00001
00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H
00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "sensor_msgs/Image.h"
00014 #include "sensor_msgs/CameraInfo.h"
00015 #include "object_recognition_gui/ModelHypothesisList.h"
00016
00017 namespace object_recognition_gui
00018 {
00019 template <class ContainerAllocator>
00020 struct ObjectRecognitionGuiGoal_ : public ros::Message
00021 {
00022 typedef ObjectRecognitionGuiGoal_<ContainerAllocator> Type;
00023
00024 ObjectRecognitionGuiGoal_()
00025 : image()
00026 , camera_info()
00027 , model_hypotheses()
00028 {
00029 }
00030
00031 ObjectRecognitionGuiGoal_(const ContainerAllocator& _alloc)
00032 : image(_alloc)
00033 , camera_info(_alloc)
00034 , model_hypotheses(_alloc)
00035 {
00036 }
00037
00038 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00039 ::sensor_msgs::Image_<ContainerAllocator> image;
00040
00041 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00042 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00043
00044 typedef std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > _model_hypotheses_type;
00045 std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > model_hypotheses;
00046
00047
00048 ROS_DEPRECATED uint32_t get_model_hypotheses_size() const { return (uint32_t)model_hypotheses.size(); }
00049 ROS_DEPRECATED void set_model_hypotheses_size(uint32_t size) { model_hypotheses.resize((size_t)size); }
00050 ROS_DEPRECATED void get_model_hypotheses_vec(std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > & vec) const { vec = this->model_hypotheses; }
00051 ROS_DEPRECATED void set_model_hypotheses_vec(const std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > & vec) { this->model_hypotheses = vec; }
00052 private:
00053 static const char* __s_getDataType_() { return "object_recognition_gui/ObjectRecognitionGuiGoal"; }
00054 public:
00055 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00056
00057 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00058
00059 private:
00060 static const char* __s_getMD5Sum_() { return "a0e81c2c24c7bbc0a1bc7c21f4c1b1c6"; }
00061 public:
00062 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00063
00064 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00065
00066 private:
00067 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00068 \n\
00069 #the original sensor data (depth/disparity image)\n\
00070 sensor_msgs/Image image\n\
00071 sensor_msgs/CameraInfo camera_info\n\
00072 \n\
00073 #list of mesh/pose hypotheses for each recognized point cluster\n\
00074 ModelHypothesisList[] model_hypotheses\n\
00075 \n\
00076 ================================================================================\n\
00077 MSG: sensor_msgs/Image\n\
00078 # This message contains an uncompressed image\n\
00079 # (0, 0) is at top-left corner of image\n\
00080 #\n\
00081 \n\
00082 Header header # Header timestamp should be acquisition time of image\n\
00083 # Header frame_id should be optical frame of camera\n\
00084 # origin of frame should be optical center of cameara\n\
00085 # +x should point to the right in the image\n\
00086 # +y should point down in the image\n\
00087 # +z should point into to plane of the image\n\
00088 # If the frame_id here and the frame_id of the CameraInfo\n\
00089 # message associated with the image conflict\n\
00090 # the behavior is undefined\n\
00091 \n\
00092 uint32 height # image height, that is, number of rows\n\
00093 uint32 width # image width, that is, number of columns\n\
00094 \n\
00095 # The legal values for encoding are in file src/image_encodings.cpp\n\
00096 # If you want to standardize a new string format, join\n\
00097 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00098 \n\
00099 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00100 # taken from the list of strings in src/image_encodings.cpp\n\
00101 \n\
00102 uint8 is_bigendian # is this data bigendian?\n\
00103 uint32 step # Full row length in bytes\n\
00104 uint8[] data # actual matrix data, size is (step * rows)\n\
00105 \n\
00106 ================================================================================\n\
00107 MSG: std_msgs/Header\n\
00108 # Standard metadata for higher-level stamped data types.\n\
00109 # This is generally used to communicate timestamped data \n\
00110 # in a particular coordinate frame.\n\
00111 # \n\
00112 # sequence ID: consecutively increasing ID \n\
00113 uint32 seq\n\
00114 #Two-integer timestamp that is expressed as:\n\
00115 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00116 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00117 # time-handling sugar is provided by the client library\n\
