00001
00002 #ifndef TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00003 #define TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015 #include "tabletop_object_detector/TabletopDetectionResult.h"
00016
00017
00018 #include "object_manipulation_msgs/GraspableObject.h"
00019
00020 namespace tabletop_collision_map_processing
00021 {
00022 template <class ContainerAllocator>
00023 struct TabletopCollisionMapProcessingRequest_ : public ros::Message
00024 {
00025 typedef TabletopCollisionMapProcessingRequest_<ContainerAllocator> Type;
00026
00027 TabletopCollisionMapProcessingRequest_()
00028 : detection_result()
00029 , reset_collision_models(false)
00030 , reset_attached_models(false)
00031 , reset_static_map(false)
00032 , take_static_collision_map(false)
00033 , desired_frame()
00034 {
00035 }
00036
00037 TabletopCollisionMapProcessingRequest_(const ContainerAllocator& _alloc)
00038 : detection_result(_alloc)
00039 , reset_collision_models(false)
00040 , reset_attached_models(false)
00041 , reset_static_map(false)
00042 , take_static_collision_map(false)
00043 , desired_frame(_alloc)
00044 {
00045 }
00046
00047 typedef ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> _detection_result_type;
00048 ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> detection_result;
00049
00050 typedef uint8_t _reset_collision_models_type;
00051 uint8_t reset_collision_models;
00052
00053 typedef uint8_t _reset_attached_models_type;
00054 uint8_t reset_attached_models;
00055
00056 typedef uint8_t _reset_static_map_type;
00057 uint8_t reset_static_map;
00058
00059 typedef uint8_t _take_static_collision_map_type;
00060 uint8_t take_static_collision_map;
00061
00062 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _desired_frame_type;
00063 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > desired_frame;
00064
00065
00066 private:
00067 static const char* __s_getDataType_() { return "tabletop_collision_map_processing/TabletopCollisionMapProcessingRequest"; }
00068 public:
00069 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00070
00071 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00072
00073 private:
00074 static const char* __s_getMD5Sum_() { return "2269a5d6f09bf4f6fd5743f2876f63a7"; }
00075 public:
00076 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00077
00078 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00079
00080 private:
00081 static const char* __s_getServerMD5Sum_() { return "2a1cb6170b4cb73398aa70e26c6ba0b8"; }
00082 public:
00083 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00084
00085 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00086
00087 private:
00088 static const char* __s_getMessageDefinition_() { return "\n\
00089 \n\
00090 \n\
00091 \n\
00092 \n\
00093 \n\
00094 \n\
00095 tabletop_object_detector/TabletopDetectionResult detection_result\n\
00096 \n\
00097 \n\
00098 bool reset_collision_models\n\
00099 \n\
00100 \n\
00101 bool reset_attached_models\n\
00102 \n\
00103 \n\
00104 bool reset_static_map\n\
00105 \n\
00106 \n\
00107 bool take_static_collision_map\n\
00108 \n\
00109 \n\
00110 \n\
00111 string desired_frame\n\
00112 \n\
00113 \n\
00114 ================================================================================\n\
00115 MSG: tabletop_object_detector/TabletopDetectionResult\n\
00116 # Contains all the information from one run of the tabletop detection node\n\
00117 \n\
00118 # The information for the plane that has been detected\n\
00119 Table table\n\
00120 \n\
00121 # The raw clusters detected in the scan \n\
00122 sensor_msgs/PointCloud[] clusters\n\
00123 \n\
00124 # The list of potential models that have been detected for each cluster\n\
00125 # An empty list will be returned for a cluster that has no recognition results at all\n\
00126 household_objects_database_msgs/DatabaseModelPoseList[] models\n\
00127 \n\
00128 # For each cluster, the index of the list of models that was fit to that cluster\n\
00129 # keep in mind that multiple raw clusters can correspond to a single fit\n\
00130 int32[] cluster_model_indices\n\
00131 \n\
00132 # Whether the detection has succeeded or failed\n\
00133 int32 NO_CLOUD_RECEIVED = 1\n\
00134 int32 NO_TABLE = 2\n\
00135 int32 OTHER_ERROR = 3\n\
00136 int32 SUCCESS = 4\n\
00137 int32 result\n\
00138 \n\
00139 ================================================================================\n\
00140 MSG: tabletop_object_detector/Table\n\
00141 # Informs that a planar table has been detected at a given location\n\
00142 \n\
00143 # The pose gives you the transform that take you to the coordinate system\n\
00144 # of the table, with the origin somewhere in the table plane and the \n\
00145 # z axis normal to the plane\n\
00146 geometry_msgs/PoseStamped pose\n\
00147 \n\
00148 # These values give you the observed extents of the table, along x and y,\n\
00149 # in the table's own coordinate system (above)\n\
00150 # there is no guarantee that the origin of the table coordinate system is\n\
00151 # inside the boundary defined by these values. \n\
00152 float32 x_min\n\
00153 float32 x_max\n\
00154 float32 y_min\n\
00155 float32 y_max\n\
00156 \n\
00157 # There is no guarantee that the table doe NOT extend further than these \n\
00158 # values; this is just as far as we've observed it.\n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: geometry_msgs/PoseStamped\n\
00162 # A Pose with reference coordinate frame and timestamp\n\
00163 Header header\n\
00164 Pose pose\n\
00165 \n\
00166 ================================================================================\n\
00167 MSG: std_msgs/Header\n\
00168 # Standard metadata for higher-level stamped data types.\n\
00169 # This is generally used to communicate timestamped data \n\
00170 # in a particular coordinate frame.\n\
00171 # \n\
00172 # sequence ID: consecutively increasing ID \n\
00173 uint32 seq\n\
00174 #Two-integer timestamp that is expressed as:\n\
00175 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00176 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00177 # time-handling sugar is provided by the client library\n\
00178 time stamp\n\
00179 #Frame this data is associated with\n\
00180 # 0: no frame\n\
00181 # 1: global frame\n\
00182 string frame_id\n\
00183 \n\
00184 ================================================================================\n\
00185 MSG: geometry_msgs/Pose\n\
00186 # A representation of pose in free space, composed of postion and orientation. \n\
00187 Point position\n\
00188 Quaternion orientation\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: geometry_msgs/Point\n\
00192 # This contains the position of a point in free space\n\
00193 float64 x\n\
00194 float64 y\n\
00195 float64 z\n\
00196 \n\
00197 ================================================================================\n\
00198 MSG: geometry_msgs/Quaternion\n\
00199 # This represents an orientation in free space in quaternion form.\n\
00200 \n\
00201 float64 x\n\
00202 float64 y\n\
00203 float64 z\n\
00204 float64 w\n\
00205 \n\
00206 ================================================================================\n\
00207 MSG: sensor_msgs/PointCloud\n\
00208 # This message holds a collection of 3d points, plus optional additional\n\
00209 # information about each point.\n\
00210 \n\
00211 # Time of sensor data acquisition, coordinate frame ID.\n\
00212 Header header\n\
00213 \n\
00214 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00215 # in the frame given in the header.\n\
00216 geometry_msgs/Point32[] points\n\
00217 \n\
00218 # Each channel should have the same number of elements as points array,\n\
00219 # and the data in each channel should correspond 1:1 with each point.\n\
00220 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00221 ChannelFloat32[] channels\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: geometry_msgs/Point32\n\
00225 # This contains the position of a point in free space(with 32 bits of precision).\n\
00226 # It is recommeded to use Point wherever possible instead of Point32. \n\
00227 # \n\
00228 # This recommendation is to promote interoperability. \n\
00229 #\n\
00230 # This message is designed to take up less space when sending\n\
00231 # lots of points at once, as in the case of a PointCloud. \n\
00232 \n\
00233 float32 x\n\
00234 float32 y\n\
00235 float32 z\n\
00236 ================================================================================\n\
