00001
00002 #ifndef SENSOR_MSGS_SERVICE_SETCAMERAINFO_H
00003 #define SENSOR_MSGS_SERVICE_SETCAMERAINFO_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015 #include "sensor_msgs/CameraInfo.h"
00016
00017
00018
00019 namespace sensor_msgs
00020 {
00021 template <class ContainerAllocator>
00022 struct SetCameraInfoRequest_ : public ros::Message
00023 {
00024 typedef SetCameraInfoRequest_<ContainerAllocator> Type;
00025
00026 SetCameraInfoRequest_()
00027 : camera_info()
00028 {
00029 }
00030
00031 SetCameraInfoRequest_(const ContainerAllocator& _alloc)
00032 : camera_info(_alloc)
00033 {
00034 }
00035
00036 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00037 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00038
00039
00040 private:
00041 static const char* __s_getDataType_() { return "sensor_msgs/SetCameraInfoRequest"; }
00042 public:
00043 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00044
00045 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00046
00047 private:
00048 static const char* __s_getMD5Sum_() { return "ee34be01fdeee563d0d99cd594d5581d"; }
00049 public:
00050 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00051
00052 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00053
00054 private:
00055 static const char* __s_getServerMD5Sum_() { return "bef1df590ed75ed1f393692395e15482"; }
00056 public:
00057 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00058
00059 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00060
00061 private:
00062 static const char* __s_getMessageDefinition_() { return "\n\
00063 \n\
00064 \n\
00065 \n\
00066 \n\
00067 \n\
00068 \n\
00069 \n\
00070 sensor_msgs/CameraInfo camera_info\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: sensor_msgs/CameraInfo\n\
00074 # This message defines meta information for a camera. It should be in a\n\
00075 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00076 # image topics named:\n\
00077 #\n\
00078 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00079 # image - monochrome, distorted\n\
00080 # image_color - color, distorted\n\
00081 # image_rect - monochrome, rectified\n\
00082 # image_rect_color - color, rectified\n\
00083 #\n\
00084 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00085 # for producing the four processed image topics from image_raw and\n\
00086 # camera_info. The meaning of the camera parameters are described in\n\
00087 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00088 #\n\
00089 # The image_geometry package provides a user-friendly interface to\n\
00090 # common operations using this meta information. If you want to, e.g.,\n\
00091 # project a 3d point into image coordinates, we strongly recommend\n\
00092 # using image_geometry.\n\
00093 #\n\
00094 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00095 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00096 # indicates an uncalibrated camera.\n\
00097 \n\
00098 #######################################################################\n\
00099 # Image acquisition info #\n\
00100 #######################################################################\n\
00101 \n\
00102 # Time of image acquisition, camera coordinate frame ID\n\
00103 Header header # Header timestamp should be acquisition time of image\n\
00104 # Header frame_id should be optical frame of camera\n\
00105 # origin of frame should be optical center of camera\n\
00106 # +x should point to the right in the image\n\
00107 # +y should point down in the image\n\
00108 # +z should point into the plane of the image\n\
00109 \n\
00110 \n\
00111 #######################################################################\n\
00112 # Calibration Parameters #\n\
00113 #######################################################################\n\
00114 # These are fixed during camera calibration. Their values will be the #\n\
00115 # same in all messages until the camera is recalibrated. Note that #\n\
00116 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00117 # #\n\
00118 # The internal parameters can be used to warp a raw (distorted) image #\n\
00119 # to: #\n\
00120 # 1. An undistorted image (requires D and K) #\n\
00121 # 2. A rectified image (requires D, K, R) #\n\
00122 # The projection matrix P projects 3D points into the rectified image.#\n\
00123 #######################################################################\n\
00124 \n\
00125 # The image dimensions with which the camera was calibrated. Normally\n\
00126 # this will be the full camera resolution in pixels.\n\
00127 uint32 height\n\
00128 uint32 width\n\
00129 \n\
00130 # The distortion model used. Supported models are listed in\n\
00131 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00132 # simple model of radial and tangential distortion - is sufficent.\n\