00118 time stamp\n\
00119 #Frame this data is associated with\n\
00120 # 0: no frame\n\
00121 # 1: global frame\n\
00122 string frame_id\n\
00123 \n\
00124 ================================================================================\n\
00125 MSG: sensor_msgs/CameraInfo\n\
00126 # This message defines meta information for a camera. It should be in a\n\
00127 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00128 # image topics named:\n\
00129 #\n\
00130 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00131 # image - monochrome, distorted\n\
00132 # image_color - color, distorted\n\
00133 # image_rect - monochrome, rectified\n\
00134 # image_rect_color - color, rectified\n\
00135 #\n\
00136 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00137 # for producing the four processed image topics from image_raw and\n\
00138 # camera_info. The meaning of the camera parameters are described in\n\
00139 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00140 #\n\
00141 # The image_geometry package provides a user-friendly interface to\n\
00142 # common operations using this meta information. If you want to, e.g.,\n\
00143 # project a 3d point into image coordinates, we strongly recommend\n\
00144 # using image_geometry.\n\
00145 #\n\
00146 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00147 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00148 # indicates an uncalibrated camera.\n\
00149 \n\
00150 #######################################################################\n\
00151 # Image acquisition info #\n\
00152 #######################################################################\n\
00153 \n\
00154 # Time of image acquisition, camera coordinate frame ID\n\
00155 Header header # Header timestamp should be acquisition time of image\n\
00156 # Header frame_id should be optical frame of camera\n\
00157 # origin of frame should be optical center of camera\n\
00158 # +x should point to the right in the image\n\
00159 # +y should point down in the image\n\
00160 # +z should point into the plane of the image\n\
00161 \n\
00162 \n\
00163 #######################################################################\n\
00164 # Calibration Parameters #\n\
00165 #######################################################################\n\
00166 # These are fixed during camera calibration. Their values will be the #\n\
00167 # same in all messages until the camera is recalibrated. Note that #\n\
00168 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00169 # #\n\
00170 # The internal parameters can be used to warp a raw (distorted) image #\n\
00171 # to: #\n\
00172 # 1. An undistorted image (requires D and K) #\n\
00173 # 2. A rectified image (requires D, K, R) #\n\
00174 # The projection matrix P projects 3D points into the rectified image.#\n\
00175 #######################################################################\n\
00176 \n\
00177 # The image dimensions with which the camera was calibrated. Normally\n\
00178 # this will be the full camera resolution in pixels.\n\
00179 uint32 height\n\
00180 uint32 width\n\
00181 \n\
00182 # The distortion model used. Supported models are listed in\n\
00183 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00184 # simple model of radial and tangential distortion - is sufficent.\n\
00185 string distortion_model\n\
00186 \n\
00187 # The distortion parameters, size depending on the distortion model.\n\
00188 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00189 float64[] D\n\
00190 \n\
00191 # Intrinsic camera matrix for the raw (distorted) images.\n\
00192 # [fx 0 cx]\n\
00193 # K = [ 0 fy cy]\n\
00194 # [ 0 0 1]\n\
00195 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00196 # coordinates using the focal lengths (fx, fy) and principal point\n\
00197 # (cx, cy).\n\
00198 float64[9] K # 3x3 row-major matrix\n\
00199 \n\
00200 # Rectification matrix (stereo cameras only)\n\
00201 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00202 # stereo image plane so that epipolar lines in both stereo images are\n\
00203 # parallel.\n\
00204 float64[9] R # 3x3 row-major matrix\n\
00205 \n\
00206 # Projection/camera matrix\n\
00207 # [fx' 0 cx' Tx]\n\
00208 # P = [ 0 fy' cy' Ty]\n\
00209 # [ 0 0 1 0]\n\
00210 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00211 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00212 # is the normal camera intrinsic matrix for the rectified image.\n\
00213 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00214 # coordinates using the focal lengths (fx', fy') and principal point\n\
00215 # (cx', cy') - these may differ from the values in K.\n\