00237 MSG: sensor_msgs/ChannelFloat32\n\
00238 # This message is used by the PointCloud message to hold optional data\n\
00239 # associated with each point in the cloud. The length of the values\n\
00240 # array should be the same as the length of the points array in the\n\
00241 # PointCloud, and each value should be associated with the corresponding\n\
00242 # point.\n\
00243 \n\
00244 # Channel names in existing practice include:\n\
00245 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00246 # This is opposite to usual conventions but remains for\n\
00247 # historical reasons. The newer PointCloud2 message has no\n\
00248 # such problem.\n\
00249 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00250 # (R,G,B) values packed into the least significant 24 bits,\n\
00251 # in order.\n\
00252 # \"intensity\" - laser or pixel intensity.\n\
00253 # \"distance\"\n\
00254 \n\
00255 # The channel name should give semantics of the channel (e.g.\n\
00256 # \"intensity\" instead of \"value\").\n\
00257 string name\n\
00258 \n\
00259 # The values array should be 1-1 with the elements of the associated\n\
00260 # PointCloud.\n\
00261 float32[] values\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\
00265 # stores a list of possible database models recognition results\n\
00266 DatabaseModelPose[] model_list\n\
00267 ================================================================================\n\
00268 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00269 # Informs that a specific model from the Model Database has been \n\
00270 # identified at a certain location\n\
00271 \n\
00272 # the database id of the model\n\
00273 int32 model_id\n\
00274 \n\
00275 # the pose that it can be found in\n\
00276 geometry_msgs/PoseStamped pose\n\
00277 \n\
00278 # a measure of the confidence level in this detection result\n\
00279 float32 confidence\n\
00280 "; }
00281 public:
00282 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00283
00284 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00285
00286 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00287 {
00288 ros::serialization::OStream stream(write_ptr, 1000000000);
00289 ros::serialization::serialize(stream, detection_result);
00290 ros::serialization::serialize(stream, reset_collision_models);
00291 ros::serialization::serialize(stream, reset_attached_models);
00292 ros::serialization::serialize(stream, reset_static_map);
00293 ros::serialization::serialize(stream, take_static_collision_map);
00294 ros::serialization::serialize(stream, desired_frame);
00295 return stream.getData();
00296 }
00297
00298 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00299 {
00300 ros::serialization::IStream stream(read_ptr, 1000000000);
00301 ros::serialization::deserialize(stream, detection_result);
00302 ros::serialization::deserialize(stream, reset_collision_models);
00303 ros::serialization::deserialize(stream, reset_attached_models);
00304 ros::serialization::deserialize(stream, reset_static_map);
00305 ros::serialization::deserialize(stream, take_static_collision_map);
00306 ros::serialization::deserialize(stream, desired_frame);
00307 return stream.getData();
00308 }
00309
00310 ROS_DEPRECATED virtual uint32_t serializationLength() const
00311 {
00312 uint32_t size = 0;
00313 size += ros::serialization::serializationLength(detection_result);
00314 size += ros::serialization::serializationLength(reset_collision_models);
00315 size += ros::serialization::serializationLength(reset_attached_models);
00316 size += ros::serialization::serializationLength(reset_static_map);
00317 size += ros::serialization::serializationLength(take_static_collision_map);
00318 size += ros::serialization::serializationLength(desired_frame);
00319 return size;
00320 }
00321
00322 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > Ptr;
00323 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> const> ConstPtr;
00324 };
00325 typedef ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<std::allocator<void> > TabletopCollisionMapProcessingRequest;
00326
00327 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest> TabletopCollisionMapProcessingRequestPtr;
00328 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest const> TabletopCollisionMapProcessingRequestConstPtr;
00329
00330
00331 template <class ContainerAllocator>
00332 struct TabletopCollisionMapProcessingResponse_ : public ros::Message
00333 {
00334 typedef TabletopCollisionMapProcessingResponse_<ContainerAllocator> Type;
00335
00336 TabletopCollisionMapProcessingResponse_()
00337 : graspable_objects()
00338 , collision_object_names()
00339 , collision_support_surface_name()
00340 {
00341 }
00342
00343 TabletopCollisionMapProcessingResponse_(const ContainerAllocator& _alloc)
00344 : graspable_objects(_alloc)
00345 , collision_object_names(_alloc)
00346 , collision_support_surface_name(_alloc)
00347 {
00348 }
00349
00350 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _graspable_objects_type;
00351 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > graspable_objects;
00352
00353 typedef std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > _collision_object_names_type;
00354 std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > collision_object_names;
00355
00356 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00357 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00358
00359
00360 ROS_DEPRECATED uint32_t get_graspable_objects_size() const { return (uint32_t)graspable_objects.size(); }
00361 ROS_DEPRECATED void set_graspable_objects_size(uint32_t size) { graspable_objects.resize((size_t)size); }
00362 ROS_DEPRECATED void get_graspable_objects_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->graspable_objects; }
00363 ROS_DEPRECATED void set_graspable_objects_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->graspable_objects = vec; }
00364 ROS_DEPRECATED uint32_t get_collision_object_names_size() const { return (uint32_t)collision_object_names.size(); }
00365 ROS_DEPRECATED void set_collision_object_names_size(uint32_t size) { collision_object_names.resize((size_t)size); }
00366 ROS_DEPRECATED void get_collision_object_names_vec(std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > & vec) const { vec = this->collision_object_names; }
00367 ROS_DEPRECATED void set_collision_object_names_vec(const std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > & vec) { this->collision_object_names = vec; }
00368 private:
00369 static const char* __s_getDataType_() { return "tabletop_collision_map_processing/TabletopCollisionMapProcessingResponse"; }
00370 public:
00371 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00372
00373 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00374
00375 private:
00376 static const char* __s_getMD5Sum_() { return "33936dac29953c0907375257fd65ad73"; }
00377 public:
00378 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00379
00380 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00381
00382 private:
00383 static const char* __s_getServerMD5Sum_() { return "2a1cb6170b4cb73398aa70e26c6ba0b8"; }
00384 public:
00385 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00386
00387 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00388
00389 private:
00390 static const char* __s_getMessageDefinition_() { return "\n\
00391 \n\
00392 object_manipulation_msgs/GraspableObject[] graspable_objects\n\
00393 \n\
00394 \n\
00395 \n\
00396 string[] collision_object_names\n\
00397 \n\
00398 \n\
00399 string collision_support_surface_name\n\
00400 \n\
00401 \n\
00402 ================================================================================\n\
00403 MSG: object_manipulation_msgs/GraspableObject\n\
00404 # an object that the object_manipulator can work on\n\
00405 \n\
00406 # a graspable object can be represented in multiple ways. This message\n\
00407 # can contain all of them. Which one is actually used is up to the receiver\n\
00408 # of this message. When adding new representations, one must be careful that\n\
00409 # they have reasonable lightweight defaults indicating that that particular\n\
00410 # representation is not available.\n\
00411 \n\
00412 # the tf frame to be used as a reference frame when combining information from\n\
00413 # the different representations below\n\
00414 string reference_frame_id\n\
00415 \n\
00416 # potential recognition results from a database of models\n\