00133 string distortion_model\n\
00134 \n\
00135 # The distortion parameters, size depending on the distortion model.\n\
00136 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00137 float64[] D\n\
00138 \n\
00139 # Intrinsic camera matrix for the raw (distorted) images.\n\
00140 # [fx 0 cx]\n\
00141 # K = [ 0 fy cy]\n\
00142 # [ 0 0 1]\n\
00143 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00144 # coordinates using the focal lengths (fx, fy) and principal point\n\
00145 # (cx, cy).\n\
00146 float64[9] K # 3x3 row-major matrix\n\
00147 \n\
00148 # Rectification matrix (stereo cameras only)\n\
00149 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00150 # stereo image plane so that epipolar lines in both stereo images are\n\
00151 # parallel.\n\
00152 float64[9] R # 3x3 row-major matrix\n\
00153 \n\
00154 # Projection/camera matrix\n\
00155 # [fx' 0 cx' Tx]\n\
00156 # P = [ 0 fy' cy' Ty]\n\
00157 # [ 0 0 1 0]\n\
00158 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00159 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00160 # is the normal camera intrinsic matrix for the rectified image.\n\
00161 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00162 # coordinates using the focal lengths (fx', fy') and principal point\n\
00163 # (cx', cy') - these may differ from the values in K.\n\
00164 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00165 # also have R = the identity and P[1:3,1:3] = K.\n\
00166 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00167 # position of the optical center of the second camera in the first\n\
00168 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00169 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00170 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00171 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00172 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00173 # the rectified image is given by:\n\
00174 # [u v w]' = P * [X Y Z 1]'\n\
00175 # x = u / w\n\
00176 # y = v / w\n\
00177 # This holds for both images of a stereo pair.\n\
00178 float64[12] P # 3x4 row-major matrix\n\
00179 \n\
00180 \n\
00181 #######################################################################\n\
00182 # Operational Parameters #\n\
00183 #######################################################################\n\
00184 # These define the image region actually captured by the camera #\n\
00185 # driver. Although they affect the geometry of the output image, they #\n\
00186 # may be changed freely without recalibrating the camera. #\n\
00187 #######################################################################\n\
00188 \n\
00189 # Binning refers here to any camera setting which combines rectangular\n\
00190 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00191 # resolution of the output image to\n\
00192 # (width / binning_x) x (height / binning_y).\n\
00193 # The default values binning_x = binning_y = 0 is considered the same\n\
00194 # as binning_x = binning_y = 1 (no subsampling).\n\
00195 uint32 binning_x\n\
00196 uint32 binning_y\n\
00197 \n\
00198 # Region of interest (subwindow of full camera resolution), given in\n\
00199 # full resolution (unbinned) image coordinates. A particular ROI\n\
00200 # always denotes the same window of pixels on the camera sensor,\n\
00201 # regardless of binning settings.\n\
00202 # The default setting of roi (all values 0) is considered the same as\n\
00203 # full resolution (roi.width = width, roi.height = height).\n\
00204 RegionOfInterest roi\n\
00205 \n\
00206 ================================================================================\n\
00207 MSG: std_msgs/Header\n\
00208 # Standard metadata for higher-level stamped data types.\n\
00209 # This is generally used to communicate timestamped data \n\
00210 # in a particular coordinate frame.\n\
00211 # \n\
00212 # sequence ID: consecutively increasing ID \n\
00213 uint32 seq\n\
00214 #Two-integer timestamp that is expressed as:\n\
00215 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00216 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00217 # time-handling sugar is provided by the client library\n\
00218 time stamp\n\
00219 #Frame this data is associated with\n\
00220 # 0: no frame\n\
00221 # 1: global frame\n\
00222 string frame_id\n\
00223 \n\
00224 ================================================================================\n\
00225 MSG: sensor_msgs/RegionOfInterest\n\
00226 # This message is used to specify a region of interest within an image.\n\
00227 #\n\
00228 # When used to specify the ROI setting of the camera when the image was\n\
00229 # taken, the height and width fields should either match the height and\n\
00230 # width fields for the associated image; or height = width = 0\n\
