vcg::math::SphericalHarmonics< ScalarType, MAX_BAND > Class Template Reference

#include <spherical_harmonics.h>

List of all members.

Public Member Functions

ScalarType operator() (ScalarType theta, ScalarType phi)

Static Public Member Functions

template<typename PolarFunctor >
static SphericalHarmonics Project (PolarFunctor *fun, unsigned n_samples)
static ScalarType Real (unsigned l, int m, ScalarType theta, ScalarType phi)
static SphericalHarmonics Wrap (ScalarType *_coefficients)

Static Private Member Functions

static ScalarType complex_spherical_harmonic_im (unsigned l, unsigned m, ScalarType theta, ScalarType phi)
static ScalarType complex_spherical_harmonic_re (unsigned l, unsigned m, ScalarType theta, ScalarType phi)
static ScalarType scaling_factor (unsigned l, unsigned m)

Private Attributes

ScalarType coefficients [MAX_BAND *MAX_BAND]

Static Private Attributes

static DynamicLegendre
< ScalarType, MAX_BAND > 
legendre

Detailed Description

template<typename ScalarType, int MAX_BAND = 4>
class vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >

Although the Real Spherical Harmonic Function is correctly defined over any positive l and any -l <= m <= l, the two internal functions computing the imaginary and real parts of the Complex Spherical Harmonic Functions are defined for positive m only.

Definition at line 75 of file spherical_harmonics.h.


Member Function Documentation

template<typename ScalarType, int MAX_BAND = 4>
static ScalarType vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::complex_spherical_harmonic_im ( unsigned  l,
unsigned  m,
ScalarType  theta,
ScalarType  phi 
) [inline, static, private]

Definition at line 91 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
static ScalarType vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::complex_spherical_harmonic_re ( unsigned  l,
unsigned  m,
ScalarType  theta,
ScalarType  phi 
) [inline, static, private]

Definition at line 86 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
ScalarType vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::operator() ( ScalarType  theta,
ScalarType  phi 
) [inline]

Definition at line 175 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
template<typename PolarFunctor >
static SphericalHarmonics vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::Project ( PolarFunctor *  fun,
unsigned  n_samples 
) [inline, static]

Definition at line 120 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
static ScalarType vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::Real ( unsigned  l,
int  m,
ScalarType  theta,
ScalarType  phi 
) [inline, static]

Returns the Real Spherical Harmonic Function

l is any positive integer, m is such that -l <= m <= l theta is inside [0, PI] phi is inside [0, 2*PI]

Definition at line 108 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
static ScalarType vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::scaling_factor ( unsigned  l,
unsigned  m 
) [inline, static, private]

Definition at line 81 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
static SphericalHarmonics vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::Wrap ( ScalarType _coefficients  )  [inline, static]

Definition at line 168 of file spherical_harmonics.h.


Member Data Documentation

template<typename ScalarType, int MAX_BAND = 4>
ScalarType vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::coefficients[MAX_BAND *MAX_BAND] [private]

Definition at line 96 of file spherical_harmonics.h.

template<typename ScalarType, int MAX_BAND = 4>
DynamicLegendre< ScalarType, MAX_BAND > vcg::math::SphericalHarmonics< ScalarType, MAX_BAND >::legendre [inline, static, private]

Definition at line 79 of file spherical_harmonics.h.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines


vcglib
Author(s): Christian Bersch
autogenerated on Fri Jan 11 09:23:25 2013