00417 # all poses are relative to the object reference pose\n\
00418 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00419 \n\
00420 # the point cloud itself\n\
00421 sensor_msgs/PointCloud cluster\n\
00422 \n\
00423 # a region of a PointCloud2 of interest\n\
00424 object_manipulation_msgs/SceneRegion region\n\
00425 \n\
00426 \n\
00427 ================================================================================\n\
00428 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00429 # Informs that a specific model from the Model Database has been \n\
00430 # identified at a certain location\n\
00431 \n\
00432 # the database id of the model\n\
00433 int32 model_id\n\
00434 \n\
00435 # the pose that it can be found in\n\
00436 geometry_msgs/PoseStamped pose\n\
00437 \n\
00438 # a measure of the confidence level in this detection result\n\
00439 float32 confidence\n\
00440 ================================================================================\n\
00441 MSG: geometry_msgs/PoseStamped\n\
00442 # A Pose with reference coordinate frame and timestamp\n\
00443 Header header\n\
00444 Pose pose\n\
00445 \n\
00446 ================================================================================\n\
00447 MSG: std_msgs/Header\n\
00448 # Standard metadata for higher-level stamped data types.\n\
00449 # This is generally used to communicate timestamped data \n\
00450 # in a particular coordinate frame.\n\
00451 # \n\
00452 # sequence ID: consecutively increasing ID \n\
00453 uint32 seq\n\
00454 #Two-integer timestamp that is expressed as:\n\
00455 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00456 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00457 # time-handling sugar is provided by the client library\n\
00458 time stamp\n\
00459 #Frame this data is associated with\n\
00460 # 0: no frame\n\
00461 # 1: global frame\n\
00462 string frame_id\n\
00463 \n\
00464 ================================================================================\n\
00465 MSG: geometry_msgs/Pose\n\
00466 # A representation of pose in free space, composed of postion and orientation. \n\
00467 Point position\n\
00468 Quaternion orientation\n\
00469 \n\
00470 ================================================================================\n\
00471 MSG: geometry_msgs/Point\n\
00472 # This contains the position of a point in free space\n\
00473 float64 x\n\
00474 float64 y\n\
00475 float64 z\n\
00476 \n\
00477 ================================================================================\n\
00478 MSG: geometry_msgs/Quaternion\n\
00479 # This represents an orientation in free space in quaternion form.\n\
00480 \n\
00481 float64 x\n\
00482 float64 y\n\
00483 float64 z\n\
00484 float64 w\n\
00485 \n\
00486 ================================================================================\n\
00487 MSG: sensor_msgs/PointCloud\n\
00488 # This message holds a collection of 3d points, plus optional additional\n\
00489 # information about each point.\n\
00490 \n\
00491 # Time of sensor data acquisition, coordinate frame ID.\n\
00492 Header header\n\
00493 \n\
00494 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00495 # in the frame given in the header.\n\
00496 geometry_msgs/Point32[] points\n\
00497 \n\
00498 # Each channel should have the same number of elements as points array,\n\
00499 # and the data in each channel should correspond 1:1 with each point.\n\
00500 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00501 ChannelFloat32[] channels\n\
00502 \n\
00503 ================================================================================\n\
00504 MSG: geometry_msgs/Point32\n\
00505 # This contains the position of a point in free space(with 32 bits of precision).\n\
00506 # It is recommeded to use Point wherever possible instead of Point32. \n\
00507 # \n\
00508 # This recommendation is to promote interoperability. \n\
00509 #\n\
00510 # This message is designed to take up less space when sending\n\
00511 # lots of points at once, as in the case of a PointCloud. \n\
00512 \n\
00513 float32 x\n\
00514 float32 y\n\
00515 float32 z\n\
00516 ================================================================================\n\
00517 MSG: sensor_msgs/ChannelFloat32\n\
00518 # This message is used by the PointCloud message to hold optional data\n\
00519 # associated with each point in the cloud. The length of the values\n\
00520 # array should be the same as the length of the points array in the\n\
00521 # PointCloud, and each value should be associated with the corresponding\n\
00522 # point.\n\
00523 \n\
00524 # Channel names in existing practice include:\n\
00525 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00526 # This is opposite to usual conventions but remains for\n\
00527 # historical reasons. The newer PointCloud2 message has no\n\
00528 # such problem.\n\
00529 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00530 # (R,G,B) values packed into the least significant 24 bits,\n\
00531 # in order.\n\
00532 # \"intensity\" - laser or pixel intensity.\n\
00533 # \"distance\"\n\
00534 \n\
00535 # The channel name should give semantics of the channel (e.g.\n\
00536 # \"intensity\" instead of \"value\").\n\
00537 string name\n\
00538 \n\
00539 # The values array should be 1-1 with the elements of the associated\n\
00540 # PointCloud.\n\
00541 float32[] values\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: object_manipulation_msgs/SceneRegion\n\
00545 # Point cloud\n\
00546 sensor_msgs/PointCloud2 cloud\n\
00547 \n\
00548 # Indices for the region of interest\n\
00549 int32[] mask\n\
00550 \n\
00551 # One of the corresponding 2D images, if applicable\n\
00552 sensor_msgs/Image image\n\
00553 \n\
00554 # The disparity image, if applicable\n\
00555 sensor_msgs/Image disparity_image\n\
00556 \n\
00557 # Camera info for the camera that took the image\n\
00558 sensor_msgs/CameraInfo cam_info\n\
00559 \n\
00560 ================================================================================\n\
00561 MSG: sensor_msgs/PointCloud2\n\
00562 # This message holds a collection of N-dimensional points, which may\n\
00563 # contain additional information such as normals, intensity, etc. The\n\
00564 # point data is stored as a binary blob, its layout described by the\n\
00565 # contents of the \"fields\" array.\n\
00566 \n\
00567 # The point cloud data may be organized 2d (image-like) or 1d\n\
00568 # (unordered). Point clouds organized as 2d images may be produced by\n\
00569 # camera depth sensors such as stereo or time-of-flight.\n\
00570 \n\
00571 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00572 # points).\n\
00573 Header header\n\
00574 \n\
00575 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00576 # 1 and width is the length of the point cloud.\n\
00577 uint32 height\n\
00578 uint32 width\n\
00579 \n\
00580 # Describes the channels and their layout in the binary data blob.\n\
00581 PointField[] fields\n\
00582 \n\
00583 bool is_bigendian # Is this data bigendian?\n\
00584 uint32 point_step # Length of a point in bytes\n\
00585 uint32 row_step # Length of a row in bytes\n\
00586 uint8[] data # Actual point data, size is (row_step*height)\n\
00587 \n\
00588 bool is_dense # True if there are no invalid points\n\
00589 \n\
00590 ================================================================================\n\
00591 MSG: sensor_msgs/PointField\n\
00592 # This message holds the description of one point entry in the\n\
00593 # PointCloud2 message format.\n\
00594 uint8 INT8 = 1\n\
00595 uint8 UINT8 = 2\n\
00596 uint8 INT16 = 3\n\
00597 uint8 UINT16 = 4\n\
00598 uint8 INT32 = 5\n\
00599 uint8 UINT32 = 6\n\
00600 uint8 FLOAT32 = 7\n\
00601 uint8 FLOAT64 = 8\n\
00602 \n\
00603 string name # Name of field\n\
00604 uint32 offset # Offset from start of point struct\n\
00605 uint8 datatype # Datatype enumeration, see above\n\
00606 uint32 count # How many elements in the field\n\
00607 \n\
00608 ================================================================================\n\
00609 MSG: sensor_msgs/Image\n\
00610 # This message contains an uncompressed image\n\
00611 # (0, 0) is at top-left corner of image\n\
00612 #\n\
00613 \n\
00614 Header header # Header timestamp should be acquisition time of image\n\
00615 # Header frame_id should be optical frame of camera\n\
00616 # origin of frame should be optical center of cameara\n\