00231 # indicates that the full resolution image was captured.\n\
00232 \n\
00233 uint32 x_offset # Leftmost pixel of the ROI\n\
00234 # (0 if the ROI includes the left edge of the image)\n\
00235 uint32 y_offset # Topmost pixel of the ROI\n\
00236 # (0 if the ROI includes the top edge of the image)\n\
00237 uint32 height # Height of ROI\n\
00238 uint32 width # Width of ROI\n\
00239 \n\
00240 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00241 # ROI in this message. Typically this should be False if the full image\n\
00242 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00243 # used).\n\
00244 bool do_rectify\n\
00245 \n\
00246 "; }
00247 public:
00248 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00249
00250 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00251
00252 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00253 {
00254 ros::serialization::OStream stream(write_ptr, 1000000000);
00255 ros::serialization::serialize(stream, camera_info);
00256 return stream.getData();
00257 }
00258
00259 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00260 {
00261 ros::serialization::IStream stream(read_ptr, 1000000000);
00262 ros::serialization::deserialize(stream, camera_info);
00263 return stream.getData();
00264 }
00265
00266 ROS_DEPRECATED virtual uint32_t serializationLength() const
00267 {
00268 uint32_t size = 0;
00269 size += ros::serialization::serializationLength(camera_info);
00270 return size;
00271 }
00272
00273 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > Ptr;
00274 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> const> ConstPtr;
00275 };
00276 typedef ::sensor_msgs::SetCameraInfoRequest_<std::allocator<void> > SetCameraInfoRequest;
00277
00278 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest> SetCameraInfoRequestPtr;
00279 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest const> SetCameraInfoRequestConstPtr;
00280
00281
00282 template <class ContainerAllocator>
00283 struct SetCameraInfoResponse_ : public ros::Message
00284 {
00285 typedef SetCameraInfoResponse_<ContainerAllocator> Type;
00286
00287 SetCameraInfoResponse_()
00288 : success(false)
00289 , status_message()
00290 {
00291 }
00292
00293 SetCameraInfoResponse_(const ContainerAllocator& _alloc)
00294 : success(false)
00295 , status_message(_alloc)
00296 {
00297 }
00298
00299 typedef uint8_t _success_type;
00300 uint8_t success;
00301
00302 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _status_message_type;
00303 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > status_message;
00304
00305
00306 private:
00307 static const char* __s_getDataType_() { return "sensor_msgs/SetCameraInfoResponse"; }
00308 public:
00309 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00310
00311 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00312
00313 private:
00314 static const char* __s_getMD5Sum_() { return "2ec6f3eff0161f4257b808b12bc830c2"; }
00315 public:
00316 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00317
00318 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00319
00320 private:
00321 static const char* __s_getServerMD5Sum_() { return "bef1df590ed75ed1f393692395e15482"; }
00322 public:
00323 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00324
00325 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00326
00327 private:
00328 static const char* __s_getMessageDefinition_() { return "bool success\n\
00329 string status_message\n\
00330 \n\
00331 \n\
00332 "; }
00333 public:
00334 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00335
00336 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00337
00338 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00339 {
00340 ros::serialization::OStream stream(write_ptr, 1000000000);
00341 ros::serialization::serialize(stream, success);
00342 ros::serialization::serialize(stream, status_message);
00343 return stream.getData();
00344 }
00345
00346 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00347 {
00348 ros::serialization::IStream stream(read_ptr, 1000000000);
00349 ros::serialization::deserialize(stream, success);
00350 ros::serialization::deserialize(stream, status_message);
00351 return stream.getData();
00352 }
00353
00354 ROS_DEPRECATED virtual uint32_t serializationLength() const
00355 {
00356 uint32_t size = 0;
00357 size += ros::serialization::serializationLength(success);
00358 size += ros::serialization::serializationLength(status_message);
00359 return size;
00360 }
00361
00362 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > Ptr;
00363 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> const> ConstPtr;
00364 };
00365 typedef ::sensor_msgs::SetCameraInfoResponse_<std::allocator<void> > SetCameraInfoResponse;
00366