00216 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00217 # also have R = the identity and P[1:3,1:3] = K.\n\
00218 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00219 # position of the optical center of the second camera in the first\n\
00220 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00221 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00222 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00223 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00224 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00225 # the rectified image is given by:\n\
00226 # [u v w]' = P * [X Y Z 1]'\n\
00227 # x = u / w\n\
00228 # y = v / w\n\
00229 # This holds for both images of a stereo pair.\n\
00230 float64[12] P # 3x4 row-major matrix\n\
00231 \n\
00232 \n\
00233 #######################################################################\n\
00234 # Operational Parameters #\n\
00235 #######################################################################\n\
00236 # These define the image region actually captured by the camera #\n\
00237 # driver. Although they affect the geometry of the output image, they #\n\
00238 # may be changed freely without recalibrating the camera. #\n\
00239 #######################################################################\n\
00240 \n\
00241 # Binning refers here to any camera setting which combines rectangular\n\
00242 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00243 # resolution of the output image to\n\
00244 # (width / binning_x) x (height / binning_y).\n\
00245 # The default values binning_x = binning_y = 0 is considered the same\n\
00246 # as binning_x = binning_y = 1 (no subsampling).\n\
00247 uint32 binning_x\n\
00248 uint32 binning_y\n\
00249 \n\
00250 # Region of interest (subwindow of full camera resolution), given in\n\
00251 # full resolution (unbinned) image coordinates. A particular ROI\n\
00252 # always denotes the same window of pixels on the camera sensor,\n\
00253 # regardless of binning settings.\n\
00254 # The default setting of roi (all values 0) is considered the same as\n\
00255 # full resolution (roi.width = width, roi.height = height).\n\
00256 RegionOfInterest roi\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: sensor_msgs/RegionOfInterest\n\
00260 # This message is used to specify a region of interest within an image.\n\
00261 #\n\
00262 # When used to specify the ROI setting of the camera when the image was\n\
00263 # taken, the height and width fields should either match the height and\n\
00264 # width fields for the associated image; or height = width = 0\n\
00265 # indicates that the full resolution image was captured.\n\
00266 \n\
00267 uint32 x_offset # Leftmost pixel of the ROI\n\
00268 # (0 if the ROI includes the left edge of the image)\n\
00269 uint32 y_offset # Topmost pixel of the ROI\n\
00270 # (0 if the ROI includes the top edge of the image)\n\
00271 uint32 height # Height of ROI\n\
00272 uint32 width # Width of ROI\n\
00273 \n\
00274 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00275 # ROI in this message. Typically this should be False if the full image\n\
00276 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00277 # used).\n\
00278 bool do_rectify\n\
00279 \n\
00280 ================================================================================\n\
00281 MSG: object_recognition_gui/ModelHypothesisList\n\
00282 ModelHypothesis[] hypotheses\n\
00283 \n\
00284 #initial guess if this can be a correct recognition result at all\n\
00285 bool accept\n\
00286 ================================================================================\n\
00287 MSG: object_recognition_gui/ModelHypothesis\n\
00288 #describes a hypothesis about a recognized object (mesh+pose)\n\
00289 \n\
00290 geometric_shapes_msgs/Shape mesh\n\
00291 geometry_msgs/PoseStamped pose\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: geometric_shapes_msgs/Shape\n\
00295 byte SPHERE=0\n\
00296 byte BOX=1\n\
00297 byte CYLINDER=2\n\
00298 byte MESH=3\n\
00299 \n\
00300 byte type\n\
00301 \n\
00302 \n\
00303 #### define sphere, box, cylinder ####\n\
00304 # the origin of each shape is considered at the shape's center\n\
00305 \n\
00306 # for sphere\n\
00307 # radius := dimensions[0]\n\
00308 \n\
00309 # for cylinder\n\
00310 # radius := dimensions[0]\n\
00311 # length := dimensions[1]\n\
00312 # the length is along the Z axis\n\
00313 \n\
00314 # for box\n\
00315 # size_x := dimensions[0]\n\
00316 # size_y := dimensions[1]\n\
00317 # size_z := dimensions[2]\n\
00318 float64[] dimensions\n\
00319 \n\
00320 \n\
00321 #### define mesh ####\n\
00322 \n\
