCameraInfoResponse_<ContainerAllocator> > { 00703 static const char* value() 00704 { 00705 return "390ddee7feaa14c13062ed91af56953a"; 00706 } 00707 00708 static const char* value(const blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); } 00709 }; 00710 00711 template<class ContainerAllocator> 00712 struct DataType<blort_ros::SetCameraInfoResponse_<ContainerAllocator> > { 00713 static const char* value() 00714 { 00715 return "blort_ros/SetCameraInfo"; 00716 } 00717 00718 static const char* value(const blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); } 00719 }; 00720 00721 } // namespace service_traits 00722 } // namespace ros 00723 00724 #endif // BLORT_ROS_SERVICE_SETCAMERAINFO_H 00725