00367 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse> SetCameraInfoResponsePtr;
00368 typedef boost::shared_ptr< ::sensor_msgs::SetCameraInfoResponse const> SetCameraInfoResponseConstPtr;
00369
00370 struct SetCameraInfo
00371 {
00372
00373 typedef SetCameraInfoRequest Request;
00374 typedef SetCameraInfoResponse Response;
00375 Request request;
00376 Response response;
00377
00378 typedef Request RequestType;
00379 typedef Response ResponseType;
00380 };
00381 }
00382
00383 namespace ros
00384 {
00385 namespace message_traits
00386 {
00387 template<class ContainerAllocator>
00388 struct MD5Sum< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00389 static const char* value()
00390 {
00391 return "ee34be01fdeee563d0d99cd594d5581d";
00392 }
00393
00394 static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00395 static const uint64_t static_value1 = 0xee34be01fdeee563ULL;
00396 static const uint64_t static_value2 = 0xd0d99cd594d5581dULL;
00397 };
00398
00399 template<class ContainerAllocator>
00400 struct DataType< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00401 static const char* value()
00402 {
00403 return "sensor_msgs/SetCameraInfoRequest";
00404 }
00405
00406 static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00407 };
00408
00409 template<class ContainerAllocator>
00410 struct Definition< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00411 static const char* value()
00412 {
00413 return "\n\
00414 \n\
00415 \n\
00416 \n\
00417 \n\
00418 \n\
00419 \n\
00420 \n\
00421 sensor_msgs/CameraInfo camera_info\n\
00422 \n\
00423 ================================================================================\n\
00424 MSG: sensor_msgs/CameraInfo\n\
00425 # This message defines meta information for a camera. It should be in a\n\
00426 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00427 # image topics named:\n\
00428 #\n\
00429 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00430 # image - monochrome, distorted\n\
00431 # image_color - color, distorted\n\
00432 # image_rect - monochrome, rectified\n\
00433 # image_rect_color - color, rectified\n\
00434 #\n\
00435 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00436 # for producing the four processed image topics from image_raw and\n\
00437 # camera_info. The meaning of the camera parameters are described in\n\
00438 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00439 #\n\
00440 # The image_geometry package provides a user-friendly interface to\n\
00441 # common operations using this meta information. If you want to, e.g.,\n\
00442 # project a 3d point into image coordinates, we strongly recommend\n\
00443 # using image_geometry.\n\
00444 #\n\
00445 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00446 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00447 # indicates an uncalibrated camera.\n\
00448 \n\
00449 #######################################################################\n\
00450 # Image acquisition info #\n\
00451 #######################################################################\n\
00452 \n\
00453 # Time of image acquisition, camera coordinate frame ID\n\
00454 Header header # Header timestamp should be acquisition time of image\n\
00455 # Header frame_id should be optical frame of camera\n\
00456 # origin of frame should be optical center of camera\n\
00457 # +x should point to the right in the image\n\
00458 # +y should point down in the image\n\
00459 # +z should point into the plane of the image\n\
00460 \n\
00461 \n\
00462 #######################################################################\n\
00463 # Calibration Parameters #\n\
00464 #######################################################################\n\
00465 # These are fixed during camera calibration. Their values will be the #\n\
00466 # same in all messages until the camera is recalibrated. Note that #\n\
00467 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00468 # #\n\
00469 # The internal parameters can be used to warp a raw (distorted) image #\n\
00470 # to: #\n\
00471 # 1. An undistorted image (requires D and K) #\n\
00472 # 2. A rectified image (requires D, K, R) #\n\
00473 # The projection matrix P projects 3D points into the rectified image.#\n\
00474 #######################################################################\n\
00475 \n\
00476 # The image dimensions with which the camera was calibrated. Normally\n\
00477 # this will be the full camera resolution in pixels.\n\
00478 uint32 height\n\
00479 uint32 width\n\
00480 \n\
00481 # The distortion model used. Supported models are listed in\n\
00482 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00483 # simple model of radial and tangential distortion - is sufficent.\n\
00484 string distortion_model\n\
00485 \n\