00323 # list of triangles; triangle k is defined by tre vertices located\n\
00324 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00325 int32[] triangles\n\
00326 geometry_msgs/Point[] vertices\n\
00327 \n\
00328 ================================================================================\n\
00329 MSG: geometry_msgs/Point\n\
00330 # This contains the position of a point in free space\n\
00331 float64 x\n\
00332 float64 y\n\
00333 float64 z\n\
00334 \n\
00335 ================================================================================\n\
00336 MSG: geometry_msgs/PoseStamped\n\
00337 # A Pose with reference coordinate frame and timestamp\n\
00338 Header header\n\
00339 Pose pose\n\
00340 \n\
00341 ================================================================================\n\
00342 MSG: geometry_msgs/Pose\n\
00343 # A representation of pose in free space, composed of postion and orientation. \n\
00344 Point position\n\
00345 Quaternion orientation\n\
00346 \n\
00347 ================================================================================\n\
00348 MSG: geometry_msgs/Quaternion\n\
00349 # This represents an orientation in free space in quaternion form.\n\
00350 \n\
00351 float64 x\n\
00352 float64 y\n\
00353 float64 z\n\
00354 float64 w\n\
00355 \n\
00356 "; }
00357 public:
00358 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00359
00360 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00361
00362 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00363 {
00364 ros::serialization::OStream stream(write_ptr, 1000000000);
00365 ros::serialization::serialize(stream, image);
00366 ros::serialization::serialize(stream, camera_info);
00367 ros::serialization::serialize(stream, model_hypotheses);
00368 return stream.getData();
00369 }
00370
00371 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00372 {
00373 ros::serialization::IStream stream(read_ptr, 1000000000);
00374 ros::serialization::deserialize(stream, image);
00375 ros::serialization::deserialize(stream, camera_info);
00376 ros::serialization::deserialize(stream, model_hypotheses);
00377 return stream.getData();
00378 }
00379
00380 ROS_DEPRECATED virtual uint32_t serializationLength() const
00381 {
00382 uint32_t size = 0;
00383 size += ros::serialization::serializationLength(image);
00384 size += ros::serialization::serializationLength(camera_info);
00385 size += ros::serialization::serializationLength(model_hypotheses);
00386 return size;
00387 }
00388
00389 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > Ptr;
00390 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> const> ConstPtr;
00391 };
00392 typedef ::object_recognition_gui::ObjectRecognitionGuiGoal_<std::allocator<void> > ObjectRecognitionGuiGoal;
00393
00394 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal> ObjectRecognitionGuiGoalPtr;
00395 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal const> ObjectRecognitionGuiGoalConstPtr;
00396
00397
00398 template<typename ContainerAllocator>
00399 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> & v)
00400 {
00401 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >::stream(s, "", v);
00402 return s;}
00403
00404 }
00405
00406 namespace ros
00407 {
00408 namespace message_traits
00409 {
00410 template<class ContainerAllocator>
00411 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > {
00412 static const char* value()
00413 {
00414 return "a0e81c2c24c7bbc0a1bc7c21f4c1b1c6";
00415 }
00416
00417 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); }
00418 static const uint64_t static_value1 = 0xa0e81c2c24c7bbc0ULL;
00419 static const uint64_t static_value2 = 0xa1bc7c21f4c1b1c6ULL;
00420 };
00421
00422 template<class ContainerAllocator>
00423 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > {
00424 static const char* value()
00425 {
00426 return "object_recognition_gui/ObjectRecognitionGuiGoal";
00427 }
00428
00429 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); }
00430 };
00431
00432 template<class ContainerAllocator>
00433 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > {
00434 static const char* value()
00435 {
00436 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00437 \n\
00438 #the original sensor data (depth/disparity image)\n\
00439 sensor_msgs/Image image\n\
00440 sensor_msgs/CameraInfo camera_info\n\
00441 \n\
00442 #list of mesh/pose hypotheses for each recognized point cluster\n\
00443 ModelHypothesisList[] model_hypotheses\n\
00444 \n\
00445 ================================================================================\n\
00446 MSG: sensor_msgs/Image\n\
00447 # This message contains an uncompressed image\n\