00617 # +x should point to the right in the image\n\
00618 # +y should point down in the image\n\
00619 # +z should point into to plane of the image\n\
00620 # If the frame_id here and the frame_id of the CameraInfo\n\
00621 # message associated with the image conflict\n\
00622 # the behavior is undefined\n\
00623 \n\
00624 uint32 height # image height, that is, number of rows\n\
00625 uint32 width # image width, that is, number of columns\n\
00626 \n\
00627 # The legal values for encoding are in file src/image_encodings.cpp\n\
00628 # If you want to standardize a new string format, join\n\
00629 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00630 \n\
00631 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00632 # taken from the list of strings in src/image_encodings.cpp\n\
00633 \n\
00634 uint8 is_bigendian # is this data bigendian?\n\
00635 uint32 step # Full row length in bytes\n\
00636 uint8[] data # actual matrix data, size is (step * rows)\n\
00637 \n\
00638 ================================================================================\n\
00639 MSG: sensor_msgs/CameraInfo\n\
00640 # This message defines meta information for a camera. It should be in a\n\
00641 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00642 # image topics named:\n\
00643 #\n\
00644 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00645 # image - monochrome, distorted\n\
00646 # image_color - color, distorted\n\
00647 # image_rect - monochrome, rectified\n\
00648 # image_rect_color - color, rectified\n\
00649 #\n\
00650 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00651 # for producing the four processed image topics from image_raw and\n\
00652 # camera_info. The meaning of the camera parameters are described in\n\
00653 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00654 #\n\
00655 # The image_geometry package provides a user-friendly interface to\n\
00656 # common operations using this meta information. If you want to, e.g.,\n\
00657 # project a 3d point into image coordinates, we strongly recommend\n\
00658 # using image_geometry.\n\
00659 #\n\
00660 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00661 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00662 # indicates an uncalibrated camera.\n\
00663 \n\
00664 #######################################################################\n\
00665 # Image acquisition info #\n\
00666 #######################################################################\n\
00667 \n\
00668 # Time of image acquisition, camera coordinate frame ID\n\
00669 Header header # Header timestamp should be acquisition time of image\n\
00670 # Header frame_id should be optical frame of camera\n\
00671 # origin of frame should be optical center of camera\n\
00672 # +x should point to the right in the image\n\
00673 # +y should point down in the image\n\
00674 # +z should point into the plane of the image\n\
00675 \n\
00676 \n\
00677 #######################################################################\n\
00678 # Calibration Parameters #\n\
00679 #######################################################################\n\
00680 # These are fixed during camera calibration. Their values will be the #\n\
00681 # same in all messages until the camera is recalibrated. Note that #\n\
00682 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00683 # #\n\
00684 # The internal parameters can be used to warp a raw (distorted) image #\n\
00685 # to: #\n\
00686 # 1. An undistorted image (requires D and K) #\n\
00687 # 2. A rectified image (requires D, K, R) #\n\
00688 # The projection matrix P projects 3D points into the rectified image.#\n\
00689 #######################################################################\n\
00690 \n\
00691 # The image dimensions with which the camera was calibrated. Normally\n\
00692 # this will be the full camera resolution in pixels.\n\
00693 uint32 height\n\
00694 uint32 width\n\
00695 \n\
00696 # The distortion model used. Supported models are listed in\n\
00697 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00698 # simple model of radial and tangential distortion - is sufficent.\n\
00699 string distortion_model\n\
00700 \n\
00701 # The distortion parameters, size depending on the distortion model.\n\
00702 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00703 float64[] D\n\
00704 \n\
00705 # Intrinsic camera matrix for the raw (distorted) images.\n\
00706 # [fx 0 cx]\n\
00707 # K = [ 0 fy cy]\n\
00708 # [ 0 0 1]\n\
00709 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00710 # coordinates using the focal lengths (fx, fy) and principal point\n\
00711 # (cx, cy).\n\
00712 float64[9] K # 3x3 row-major matrix\n\
00713 \n\
00714 # Rectification matrix (stereo cameras only)\n\
00715 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00716 # stereo image plane so that epipolar lines in both stereo images are\n\
00717 # parallel.\n\
00718 float64[9] R # 3x3 row-major matrix\n\
00719 \n\
00720 # Projection/camera matrix\n\
00721 # [fx' 0 cx' Tx]\n\
00722 # P = [ 0 fy' cy' Ty]\n\
00723 # [ 0 0 1 0]\n\
00724 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00725 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00726 # is the normal camera intrinsic matrix for the rectified image.\n\
00727 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00728 # coordinates using the focal lengths (fx', fy') and principal point\n\
00729 # (cx', cy') - these may differ from the values in K.\n\
00730 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00731 # also have R = the identity and P[1:3,1:3] = K.\n\
00732 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00733 # position of the optical center of the second camera in the first\n\
00734 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00735 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00736 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00737 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00738 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00739 # the rectified image is given by:\n\
00740 # [u v w]' = P * [X Y Z 1]'\n\
00741 # x = u / w\n\
00742 # y = v / w\n\
00743 # This holds for both images of a stereo pair.\n\
00744 float64[12] P # 3x4 row-major matrix\n\
00745 \n\
00746 \n\
00747 #######################################################################\n\
00748 # Operational Parameters #\n\
00749 #######################################################################\n\
00750 # These define the image region actually captured by the camera #\n\
00751 # driver. Although they affect the geometry of the output image, they #\n\
00752 # may be changed freely without recalibrating the camera. #\n\
00753 #######################################################################\n\
00754 \n\
00755 # Binning refers here to any camera setting which combines rectangular\n\
00756 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00757 # resolution of the output image to\n\
00758 # (width / binning_x) x (height / binning_y).\n\
00759 # The default values binning_x = binning_y = 0 is considered the same\n\
00760 # as binning_x = binning_y = 1 (no subsampling).\n\
00761 uint32 binning_x\n\
00762 uint32 binning_y\n\
00763 \n\
00764 # Region of interest (subwindow of full camera resolution), given in\n\
00765 # full resolution (unbinned) image coordinates. A particular ROI\n\
00766 # always denotes the same window of pixels on the camera sensor,\n\
00767 # regardless of binning settings.\n\
00768 # The default setting of roi (all values 0) is considered the same as\n\
00769 # full resolution (roi.width = width, roi.height = height).\n\
00770 RegionOfInterest roi\n\
00771 \n\
00772 ================================================================================\n\
00773 MSG: sensor_msgs/RegionOfInterest\n\
00774 # This message is used to specify a region of interest within an image.\n\
00775 #\n\
00776 # When used to specify the ROI setting of the camera when the image was\n\
00777 # taken, the height and width fields should either match the height and\n\
00778 # width fields for the associated image; or height = width = 0\n\
00779 # indicates that the full resolution image was captured.\n\
00780 \n\
00781 uint32 x_offset # Leftmost pixel of the ROI\n\
00782 # (0 if the ROI includes the left edge of the image)\n\
00783 uint32 y_offset # Topmost pixel of the ROI\n\
00784 # (0 if the ROI includes the top edge of the image)\n\
00785 uint32 height # Height of ROI\n\