00486 # The distortion parameters, size depending on the distortion model.\n\
00487 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00488 float64[] D\n\
00489 \n\
00490 # Intrinsic camera matrix for the raw (distorted) images.\n\
00491 # [fx 0 cx]\n\
00492 # K = [ 0 fy cy]\n\
00493 # [ 0 0 1]\n\
00494 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00495 # coordinates using the focal lengths (fx, fy) and principal point\n\
00496 # (cx, cy).\n\
00497 float64[9] K # 3x3 row-major matrix\n\
00498 \n\
00499 # Rectification matrix (stereo cameras only)\n\
00500 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00501 # stereo image plane so that epipolar lines in both stereo images are\n\
00502 # parallel.\n\
00503 float64[9] R # 3x3 row-major matrix\n\
00504 \n\
00505 # Projection/camera matrix\n\
00506 # [fx' 0 cx' Tx]\n\
00507 # P = [ 0 fy' cy' Ty]\n\
00508 # [ 0 0 1 0]\n\
00509 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00510 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00511 # is the normal camera intrinsic matrix for the rectified image.\n\
00512 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00513 # coordinates using the focal lengths (fx', fy') and principal point\n\
00514 # (cx', cy') - these may differ from the values in K.\n\
00515 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00516 # also have R = the identity and P[1:3,1:3] = K.\n\
00517 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00518 # position of the optical center of the second camera in the first\n\
00519 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00520 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00521 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00522 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00523 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00524 # the rectified image is given by:\n\
00525 # [u v w]' = P * [X Y Z 1]'\n\
00526 # x = u / w\n\
00527 # y = v / w\n\
00528 # This holds for both images of a stereo pair.\n\
00529 float64[12] P # 3x4 row-major matrix\n\
00530 \n\
00531 \n\
00532 #######################################################################\n\
00533 # Operational Parameters #\n\
00534 #######################################################################\n\
00535 # These define the image region actually captured by the camera #\n\
00536 # driver. Although they affect the geometry of the output image, they #\n\
00537 # may be changed freely without recalibrating the camera. #\n\
00538 #######################################################################\n\
00539 \n\
00540 # Binning refers here to any camera setting which combines rectangular\n\
00541 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00542 # resolution of the output image to\n\
00543 # (width / binning_x) x (height / binning_y).\n\
00544 # The default values binning_x = binning_y = 0 is considered the same\n\
00545 # as binning_x = binning_y = 1 (no subsampling).\n\
00546 uint32 binning_x\n\
00547 uint32 binning_y\n\
00548 \n\
00549 # Region of interest (subwindow of full camera resolution), given in\n\
00550 # full resolution (unbinned) image coordinates. A particular ROI\n\
00551 # always denotes the same window of pixels on the camera sensor,\n\
00552 # regardless of binning settings.\n\
00553 # The default setting of roi (all values 0) is considered the same as\n\
00554 # full resolution (roi.width = width, roi.height = height).\n\
00555 RegionOfInterest roi\n\
00556 \n\
00557 ================================================================================\n\
00558 MSG: std_msgs/Header\n\
00559 # Standard metadata for higher-level stamped data types.\n\
00560 # This is generally used to communicate timestamped data \n\
00561 # in a particular coordinate frame.\n\
00562 # \n\
00563 # sequence ID: consecutively increasing ID \n\
00564 uint32 seq\n\
00565 #Two-integer timestamp that is expressed as:\n\
00566 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00567 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00568 # time-handling sugar is provided by the client library\n\
00569 time stamp\n\
00570 #Frame this data is associated with\n\
00571 # 0: no frame\n\
00572 # 1: global frame\n\
00573 string frame_id\n\
00574 \n\
00575 ================================================================================\n\
00576 MSG: sensor_msgs/RegionOfInterest\n\
00577 # This message is used to specify a region of interest within an image.\n\
00578 #\n\
00579 # When used to specify the ROI setting of the camera when the image was\n\
00580 # taken, the height and width fields should either match the height and\n\
00581 # width fields for the associated image; or height = width = 0\n\
00582 # indicates that the full resolution image was captured.\n\