00448 # (0, 0) is at top-left corner of image\n\
00449 #\n\
00450 \n\
00451 Header header # Header timestamp should be acquisition time of image\n\
00452 # Header frame_id should be optical frame of camera\n\
00453 # origin of frame should be optical center of cameara\n\
00454 # +x should point to the right in the image\n\
00455 # +y should point down in the image\n\
00456 # +z should point into to plane of the image\n\
00457 # If the frame_id here and the frame_id of the CameraInfo\n\
00458 # message associated with the image conflict\n\
00459 # the behavior is undefined\n\
00460 \n\
00461 uint32 height # image height, that is, number of rows\n\
00462 uint32 width # image width, that is, number of columns\n\
00463 \n\
00464 # The legal values for encoding are in file src/image_encodings.cpp\n\
00465 # If you want to standardize a new string format, join\n\
00466 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00467 \n\
00468 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00469 # taken from the list of strings in src/image_encodings.cpp\n\
00470 \n\
00471 uint8 is_bigendian # is this data bigendian?\n\
00472 uint32 step # Full row length in bytes\n\
00473 uint8[] data # actual matrix data, size is (step * rows)\n\
00474 \n\
00475 ================================================================================\n\
00476 MSG: std_msgs/Header\n\
00477 # Standard metadata for higher-level stamped data types.\n\
00478 # This is generally used to communicate timestamped data \n\
00479 # in a particular coordinate frame.\n\
00480 # \n\
00481 # sequence ID: consecutively increasing ID \n\
00482 uint32 seq\n\
00483 #Two-integer timestamp that is expressed as:\n\
00484 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00485 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00486 # time-handling sugar is provided by the client library\n\
00487 time stamp\n\
00488 #Frame this data is associated with\n\
00489 # 0: no frame\n\
00490 # 1: global frame\n\
00491 string frame_id\n\
00492 \n\
00493 ================================================================================\n\
00494 MSG: sensor_msgs/CameraInfo\n\
00495 # This message defines meta information for a camera. It should be in a\n\
00496 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00497 # image topics named:\n\
00498 #\n\
00499 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00500 # image - monochrome, distorted\n\
00501 # image_color - color, distorted\n\
00502 # image_rect - monochrome, rectified\n\
00503 # image_rect_color - color, rectified\n\
00504 #\n\
00505 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00506 # for producing the four processed image topics from image_raw and\n\
00507 # camera_info. The meaning of the camera parameters are described in\n\
00508 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00509 #\n\
00510 # The image_geometry package provides a user-friendly interface to\n\
00511 # common operations using this meta information. If you want to, e.g.,\n\
00512 # project a 3d point into image coordinates, we strongly recommend\n\
00513 # using image_geometry.\n\
00514 #\n\
00515 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00516 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00517 # indicates an uncalibrated camera.\n\
00518 \n\
00519 #######################################################################\n\
00520 # Image acquisition info #\n\
00521 #######################################################################\n\
00522 \n\
00523 # Time of image acquisition, camera coordinate frame ID\n\
00524 Header header # Header timestamp should be acquisition time of image\n\
00525 # Header frame_id should be optical frame of camera\n\
00526 # origin of frame should be optical center of camera\n\
00527 # +x should point to the right in the image\n\
00528 # +y should point down in the image\n\
00529 # +z should point into the plane of the image\n\
00530 \n\
00531 \n\
00532 #######################################################################\n\
00533 # Calibration Parameters #\n\
00534 #######################################################################\n\
00535 # These are fixed during camera calibration. Their values will be the #\n\
00536 # same in all messages until the camera is recalibrated. Note that #\n\
00537 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00538 # #\n\
00539 # The internal parameters can be used to warp a raw (distorted) image #\n\
00540 # to: #\n\
00541 # 1. An undistorted image (requires D and K) #\n\
00542 # 2. A rectified image (requires D, K, R) #\n\
00543 # The projection matrix P projects 3D points into the rectified image.#\n\