00786 uint32 width # Width of ROI\n\
00787 \n\
00788 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00789 # ROI in this message. Typically this should be False if the full image\n\
00790 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00791 # used).\n\
00792 bool do_rectify\n\
00793 \n\
00794 "; }
00795 public:
00796 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00797
00798 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00799
00800 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00801 {
00802 ros::serialization::OStream stream(write_ptr, 1000000000);
00803 ros::serialization::serialize(stream, graspable_objects);
00804 ros::serialization::serialize(stream, collision_object_names);
00805 ros::serialization::serialize(stream, collision_support_surface_name);
00806 return stream.getData();
00807 }
00808
00809 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00810 {
00811 ros::serialization::IStream stream(read_ptr, 1000000000);
00812 ros::serialization::deserialize(stream, graspable_objects);
00813 ros::serialization::deserialize(stream, collision_object_names);
00814 ros::serialization::deserialize(stream, collision_support_surface_name);
00815 return stream.getData();
00816 }
00817
00818 ROS_DEPRECATED virtual uint32_t serializationLength() const
00819 {
00820 uint32_t size = 0;
00821 size += ros::serialization::serializationLength(graspable_objects);
00822 size += ros::serialization::serializationLength(collision_object_names);
00823 size += ros::serialization::serializationLength(collision_support_surface_name);
00824 return size;
00825 }
00826
00827 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > Ptr;
00828 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> const> ConstPtr;
00829 };
00830 typedef ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<std::allocator<void> > TabletopCollisionMapProcessingResponse;
00831
00832 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse> TabletopCollisionMapProcessingResponsePtr;
00833 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse const> TabletopCollisionMapProcessingResponseConstPtr;
00834
00835 struct TabletopCollisionMapProcessing
00836 {
00837
00838 typedef TabletopCollisionMapProcessingRequest Request;
00839 typedef TabletopCollisionMapProcessingResponse Response;
00840 Request request;
00841 Response response;
00842
00843 typedef Request RequestType;
00844 typedef Response ResponseType;
00845 };
00846 }
00847
00848 namespace ros
00849 {
00850 namespace message_traits
00851 {
00852 template<class ContainerAllocator>
00853 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00854 static const char* value()
00855 {
00856 return "2269a5d6f09bf4f6fd5743f2876f63a7";
00857 }
00858
00859 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); }
00860 static const uint64_t static_value1 = 0x2269a5d6f09bf4f6ULL;
00861 static const uint64_t static_value2 = 0xfd5743f2876f63a7ULL;
00862 };
00863
00864 template<class ContainerAllocator>
00865 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00866 static const char* value()
00867 {
00868 return "tabletop_collision_map_processing/TabletopCollisionMapProcessingRequest";
00869 }
00870
00871 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); }
00872 };
00873
00874 template<class ContainerAllocator>
00875 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00876 static const char* value()
00877 {
00878 return "\n\
00879 \n\
00880 \n\
00881 \n\
00882 \n\
00883 \n\
00884 \n\
00885 tabletop_object_detector/TabletopDetectionResult detection_result\n\
00886 \n\
00887 \n\
00888 bool reset_collision_models\n\
00889 \n\
00890 \n\
00891 bool reset_attached_models\n\
00892 \n\
00893 \n\
00894 bool reset_static_map\n\
00895 \n\
00896 \n\
00897 bool take_static_collision_map\n\
00898 \n\
00899 \n\
00900 \n\
00901 string desired_frame\n\
00902 \n\
00903 \n\
00904 ================================================================================\n\
00905 MSG: tabletop_object_detector/TabletopDetectionResult\n\
00906 # Contains all the information from one run of the tabletop detection node\n\
00907 \n\
00908 # The information for the plane that has been detected\n\
00909 Table table\n\
00910 \n\
00911 # The raw clusters detected in the scan \n\
00912 sensor_msgs/PointCloud[] clusters\n\
00913 \n\
00914 # The list of potential models that have been detected for each cluster\n\
00915 # An empty list will be returned for a cluster that has no recognition results at all\n\
00916 household_objects_database_msgs/DatabaseModelPoseList[] models\n\
00917 \n\
00918 # For each cluster, the index of the list of models that was fit to that cluster\n\
00919 # keep in mind that multiple raw clusters can correspond to a single fit\n\
00920 int32[] cluster_model_indices\n\
00921 \n\
00922 # Whether the detection has succeeded or failed\n\
00923 int32 NO_CLOUD_RECEIVED = 1\n\
00924 int32 NO_TABLE = 2\n\
00925 int32 OTHER_ERROR = 3\n\
00926 int32 SUCCESS = 4\n\
00927 int32 result\n\
00928 \n\
00929 ================================================================================\n\
00930 MSG: tabletop_object_detector/Table\n\
00931 # Informs that a planar table has been detected at a given location\n\
00932 \n\
00933 # The pose gives you the transform that take you to the coordinate system\n\
00934 # of the table, with the origin somewhere in the table plane and the \n\
00935 # z axis normal to the plane\n\
00936 geometry_msgs/PoseStamped pose\n\
00937 \n\
00938 # These values give you the observed extents of the table, along x and y,\n\
00939 # in the table's own coordinate system (above)\n\
00940 # there is no guarantee that the origin of the table coordinate system is\n\
00941 # inside the boundary defined by these values. \n\
00942 float32 x_min\n\
00943 float32 x_max\n\
00944 float32 y_min\n\
00945 float32 y_max\n\
00946 \n\
00947 # There is no guarantee that the table doe NOT extend further than these \n\
00948 # values; this is just as far as we've observed it.\n\
00949 \n\
00950 ================================================================================\n\
00951 MSG: geometry_msgs/PoseStamped\n\
00952 # A Pose with reference coordinate frame and timestamp\n\
00953 Header header\n\
00954 Pose pose\n\
00955 \n\
00956 ================================================================================\n\
00957 MSG: std_msgs/Header\n\
00958 # Standard metadata for higher-level stamped data types.\n\
00959 # This is generally used to communicate timestamped data \n\
00960 # in a particular coordinate frame.\n\
00961 # \n\
00962 # sequence ID: consecutively increasing ID \n\
00963 uint32 seq\n\
00964 #Two-integer timestamp that is expressed as:\n\
00965 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00966 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00967 # time-handling sugar is provided by the client library\n\
00968 time stamp\n\
00969 #Frame this data is associated with\n\
00970 # 0: no frame\n\
00971 # 1: global frame\n\
00972 string frame_id\n\
00973 \n\
00974 ================================================================================\n\
00975 MSG: geometry_msgs/Pose\n\
00976 # A representation of pose in free space, composed of postion and orientation. \n\
00977 Point position\n\
00978 Quaternion orientation\n\
00979 \n\
00980 ================================================================================\n\
00981 MSG: geometry_msgs/Point\n\
00982 # This contains the position of a point in free space\n\
00983 float64 x\n\
00984 float64 y\n\
00985 float64 z\n\
00986 \n\
00987 ================================================================================\n\
00988 MSG: geometry_msgs/Quaternion\n\
00989 # This represents an orientation in free space in quaternion form.\n\
00990 \n\
00991 float64 x\n\
00992 float64 y\n\
00993 float64 z\n\
00994 float64 w\n\
00995 \n\
00996 ================================================================================\n\
00997 MSG: sensor_msgs/PointCloud\n\
00998 # This message holds a collection of 3d points, plus optional additional\n\
00999 # information about each point.\n\
01000 \n\
01001 # Time of sensor data acquisition, coordinate frame ID.\n\
01002 Header header\n\
01003 \n\
01004 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01005 # in the frame given in the header.\n\
01006 geometry_msgs/Point32[] points\n\
01007 \n\
01008 # Each channel should have the same number of elements as points array,\n\