00583 \n\
00584 uint32 x_offset # Leftmost pixel of the ROI\n\
00585 # (0 if the ROI includes the left edge of the image)\n\
00586 uint32 y_offset # Topmost pixel of the ROI\n\
00587 # (0 if the ROI includes the top edge of the image)\n\
00588 uint32 height # Height of ROI\n\
00589 uint32 width # Width of ROI\n\
00590 \n\
00591 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00592 # ROI in this message. Typically this should be False if the full image\n\
00593 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00594 # used).\n\
00595 bool do_rectify\n\
00596 \n\
00597 ";
00598 }
00599
00600 static const char* value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00601 };
00602
00603 }
00604 }
00605
00606
00607 namespace ros
00608 {
00609 namespace message_traits
00610 {
00611 template<class ContainerAllocator>
00612 struct MD5Sum< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00613 static const char* value()
00614 {
00615 return "2ec6f3eff0161f4257b808b12bc830c2";
00616 }
00617
00618 static const char* value(const ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00619 static const uint64_t static_value1 = 0x2ec6f3eff0161f42ULL;
00620 static const uint64_t static_value2 = 0x57b808b12bc830c2ULL;
00621 };
00622
00623 template<class ContainerAllocator>
00624 struct DataType< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00625 static const char* value()
00626 {
00627 return "sensor_msgs/SetCameraInfoResponse";
00628 }
00629
00630 static const char* value(const ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00631 };
00632
00633 template<class ContainerAllocator>
00634 struct Definition< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00635 static const char* value()
00636 {
00637 return "bool success\n\
00638 string status_message\n\
00639 \n\
00640 \n\
00641 ";
00642 }
00643
00644 static const char* value(const ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00645 };
00646
00647 }
00648 }
00649
00650 namespace ros
00651 {
00652 namespace serialization
00653 {
00654
00655 template<class ContainerAllocator> struct Serializer< ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> >
00656 {
00657 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00658 {
00659 stream.next(m.camera_info);
00660 }
00661
00662 ROS_DECLARE_ALLINONE_SERIALIZER;
00663 };
00664 }
00665 }
00666
00667
00668 namespace ros
00669 {
00670 namespace serialization
00671 {
00672
00673 template<class ContainerAllocator> struct Serializer< ::sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> >
00674 {
00675 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00676 {
00677 stream.next(m.success);
00678 stream.next(m.status_message);
00679 }
00680
00681 ROS_DECLARE_ALLINONE_SERIALIZER;
00682 };
00683 }
00684 }
00685
00686 namespace ros
00687 {
00688 namespace service_traits
00689 {
00690 template<>
00691 struct MD5Sum<sensor_msgs::SetCameraInfo> {
00692 static const char* value()
00693 {
00694 return "bef1df590ed75ed1f393692395e15482";
00695 }
00696
00697 static const char* value(const sensor_msgs::SetCameraInfo&) { return value(); }
00698 };
00699
00700 template<>
00701 struct DataType<sensor_msgs::SetCameraInfo> {
00702 static const char* value()
00703 {
00704 return "sensor_msgs/SetCameraInfo";
00705 }
00706
00707 static const char* value(const sensor_msgs::SetCameraInfo&) { return value(); }
00708 };
00709
00710 template<class ContainerAllocator>
00711 struct MD5Sum<sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00712 static const char* value()
00713 {
00714 return "bef1df590ed75ed1f393692395e15482";
00715 }
00716
00717 static const char* value(const sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00718 };
00719
00720 template<class ContainerAllocator>
00721 struct DataType<sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> > {
00722 static const char* value()
00723 {
00724 return "sensor_msgs/SetCameraInfo";
00725 }
00726
00727 static const char* value(const sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00728 };
00729
00730 template<class ContainerAllocator>
00731 struct MD5Sum<sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00732 static const char* value()
00733 {
00734 return "bef1df590ed75ed1f393692395e15482";
00735 }
00736
00737 static const char* value(const sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00738 };
00739
00740 template<class ContainerAllocator>
00741 struct DataType<sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> > {
00742 static const char* value()
00743 {
00744 return "sensor_msgs/SetCameraInfo";
00745 }
00746
00747 static const char* value(const sensor_msgs::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00748 };
00749
00750 }
00751 }
00752
00753 #endif // SENSOR_MSGS_SERVICE_SETCAMERAINFO_H
00754