00544 #######################################################################\n\
00545 \n\
00546 # The image dimensions with which the camera was calibrated. Normally\n\
00547 # this will be the full camera resolution in pixels.\n\
00548 uint32 height\n\
00549 uint32 width\n\
00550 \n\
00551 # The distortion model used. Supported models are listed in\n\
00552 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00553 # simple model of radial and tangential distortion - is sufficent.\n\
00554 string distortion_model\n\
00555 \n\
00556 # The distortion parameters, size depending on the distortion model.\n\
00557 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00558 float64[] D\n\
00559 \n\
00560 # Intrinsic camera matrix for the raw (distorted) images.\n\
00561 # [fx 0 cx]\n\
00562 # K = [ 0 fy cy]\n\
00563 # [ 0 0 1]\n\
00564 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00565 # coordinates using the focal lengths (fx, fy) and principal point\n\
00566 # (cx, cy).\n\
00567 float64[9] K # 3x3 row-major matrix\n\
00568 \n\
00569 # Rectification matrix (stereo cameras only)\n\
00570 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00571 # stereo image plane so that epipolar lines in both stereo images are\n\
00572 # parallel.\n\
00573 float64[9] R # 3x3 row-major matrix\n\
00574 \n\
00575 # Projection/camera matrix\n\
00576 # [fx' 0 cx' Tx]\n\
00577 # P = [ 0 fy' cy' Ty]\n\
00578 # [ 0 0 1 0]\n\
00579 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00580 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00581 # is the normal camera intrinsic matrix for the rectified image.\n\
00582 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00583 # coordinates using the focal lengths (fx', fy') and principal point\n\
00584 # (cx', cy') - these may differ from the values in K.\n\
00585 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00586 # also have R = the identity and P[1:3,1:3] = K.\n\
00587 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00588 # position of the optical center of the second camera in the first\n\
00589 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00590 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00591 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00592 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00593 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00594 # the rectified image is given by:\n\
00595 # [u v w]' = P * [X Y Z 1]'\n\
00596 # x = u / w\n\
00597 # y = v / w\n\
00598 # This holds for both images of a stereo pair.\n\
00599 float64[12] P # 3x4 row-major matrix\n\
00600 \n\
00601 \n\
00602 #######################################################################\n\
00603 # Operational Parameters #\n\
00604 #######################################################################\n\
00605 # These define the image region actually captured by the camera #\n\
00606 # driver. Although they affect the geometry of the output image, they #\n\
00607 # may be changed freely without recalibrating the camera. #\n\
00608 #######################################################################\n\
00609 \n\
00610 # Binning refers here to any camera setting which combines rectangular\n\
00611 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00612 # resolution of the output image to\n\
00613 # (width / binning_x) x (height / binning_y).\n\
00614 # The default values binning_x = binning_y = 0 is considered the same\n\
00615 # as binning_x = binning_y = 1 (no subsampling).\n\
00616 uint32 binning_x\n\
00617 uint32 binning_y\n\
00618 \n\
00619 # Region of interest (subwindow of full camera resolution), given in\n\
00620 # full resolution (unbinned) image coordinates. A particular ROI\n\
00621 # always denotes the same window of pixels on the camera sensor,\n\
00622 # regardless of binning settings.\n\
00623 # The default setting of roi (all values 0) is considered the same as\n\
00624 # full resolution (roi.width = width, roi.height = height).\n\
00625 RegionOfInterest roi\n\
00626 \n\
00627 ================================================================================\n\
00628 MSG: sensor_msgs/RegionOfInterest\n\
00629 # This message is used to specify a region of interest within an image.\n\
00630 #\n\
00631 # When used to specify the ROI setting of the camera when the image was\n\
00632 # taken, the height and width fields should either match the height and\n\
00633 # width fields for the associated image; or height = width = 0\n\
00634 # indicates that the full resolution image was captured.\n\
00635 \n\
00636 uint32 x_offset # Leftmost pixel of the ROI\n\