01009 # and the data in each channel should correspond 1:1 with each point.\n\
01010 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01011 ChannelFloat32[] channels\n\
01012 \n\
01013 ================================================================================\n\
01014 MSG: geometry_msgs/Point32\n\
01015 # This contains the position of a point in free space(with 32 bits of precision).\n\
01016 # It is recommeded to use Point wherever possible instead of Point32. \n\
01017 # \n\
01018 # This recommendation is to promote interoperability. \n\
01019 #\n\
01020 # This message is designed to take up less space when sending\n\
01021 # lots of points at once, as in the case of a PointCloud. \n\
01022 \n\
01023 float32 x\n\
01024 float32 y\n\
01025 float32 z\n\
01026 ================================================================================\n\
01027 MSG: sensor_msgs/ChannelFloat32\n\
01028 # This message is used by the PointCloud message to hold optional data\n\
01029 # associated with each point in the cloud. The length of the values\n\
01030 # array should be the same as the length of the points array in the\n\
01031 # PointCloud, and each value should be associated with the corresponding\n\
01032 # point.\n\
01033 \n\
01034 # Channel names in existing practice include:\n\
01035 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01036 # This is opposite to usual conventions but remains for\n\
01037 # historical reasons. The newer PointCloud2 message has no\n\
01038 # such problem.\n\
01039 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01040 # (R,G,B) values packed into the least significant 24 bits,\n\
01041 # in order.\n\
01042 # \"intensity\" - laser or pixel intensity.\n\
01043 # \"distance\"\n\
01044 \n\
01045 # The channel name should give semantics of the channel (e.g.\n\
01046 # \"intensity\" instead of \"value\").\n\
01047 string name\n\
01048 \n\
01049 # The values array should be 1-1 with the elements of the associated\n\
01050 # PointCloud.\n\
01051 float32[] values\n\
01052 \n\
01053 ================================================================================\n\
01054 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\
01055 # stores a list of possible database models recognition results\n\
01056 DatabaseModelPose[] model_list\n\
01057 ================================================================================\n\
01058 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01059 # Informs that a specific model from the Model Database has been \n\
01060 # identified at a certain location\n\
01061 \n\
01062 # the database id of the model\n\
01063 int32 model_id\n\
01064 \n\
01065 # the pose that it can be found in\n\
01066 geometry_msgs/PoseStamped pose\n\
01067 \n\
01068 # a measure of the confidence level in this detection result\n\
01069 float32 confidence\n\
01070 ";
01071 }
01072
01073 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); }
01074 };
01075
01076 }
01077 }
01078
01079
01080 namespace ros
01081 {
01082 namespace message_traits
01083 {
01084 template<class ContainerAllocator>
01085 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
01086 static const char* value()
01087 {
01088 return "33936dac29953c0907375257fd65ad73";
01089 }
01090
01091 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); }
01092 static const uint64_t static_value1 = 0x33936dac29953c09ULL;
01093 static const uint64_t static_value2 = 0x07375257fd65ad73ULL;
01094 };
01095
01096 template<class ContainerAllocator>
01097 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
01098 static const char* value()
01099 {
01100 return "tabletop_collision_map_processing/TabletopCollisionMapProcessingResponse";
01101 }
01102
01103 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); }
01104 };
01105
01106 template<class ContainerAllocator>
01107 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
01108 static const char* value()
01109 {
01110 return "\n\
01111 \n\
01112 object_manipulation_msgs/GraspableObject[] graspable_objects\n\
01113 \n\
01114 \n\
01115 \n\
01116 string[] collision_object_names\n\
01117 \n\
01118 \n\
01119 string collision_support_surface_name\n\
01120 \n\
01121 \n\
01122 ================================================================================\n\
01123 MSG: object_manipulation_msgs/GraspableObject\n\
01124 # an object that the object_manipulator can work on\n\
01125 \n\
01126 # a graspable object can be represented in multiple ways. This message\n\
01127 # can contain all of them. Which one is actually used is up to the receiver\n\
01128 # of this message. When adding new representations, one must be careful that\n\
01129 # they have reasonable lightweight defaults indicating that that particular\n\
01130 # representation is not available.\n\
01131 \n\
01132 # the tf frame to be used as a reference frame when combining information from\n\
01133 # the different representations below\n\
01134 string reference_frame_id\n\
01135 \n\
01136 # potential recognition results from a database of models\n\
01137 # all poses are relative to the object reference pose\n\
01138 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01139 \n\
01140 # the point cloud itself\n\
01141 sensor_msgs/PointCloud cluster\n\
01142 \n\
01143 # a region of a PointCloud2 of interest\n\
01144 object_manipulation_msgs/SceneRegion region\n\
01145 \n\
01146 \n\
01147 ================================================================================\n\
01148 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01149 # Informs that a specific model from the Model Database has been \n\
01150 # identified at a certain location\n\
01151 \n\
01152 # the database id of the model\n\
01153 int32 model_id\n\
01154 \n\
01155 # the pose that it can be found in\n\
01156 geometry_msgs/PoseStamped pose\n\
01157 \n\
01158 # a measure of the confidence level in this detection result\n\
01159 float32 confidence\n\
01160 ================================================================================\n\
01161 MSG: geometry_msgs/PoseStamped\n\
01162 # A Pose with reference coordinate frame and timestamp\n\
01163 Header header\n\
01164 Pose pose\n\
01165 \n\
01166 ================================================================================\n\
01167 MSG: std_msgs/Header\n\
01168 # Standard metadata for higher-level stamped data types.\n\
01169 # This is generally used to communicate timestamped data \n\
01170 # in a particular coordinate frame.\n\
01171 # \n\
01172 # sequence ID: consecutively increasing ID \n\
01173 uint32 seq\n\
01174 #Two-integer timestamp that is expressed as:\n\
01175 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01176 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01177 # time-handling sugar is provided by the client library\n\
01178 time stamp\n\
01179 #Frame this data is associated with\n\
01180 # 0: no frame\n\
01181 # 1: global frame\n\
01182 string frame_id\n\
01183 \n\
01184 ================================================================================\n\
01185 MSG: geometry_msgs/Pose\n\
01186 # A representation of pose in free space, composed of postion and orientation. \n\
01187 Point position\n\
01188 Quaternion orientation\n\
01189 \n\
01190 ================================================================================\n\
01191 MSG: geometry_msgs/Point\n\
01192 # This contains the position of a point in free space\n\
01193 float64 x\n\
01194 float64 y\n\
01195 float64 z\n\
01196 \n\
01197 ================================================================================\n\
01198 MSG: geometry_msgs/Quaternion\n\
01199 # This represents an orientation in free space in quaternion form.\n\
01200 \n\
01201 float64 x\n\
01202 float64 y\n\
01203 float64 z\n\
01204 float64 w\n\
01205 \n\
01206 ================================================================================\n\
01207 MSG: sensor_msgs/PointCloud\n\
01208 # This message holds a collection of 3d points, plus optional additional\n\
01209 # information about each point.\n\
01210 \n\
01211 # Time of sensor data acquisition, coordinate frame ID.\n\
01212 Header header\n\
01213 \n\
01214 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01215 # in the frame given in the header.\n\
01216 geometry_msgs/Point32[] points\n\
01217 \n\
01218 # Each channel should have the same number of elements as points array,\n\
01219 # and the data in each channel should correspond 1:1 with each point.\n\
01220 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01221 ChannelFloat32[] channels\n\
01222 \n\
01223 ================================================================================\n\
01224 MSG: geometry_msgs/Point32\n\
01225 # This contains the position of a point in free space(with 32 bits of precision).\n\
01226 # It is recommeded to use Point wherever possible instead of Point32. \n\
01227 # \n\
01228 # This recommendation is to promote interoperability. \n\
01229 #\n\
01230 # This message is designed to take up less space when sending\n\
01231 # lots of points at once, as in the case of a PointCloud. \n\
01232 \n\
01233 float32 x\n\
01234 float32 y\n\
01235 float32 z\n\
01236 ================================================================================\n\
01237 MSG: sensor_msgs/ChannelFloat32\n\
01238 # This message is used by the PointCloud message to hold optional data\n\
01239 # associated with each point in the cloud. The length of the values\n\
01240 # array should be the same as the length of the points array in the\n\
01241 # PointCloud, and each value should be associated with the corresponding\n\
01242 # point.\n\
01243 \n\
01244 # Channel names in existing practice include:\n\
01245 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01246 # This is opposite to usual conventions but remains for\n\
01247 # historical reasons. The newer PointCloud2 message has no\n\
01248 # such problem.\n\
01249 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01250 # (R,G,B) values packed into the least significant 24 bits,\n\
01251 # in order.\n\
01252 # \"intensity\" - laser or pixel intensity.\n\
01253 # \"distance\"\n\
01254 \n\
01255 # The channel name should give semantics of the channel (e.g.\n\
01256 # \"intensity\" instead of \"value\").\n\
01257 string name\n\
01258 \n\
01259 # The values array should be 1-1 with the elements of the associated\n\
01260 # PointCloud.\n\
01261 float32[] values\n\
01262 \n\
01263 ================================================================================\n\
01264 MSG: object_manipulation_msgs/SceneRegion\n\
01265 # Point cloud\n\
01266 sensor_msgs/PointCloud2 cloud\n\
01267 \n\
01268 # Indices for the region of interest\n\
01269 int32[] mask\n\
01270 \n\
01271 # One of the corresponding 2D images, if applicable\n\
01272 sensor_msgs/Image image\n\
01273 \n\
01274 # The disparity image, if applicable\n\
01275 sensor_msgs/Image disparity_image\n\
01276 \n\
01277 # Camera info for the camera that took the image\n\
01278 sensor_msgs/CameraInfo cam_info\n\
01279 \n\
01280 ================================================================================\n\
01281 MSG: sensor_msgs/PointCloud2\n\
01282 # This message holds a collection of N-dimensional points, which may\n\
01283 # contain additional information such as normals, intensity, etc. The\n\
01284 # point data is stored as a binary blob, its layout described by the\n\
01285 # contents of the \"fields\" array.\n\
01286 \n\
01287 # The point cloud data may be organized 2d (image-like) or 1d\n\
01288 # (unordered). Point clouds organized as 2d images may be produced by\n\
01289 # camera depth sensors such as stereo or time-of-flight.\n\
01290 \n\
01291 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01292 # points).\n\
01293 Header header\n\
01294 \n\
01295 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01296 # 1 and width is the length of the point cloud.\n\
01297 uint32 height\n\
01298 uint32 width\n\
01299 \n\
01300 # Describes the channels and their layout in the binary data blob.\n\
01301 PointField[] fields\n\
01302 \n\
01303 bool is_bigendian # Is this data bigendian?\n\
01304 uint32 point_step # Length of a point in bytes\n\
01305 uint32 row_step # Length of a row in bytes\n\
01306 uint8[] data # Actual point data, size is (row_step*height)\n\
01307 \n\
01308 bool is_dense # True if there are no invalid points\n\
01309 \n\
01310 ================================================================================\n\
01311 MSG: sensor_msgs/PointField\n\
01312 # This message holds the description of one point entry in the\n\
01313 # PointCloud2 message format.\n\
01314 uint8 INT8 = 1\n\
01315 uint8 UINT8 = 2\n\
01316 uint8 INT16 = 3\n\
01317 uint8 UINT16 = 4\n\
01318 uint8 INT32 = 5\n\
01319 uint8 UINT32 = 6\n\
01320 uint8 FLOAT32 = 7\n\
01321 uint8 FLOAT64 = 8\n\
01322 \n\
01323 string name # Name of field\n\
01324 uint32 offset # Offset from start of point struct\n\
01325 uint8 datatype # Datatype enumeration, see above\n\
01326 uint32 count # How many elements in the field\n\
01327 \n\
01328 ================================================================================\n\
01329 MSG: sensor_msgs/Image\n\
01330 # This message contains an uncompressed image\n\
01331 # (0, 0) is at top-left corner of image\n\
01332 #\n\
01333 \n\
01334 Header header # Header timestamp should be acquisition time of image\n\
01335 # Header frame_id should be optical frame of camera\n\
01336 # origin of frame should be optical center of cameara\n\
01337 # +x should point to the right in the image\n\
01338 # +y should point down in the image\n\
01339 # +z should point into to plane of the image\n\
01340 # If the frame_id here and the frame_id of the CameraInfo\n\
01341 # message associated with the image conflict\n\
01342 # the behavior is undefined\n\
01343 \n\
01344 uint32 height # image height, that is, number of rows\n\
01345 uint32 width # image width, that is, number of columns\n\
01346 \n\
01347 # The legal values for encoding are in file src/image_encodings.cpp\n\
01348 # If you want to standardize a new string format, join\n\
01349 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01350 \n\
01351 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01352 # taken from the list of strings in src/image_encodings.cpp\n\
01353 \n\
01354 uint8 is_bigendian # is this data bigendian?\n\
01355 uint32 step # Full row length in bytes\n\
01356 uint8[] data # actual matrix data, size is (step * rows)\n\
01357 \n\
01358 ================================================================================\n\
01359 MSG: sensor_msgs/CameraInfo\n\
01360 # This message defines meta information for a camera. It should be in a\n\
01361 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01362 # image topics named:\n\
01363 #\n\
01364 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01365 # image - monochrome, distorted\n\
01366 # image_color - color, distorted\n\
01367 # image_rect - monochrome, rectified\n\
01368 # image_rect_color - color, rectified\n\
01369 #\n\
01370 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01371 # for producing the four processed image topics from image_raw and\n\
01372 # camera_info. The meaning of the camera parameters are described in\n\
01373 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01374 #\n\
01375 # The image_geometry package provides a user-friendly interface to\n\
01376 # common operations using this meta information. If you want to, e.g.,\n\
01377 # project a 3d point into image coordinates, we strongly recommend\n\
01378 # using image_geometry.\n\
01379 #\n\
01380 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01381 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01382 # indicates an uncalibrated camera.\n\
01383 \n\
01384 #######################################################################\n\
01385 # Image acquisition info #\n\
01386 #######################################################################\n\
01387 \n\
01388 # Time of image acquisition, camera coordinate frame ID\n\
01389 Header header # Header timestamp should be acquisition time of image\n\
01390 # Header frame_id should be optical frame of camera\n\
01391 # origin of frame should be optical center of camera\n\
01392 # +x should point to the right in the image\n\
01393 # +y should point down in the image\n\
01394 # +z should point into the plane of the image\n\
01395 \n\
01396 \n\
01397 #######################################################################\n\
01398 # Calibration Parameters #\n\
01399 #######################################################################\n\
01400 # These are fixed during camera calibration. Their values will be the #\n\
01401 # same in all messages until the camera is recalibrated. Note that #\n\
01402 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01403 # #\n\