00637 # (0 if the ROI includes the left edge of the image)\n\
00638 uint32 y_offset # Topmost pixel of the ROI\n\
00639 # (0 if the ROI includes the top edge of the image)\n\
00640 uint32 height # Height of ROI\n\
00641 uint32 width # Width of ROI\n\
00642 \n\
00643 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00644 # ROI in this message. Typically this should be False if the full image\n\
00645 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00646 # used).\n\
00647 bool do_rectify\n\
00648 \n\
00649 ================================================================================\n\
00650 MSG: object_recognition_gui/ModelHypothesisList\n\
00651 ModelHypothesis[] hypotheses\n\
00652 \n\
00653 #initial guess if this can be a correct recognition result at all\n\
00654 bool accept\n\
00655 ================================================================================\n\
00656 MSG: object_recognition_gui/ModelHypothesis\n\
00657 #describes a hypothesis about a recognized object (mesh+pose)\n\
00658 \n\
00659 geometric_shapes_msgs/Shape mesh\n\
00660 geometry_msgs/PoseStamped pose\n\
00661 \n\
00662 ================================================================================\n\
00663 MSG: geometric_shapes_msgs/Shape\n\
00664 byte SPHERE=0\n\
00665 byte BOX=1\n\
00666 byte CYLINDER=2\n\
00667 byte MESH=3\n\
00668 \n\
00669 byte type\n\
00670 \n\
00671 \n\
00672 #### define sphere, box, cylinder ####\n\
00673 # the origin of each shape is considered at the shape's center\n\
00674 \n\
00675 # for sphere\n\
00676 # radius := dimensions[0]\n\
00677 \n\
00678 # for cylinder\n\
00679 # radius := dimensions[0]\n\
00680 # length := dimensions[1]\n\
00681 # the length is along the Z axis\n\
00682 \n\
00683 # for box\n\
00684 # size_x := dimensions[0]\n\
00685 # size_y := dimensions[1]\n\
00686 # size_z := dimensions[2]\n\
00687 float64[] dimensions\n\
00688 \n\
00689 \n\
00690 #### define mesh ####\n\
00691 \n\
00692 # list of triangles; triangle k is defined by tre vertices located\n\
00693 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00694 int32[] triangles\n\
00695 geometry_msgs/Point[] vertices\n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: geometry_msgs/Point\n\
00699 # This contains the position of a point in free space\n\
00700 float64 x\n\
00701 float64 y\n\
00702 float64 z\n\
00703 \n\
00704 ================================================================================\n\
00705 MSG: geometry_msgs/PoseStamped\n\
00706 # A Pose with reference coordinate frame and timestamp\n\
00707 Header header\n\
00708 Pose pose\n\
00709 \n\
00710 ================================================================================\n\
00711 MSG: geometry_msgs/Pose\n\
00712 # A representation of pose in free space, composed of postion and orientation. \n\
00713 Point position\n\
00714 Quaternion orientation\n\
00715 \n\
00716 ================================================================================\n\
00717 MSG: geometry_msgs/Quaternion\n\
00718 # This represents an orientation in free space in quaternion form.\n\
00719 \n\
00720 float64 x\n\
00721 float64 y\n\
00722 float64 z\n\
00723 float64 w\n\
00724 \n\
00725 ";
00726 }
00727
00728 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); }
00729 };
00730
00731 }
00732 }
00733
00734 namespace ros
00735 {
00736 namespace serialization
00737 {
00738
00739 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >
00740 {
00741 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00742 {
00743 stream.next(m.image);
00744 stream.next(m.camera_info);
00745 stream.next(m.model_hypotheses);
00746 }
00747
00748 ROS_DECLARE_ALLINONE_SERIALIZER;
00749 };
00750 }
00751 }
00752
00753 namespace ros
00754 {
00755 namespace message_operations
00756 {
00757
00758 template<class ContainerAllocator>
00759 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >
00760 {
00761 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> & v)
00762 {
00763 s << indent << "image: ";
00764 s << std::endl;
00765 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00766 s << indent << "camera_info: ";
00767 s << std::endl;
00768 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
00769 s << indent << "model_hypotheses[]" << std::endl;
00770 for (size_t i = 0; i < v.model_hypotheses.size(); ++i)
00771 {
00772 s << indent << " model_hypotheses[" << i << "]: ";
00773 s << std::endl;
00774 s << indent;
00775 Printer< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::stream(s, indent + " ", v.model_hypotheses[i]);
00776 }
00777 }
00778 };
00779
00780
00781 }
00782 }
00783
00784 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H
00785