01404 # The internal parameters can be used to warp a raw (distorted) image #\n\
01405 # to: #\n\
01406 # 1. An undistorted image (requires D and K) #\n\
01407 # 2. A rectified image (requires D, K, R) #\n\
01408 # The projection matrix P projects 3D points into the rectified image.#\n\
01409 #######################################################################\n\
01410 \n\
01411 # The image dimensions with which the camera was calibrated. Normally\n\
01412 # this will be the full camera resolution in pixels.\n\
01413 uint32 height\n\
01414 uint32 width\n\
01415 \n\
01416 # The distortion model used. Supported models are listed in\n\
01417 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01418 # simple model of radial and tangential distortion - is sufficent.\n\
01419 string distortion_model\n\
01420 \n\
01421 # The distortion parameters, size depending on the distortion model.\n\
01422 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01423 float64[] D\n\
01424 \n\
01425 # Intrinsic camera matrix for the raw (distorted) images.\n\
01426 # [fx 0 cx]\n\
01427 # K = [ 0 fy cy]\n\
01428 # [ 0 0 1]\n\
01429 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01430 # coordinates using the focal lengths (fx, fy) and principal point\n\
01431 # (cx, cy).\n\
01432 float64[9] K # 3x3 row-major matrix\n\
01433 \n\
01434 # Rectification matrix (stereo cameras only)\n\
01435 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01436 # stereo image plane so that epipolar lines in both stereo images are\n\
01437 # parallel.\n\
01438 float64[9] R # 3x3 row-major matrix\n\
01439 \n\
01440 # Projection/camera matrix\n\
01441 # [fx' 0 cx' Tx]\n\
01442 # P = [ 0 fy' cy' Ty]\n\
01443 # [ 0 0 1 0]\n\
01444 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01445 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01446 # is the normal camera intrinsic matrix for the rectified image.\n\
01447 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01448 # coordinates using the focal lengths (fx', fy') and principal point\n\
01449 # (cx', cy') - these may differ from the values in K.\n\
01450 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01451 # also have R = the identity and P[1:3,1:3] = K.\n\
01452 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01453 # position of the optical center of the second camera in the first\n\
01454 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01455 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01456 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01457 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01458 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01459 # the rectified image is given by:\n\
01460 # [u v w]' = P * [X Y Z 1]'\n\
01461 # x = u / w\n\
01462 # y = v / w\n\
01463 # This holds for both images of a stereo pair.\n\
01464 float64[12] P # 3x4 row-major matrix\n\
01465 \n\
01466 \n\
01467 #######################################################################\n\
01468 # Operational Parameters #\n\
01469 #######################################################################\n\
01470 # These define the image region actually captured by the camera #\n\
01471 # driver. Although they affect the geometry of the output image, they #\n\
01472 # may be changed freely without recalibrating the camera. #\n\
01473 #######################################################################\n\
01474 \n\
01475 # Binning refers here to any camera setting which combines rectangular\n\
01476 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01477 # resolution of the output image to\n\
01478 # (width / binning_x) x (height / binning_y).\n\
01479 # The default values binning_x = binning_y = 0 is considered the same\n\
01480 # as binning_x = binning_y = 1 (no subsampling).\n\
01481 uint32 binning_x\n\
01482 uint32 binning_y\n\
01483 \n\
01484 # Region of interest (subwindow of full camera resolution), given in\n\
01485 # full resolution (unbinned) image coordinates. A particular ROI\n\
01486 # always denotes the same window of pixels on the camera sensor,\n\
01487 # regardless of binning settings.\n\
01488 # The default setting of roi (all values 0) is considered the same as\n\
01489 # full resolution (roi.width = width, roi.height = height).\n\
01490 RegionOfInterest roi\n\
01491 \n\
01492 ================================================================================\n\
01493 MSG: sensor_msgs/RegionOfInterest\n\
01494 # This message is used to specify a region of interest within an image.\n\
01495 #\n\
01496 # When used to specify the ROI setting of the camera when the image was\n\
01497 # taken, the height and width fields should either match the height and\n\
01498 # width fields for the associated image; or height = width = 0\n\
01499 # indicates that the full resolution image was captured.\n\
01500 \n\
01501 uint32 x_offset # Leftmost pixel of the ROI\n\
01502 # (0 if the ROI includes the left edge of the image)\n\
01503 uint32 y_offset # Topmost pixel of the ROI\n\
01504 # (0 if the ROI includes the top edge of the image)\n\
01505 uint32 height # Height of ROI\n\
01506 uint32 width # Width of ROI\n\
01507 \n\
01508 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01509 # ROI in this message. Typically this should be False if the full image\n\
01510 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01511 # used).\n\
01512 bool do_rectify\n\
01513 \n\
01514 ";
01515 }
01516
01517 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); }
01518 };
01519
01520 }
01521 }
01522
01523 namespace ros
01524 {
01525 namespace serialization
01526 {
01527
01528 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> >
01529 {
01530 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01531 {
01532 stream.next(m.detection_result);
01533 stream.next(m.reset_collision_models);
01534 stream.next(m.reset_attached_models);
01535 stream.next(m.reset_static_map);
01536 stream.next(m.take_static_collision_map);
01537 stream.next(m.desired_frame);
01538 }
01539
01540 ROS_DECLARE_ALLINONE_SERIALIZER;
01541 };
01542 }
01543 }
01544
01545
01546 namespace ros
01547 {
01548 namespace serialization
01549 {
01550
01551 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> >
01552 {
01553 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01554 {
01555 stream.next(m.graspable_objects);
01556 stream.next(m.collision_object_names);
01557 stream.next(m.collision_support_surface_name);
01558 }
01559
01560 ROS_DECLARE_ALLINONE_SERIALIZER;
01561 };
01562 }
01563 }
01564
01565 namespace ros
01566 {
01567 namespace service_traits
01568 {
01569 template<>
01570 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessing> {
01571 static const char* value()
01572 {
01573 return "2a1cb6170b4cb73398aa70e26c6ba0b8";
01574 }
01575
01576 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); }
01577 };
01578
01579 template<>
01580 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessing> {
01581 static const char* value()
01582 {
01583 return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
01584 }
01585
01586 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); }
01587 };
01588
01589 template<class ContainerAllocator>
01590 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
01591 static const char* value()
01592 {
01593 return "2a1cb6170b4cb73398aa70e26c6ba0b8";
01594 }
01595
01596 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); }
01597 };
01598
01599 template<class ContainerAllocator>
01600 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
01601 static const char* value()
01602 {
01603 return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
01604 }
01605
01606 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); }
01607 };
01608
01609 template<class ContainerAllocator>
01610 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
01611 static const char* value()
01612 {
01613 return "2a1cb6170b4cb73398aa70e26c6ba0b8";
01614 }
01615
01616 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); }
01617 };
01618
01619 template<class ContainerAllocator>
01620 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
01621 static const char* value()
01622 {
01623 return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
01624 }
01625
01626 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); }
01627 };
01628
01629 }
01630 }
01631
01632 #endif // TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
01633